/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "onyxd_int.h" #include "vp8/common/header.h" #include "vp8/common/reconintra.h" #include "vp8/common/reconintra4x4.h" #include "vp8/common/recon.h" #include "vp8/common/reconinter.h" #include "dequantize.h" #include "detokenize.h" #include "vp8/common/invtrans.h" #include "vp8/common/alloccommon.h" #include "vp8/common/entropymode.h" #include "vp8/common/quant_common.h" #include "vpx_scale/vpxscale.h" #include "vpx_scale/yv12extend.h" #include "vp8/common/setupintrarecon.h" #include "decodemv.h" #include "vp8/common/extend.h" #include "vp8/common/modecont.h" #include "vpx_mem/vpx_mem.h" #include "vp8/common/idct.h" #include "dequantize.h" #include "dboolhuff.h" #include "vp8/common/seg_common.h" #include "vp8/common/entropy.h" #include #include #ifdef DEC_DEBUG int dec_debug = 0; #endif #define COEFCOUNT_TESTING #if CONFIG_NEWUPDATE static int merge_index(int v, int n, int modulus) { int max1 = (n-1 - modulus/2)/modulus + 1; if (v < max1) v = v * modulus + modulus/2; else { int w; v -= max1; w = v; v += (v + modulus-modulus/2)/modulus; while (v%modulus == modulus/2 || w != v - (v + modulus-modulus/2)/modulus) v++; } return v; } static int inv_remap_prob(int v, int m) { const int n = 256; const int modulus = MODULUS_PARAM; int i, w; v = merge_index(v, n-1, modulus); if ((m<<1)<=n) { i = inv_recenter_nonneg(v+1, m); } else { i = n-1-inv_recenter_nonneg(v+1, n-1-m); } return i; } static vp8_prob read_prob_diff_update(vp8_reader *const bc, int oldp) { int delp = vp8_decode_term_subexp(bc, SUBEXP_PARAM, 255); return (vp8_prob)inv_remap_prob(delp, oldp); } #endif void vp8cx_init_de_quantizer(VP8D_COMP *pbi) { int i; int Q; VP8_COMMON *const pc = & pbi->common; for (Q = 0; Q < QINDEX_RANGE; Q++) { pc->Y1dequant[Q][0] = (short)vp8_dc_quant(Q, pc->y1dc_delta_q); pc->Y2dequant[Q][0] = (short)vp8_dc2quant(Q, pc->y2dc_delta_q); pc->UVdequant[Q][0] = (short)vp8_dc_uv_quant(Q, pc->uvdc_delta_q); /* all the ac values = ; */ for (i = 1; i < 16; i++) { int rc = vp8_default_zig_zag1d[i]; pc->Y1dequant[Q][rc] = (short)vp8_ac_yquant(Q); pc->Y2dequant[Q][rc] = (short)vp8_ac2quant(Q, pc->y2ac_delta_q); pc->UVdequant[Q][rc] = (short)vp8_ac_uv_quant(Q, pc->uvac_delta_q); } } } void mb_init_dequantizer(VP8D_COMP *pbi, MACROBLOCKD *xd) { int i; int QIndex; VP8_COMMON *const pc = & pbi->common; int segment_id = xd->mode_info_context->mbmi.segment_id; // Set the Q baseline allowing for any segment level adjustment if ( segfeature_active( xd, segment_id, SEG_LVL_ALT_Q ) ) { /* Abs Value */ if (xd->mb_segment_abs_delta == SEGMENT_ABSDATA) QIndex = get_segdata( xd, segment_id, SEG_LVL_ALT_Q ); /* Delta Value */ else { QIndex = pc->base_qindex + get_segdata( xd, segment_id, SEG_LVL_ALT_Q ); QIndex = (QIndex >= 0) ? ((QIndex <= MAXQ) ? QIndex : MAXQ) : 0; /* Clamp to valid range */ } } else QIndex = pc->base_qindex; /* Set up the block level dequant pointers */ for (i = 0; i < 16; i++) { xd->block[i].dequant = pc->Y1dequant[QIndex]; } for (i = 16; i < 24; i++) { xd->block[i].dequant = pc->UVdequant[QIndex]; } xd->block[24].dequant = pc->Y2dequant[QIndex]; } #if CONFIG_RUNTIME_CPU_DETECT #define RTCD_VTABLE(x) (&(pbi)->common.rtcd.x) #else #define RTCD_VTABLE(x) NULL #endif /* skip_recon_mb() is Modified: Instead of writing the result to predictor buffer and then copying it * to dst buffer, we can write the result directly to dst buffer. This eliminates unnecessary copy. */ static void skip_recon_mb(VP8D_COMP *pbi, MACROBLOCKD *xd) { if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { RECON_INVOKE(&pbi->common.rtcd.recon, build_intra_predictors_mbuv_s)(xd); RECON_INVOKE(&pbi->common.rtcd.recon, build_intra_predictors_mby_s)(xd); } else { vp8_build_inter16x16_predictors_mb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride); if (xd->mode_info_context->mbmi.second_ref_frame) { vp8_build_2nd_inter16x16_predictors_mb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride); } } #ifdef DEC_DEBUG if (dec_debug) { int i, j; printf("Generating predictors\n"); for (i=0;i<16;i++) { for (j=0;j<16;j++) printf("%3d ", xd->dst.y_buffer[i*xd->dst.y_stride+j]); printf("\n"); } } #endif } extern const int vp8_i8x8_block[4]; static void decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd, unsigned int mb_idx) { int eobtotal = 0; MB_PREDICTION_MODE mode; int i; int tx_type; if(pbi->common.frame_type == KEY_FRAME) { if( pbi->common.txfm_mode==ALLOW_8X8 && (xd->mode_info_context->mbmi.mode == DC_PRED ||xd->mode_info_context->mbmi.mode == TM_PRED)) xd->mode_info_context->mbmi.txfm_size = TX_8X8; else xd->mode_info_context->mbmi.txfm_size = TX_4X4; } else { if( pbi->common.txfm_mode==ONLY_4X4 ) { xd->mode_info_context->mbmi.txfm_size = TX_4X4; } else if( pbi->common.txfm_mode == ALLOW_8X8 ) { if( xd->mode_info_context->mbmi.mode ==B_PRED ||xd->mode_info_context->mbmi.mode ==I8X8_PRED ||xd->mode_info_context->mbmi.mode ==SPLITMV) xd->mode_info_context->mbmi.txfm_size = TX_4X4; else xd->mode_info_context->mbmi.txfm_size = TX_8X8; } } tx_type = xd->mode_info_context->mbmi.txfm_size; if (xd->mode_info_context->mbmi.mb_skip_coeff) { vp8_reset_mb_tokens_context(xd); } else if (!vp8dx_bool_error(xd->current_bc)) { for(i = 0; i < 25; i++) { xd->block[i].eob = 0; xd->eobs[i] = 0; } if ( tx_type == TX_8X8 ) eobtotal = vp8_decode_mb_tokens_8x8(pbi, xd); else eobtotal = vp8_decode_mb_tokens(pbi, xd); #ifdef DEC_DEBUG if (dec_debug) { printf("\nTokens (%d)\n", eobtotal); for (i =0; i<400; i++) { printf("%3d ", xd->qcoeff[i]); if (i%16 == 15) printf("\n"); } printf("\n"); } #endif } mode = xd->mode_info_context->mbmi.mode; if (eobtotal == 0 && mode != B_PRED && mode != SPLITMV && mode != I8X8_PRED &&!vp8dx_bool_error(xd->current_bc) ) { /* Special case: Force the loopfilter to skip when eobtotal and * mb_skip_coeff are zero. * */ xd->mode_info_context->mbmi.mb_skip_coeff = 1; skip_recon_mb(pbi, xd); return; } #ifdef DEC_DEBUG if (dec_debug) { int i, j; printf("Generating predictors\n"); for (i=0;i<16;i++) { for (j=0;j<16;j++) printf("%3d ", xd->dst.y_buffer[i*xd->dst.y_stride+j]); printf("\n"); } } #endif if (xd->segmentation_enabled) mb_init_dequantizer(pbi, xd); /* do prediction */ if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { if(mode != I8X8_PRED) { RECON_INVOKE(&pbi->common.rtcd.recon, build_intra_predictors_mbuv)(xd); if (mode != B_PRED) { RECON_INVOKE(&pbi->common.rtcd.recon, build_intra_predictors_mby)(xd); } #if 0 // Intra-modes requiring recon data from top-right // MB have been temporarily disabled. else { vp8_intra_prediction_down_copy(xd); } #endif } } else { vp8_build_inter_predictors_mb(xd); } /* dequantization and idct */ if (mode == I8X8_PRED) { for (i = 0; i < 4; i++) { int ib = vp8_i8x8_block[i]; const int iblock[4]={0,1,4,5}; int j; int i8x8mode; BLOCKD *b; b = &xd->block[ib]; i8x8mode= b->bmi.as_mode.first; RECON_INVOKE(RTCD_VTABLE(recon), intra8x8_predict) (b, i8x8mode, b->predictor); for(j = 0; j < 4; j++) { b = &xd->block[ib+iblock[j]]; if (xd->eobs[ib+iblock[j]] > 1) { DEQUANT_INVOKE(&pbi->dequant, idct_add) (b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride); } else { IDCT_INVOKE(RTCD_VTABLE(idct), idct1_scalar_add) (b->qcoeff[0] * b->dequant[0], b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride); ((int *)b->qcoeff)[0] = 0; } } b = &xd->block[16+i]; RECON_INVOKE(RTCD_VTABLE(recon), intra_uv4x4_predict) (b, i8x8mode, b->predictor); DEQUANT_INVOKE(&pbi->dequant, idct_add) (b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 8, b->dst_stride); b = &xd->block[20+i]; RECON_INVOKE(RTCD_VTABLE(recon), intra_uv4x4_predict) (b, i8x8mode, b->predictor); DEQUANT_INVOKE(&pbi->dequant, idct_add) (b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 8, b->dst_stride); } } else if (mode == B_PRED) { for (i = 0; i < 16; i++) { BLOCKD *b = &xd->block[i]; int b_mode = xd->mode_info_context->bmi[i].as_mode.first; #if CONFIG_COMP_INTRA_PRED int b_mode2 = xd->mode_info_context->bmi[i].as_mode.second; if (b_mode2 == (B_PREDICTION_MODE) (B_DC_PRED - 1)) { #endif RECON_INVOKE(RTCD_VTABLE(recon), intra4x4_predict) (b, b_mode, b->predictor); #if CONFIG_COMP_INTRA_PRED } else { RECON_INVOKE(RTCD_VTABLE(recon), comp_intra4x4_predict) (b, b_mode, b_mode2, b->predictor); } #endif if (xd->eobs[i] > 1) { DEQUANT_INVOKE(&pbi->dequant, idct_add) (b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride); } else { IDCT_INVOKE(RTCD_VTABLE(idct), idct1_scalar_add) (b->qcoeff[0] * b->dequant[0], b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride); ((int *)b->qcoeff)[0] = 0; } } } else if (mode == SPLITMV) { DEQUANT_INVOKE (&pbi->dequant, idct_add_y_block) (xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, xd->dst.y_stride, xd->eobs); } else { BLOCKD *b = &xd->block[24]; if( tx_type == TX_8X8 ) { DEQUANT_INVOKE(&pbi->dequant, block_2x2)(b); #ifdef DEC_DEBUG if (dec_debug) { int j; printf("DQcoeff Haar\n"); for (j=0;j<16;j++) { printf("%d ", b->dqcoeff[j]); } printf("\n"); } #endif IDCT_INVOKE(RTCD_VTABLE(idct), ihaar2)(&b->dqcoeff[0], b->diff, 8); ((int *)b->qcoeff)[0] = 0;//2nd order block are set to 0 after inverse transform ((int *)b->qcoeff)[1] = 0; ((int *)b->qcoeff)[2] = 0; ((int *)b->qcoeff)[3] = 0; ((int *)b->qcoeff)[4] = 0; ((int *)b->qcoeff)[5] = 0; ((int *)b->qcoeff)[6] = 0; ((int *)b->qcoeff)[7] = 0; DEQUANT_INVOKE (&pbi->dequant, dc_idct_add_y_block_8x8) (xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, xd->dst.y_stride, xd->eobs, xd->block[24].diff, xd); } else { DEQUANT_INVOKE(&pbi->dequant, block)(b); if (xd->eobs[24] > 1) { IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh16)(&b->dqcoeff[0], b->diff); ((int *)b->qcoeff)[0] = 0; ((int *)b->qcoeff)[1] = 0; ((int *)b->qcoeff)[2] = 0; ((int *)b->qcoeff)[3] = 0; ((int *)b->qcoeff)[4] = 0; ((int *)b->qcoeff)[5] = 0; ((int *)b->qcoeff)[6] = 0; ((int *)b->qcoeff)[7] = 0; } else { IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh1)(&b->dqcoeff[0], b->diff); ((int *)b->qcoeff)[0] = 0; } DEQUANT_INVOKE (&pbi->dequant, dc_idct_add_y_block) (xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, xd->dst.y_stride, xd->eobs, xd->block[24].diff); } } if( tx_type == TX_8X8 ) DEQUANT_INVOKE (&pbi->dequant, idct_add_uv_block_8x8)// (xd->qcoeff+16*16, xd->block[16].dequant, xd->predictor+16*16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd->eobs+16, xd);// else if(xd->mode_info_context->mbmi.mode!=I8X8_PRED) DEQUANT_INVOKE (&pbi->dequant, idct_add_uv_block) (xd->qcoeff+16*16, xd->block[16].dequant, xd->predictor+16*16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd->eobs+16); } static int get_delta_q(vp8_reader *bc, int prev, int *q_update) { int ret_val = 0; if (vp8_read_bit(bc)) { ret_val = vp8_read_literal(bc, 4); if (vp8_read_bit(bc)) ret_val = -ret_val; } /* Trigger a quantizer update if the delta-q value has changed */ if (ret_val != prev) *q_update = 1; return ret_val; } #ifdef PACKET_TESTING #include FILE *vpxlog = 0; #endif /* Decode a row of Superblocks (2x2 region of MBs) */ static void decode_sb_row(VP8D_COMP *pbi, VP8_COMMON *pc, int mbrow, MACROBLOCKD *xd) { int i; int sb_col; int mb_row, mb_col; int recon_yoffset, recon_uvoffset; int ref_fb_idx = pc->lst_fb_idx; int dst_fb_idx = pc->new_fb_idx; int recon_y_stride = pc->yv12_fb[ref_fb_idx].y_stride; int recon_uv_stride = pc->yv12_fb[ref_fb_idx].uv_stride; int row_delta[4] = { 0, +1, 0, -1}; int col_delta[4] = {+1, -1, +1, +1}; int sb_cols = (pc->mb_cols + 1)>>1; ENTROPY_CONTEXT_PLANES left_context[2]; // For a SB there are 2 left contexts, each pertaining to a MB row within vpx_memset(left_context, 0, sizeof(left_context)); mb_row = mbrow; mb_col = 0; for (sb_col=0; sb_colmode_info_stride + dx; if ((mb_row >= pc->mb_rows) || (mb_col >= pc->mb_cols)) { // MB lies outside frame, skip on to next mb_row += dy; mb_col += dx; xd->mode_info_context += offset_extended; continue; } #ifdef DEC_DEBUG dec_debug = (pc->current_video_frame==0 && mb_row==0 && mb_col==0); #endif // Copy in the appropriate left context for this MB row vpx_memcpy (&pc->left_context, &left_context[i>>1], sizeof(ENTROPY_CONTEXT_PLANES)); // Set above context pointer xd->above_context = pc->above_context + mb_col; /* Distance of Mb to the various image edges. * These are specified to 8th pel as they are always compared to * values that are in 1/8th pel units */ xd->mb_to_top_edge = -((mb_row * 16)) << 3; xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3; xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3; xd->up_available = (mb_row != 0); xd->left_available = (mb_col != 0); update_blockd_bmi(xd); recon_yoffset = (mb_row * recon_y_stride * 16) + (mb_col * 16); recon_uvoffset = (mb_row * recon_uv_stride * 8) + (mb_col * 8); xd->dst.y_buffer = pc->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset; xd->dst.u_buffer = pc->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset; xd->dst.v_buffer = pc->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset; /* Select the appropriate reference frame for this MB */ if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME) ref_fb_idx = pc->lst_fb_idx; else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME) ref_fb_idx = pc->gld_fb_idx; else ref_fb_idx = pc->alt_fb_idx; xd->pre.y_buffer = pc->yv12_fb[ref_fb_idx].y_buffer +recon_yoffset; xd->pre.u_buffer = pc->yv12_fb[ref_fb_idx].u_buffer +recon_uvoffset; xd->pre.v_buffer = pc->yv12_fb[ref_fb_idx].v_buffer +recon_uvoffset; if (xd->mode_info_context->mbmi.second_ref_frame) { int second_ref_fb_idx; /* Select the appropriate reference frame for this MB */ if (xd->mode_info_context->mbmi.second_ref_frame == LAST_FRAME) second_ref_fb_idx = pc->lst_fb_idx; else if (xd->mode_info_context->mbmi.second_ref_frame == GOLDEN_FRAME) second_ref_fb_idx = pc->gld_fb_idx; else second_ref_fb_idx = pc->alt_fb_idx; xd->second_pre.y_buffer = pc->yv12_fb[second_ref_fb_idx].y_buffer + recon_yoffset; xd->second_pre.u_buffer = pc->yv12_fb[second_ref_fb_idx].u_buffer + recon_uvoffset; xd->second_pre.v_buffer = pc->yv12_fb[second_ref_fb_idx].v_buffer + recon_uvoffset; } if (xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME) { /* propagate errors from reference frames */ xd->corrupted |= pc->yv12_fb[ref_fb_idx].corrupted; } decode_macroblock(pbi, xd, mb_row * pc->mb_cols + mb_col); /* check if the boolean decoder has suffered an error */ xd->corrupted |= vp8dx_bool_error(xd->current_bc); // Store the modified left context for the MB row locally vpx_memcpy (&left_context[i>>1], &pc->left_context, sizeof(ENTROPY_CONTEXT_PLANES)); // skip to next MB xd->mode_info_context += offset_extended; mb_row += dy; mb_col += dx; } } /* skip prediction column */ xd->mode_info_context += 1 - (pc->mb_cols & 0x1) + xd->mode_info_stride; } static unsigned int read_partition_size(const unsigned char *cx_size) { const unsigned int size = cx_size[0] + (cx_size[1] << 8) + (cx_size[2] << 16); return size; } static int read_is_valid(const unsigned char *start, size_t len, const unsigned char *end) { return (start + len > start && start + len <= end); } static void setup_token_decoder(VP8D_COMP *pbi, const unsigned char *cx_data) { VP8_COMMON *pc = &pbi->common; const unsigned char *user_data_end = pbi->Source + pbi->source_sz; vp8_reader *bool_decoder; const unsigned char *partition; ptrdiff_t partition_size; ptrdiff_t bytes_left; // Dummy read for now vp8_read_literal(&pbi->bc, 2); // Set up pointers to token partition partition = cx_data; bool_decoder = &pbi->bc2; bytes_left = user_data_end - partition; partition_size = bytes_left; /* Validate the calculated partition length. If the buffer * described by the partition can't be fully read, then restrict * it to the portion that can be (for EC mode) or throw an error. */ if (!read_is_valid(partition, partition_size, user_data_end)) { vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt partition " "%d length", 1); } if (vp8dx_start_decode(bool_decoder, partition, partition_size)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder %d", 1); } static void init_frame(VP8D_COMP *pbi) { VP8_COMMON *const pc = & pbi->common; MACROBLOCKD *const xd = & pbi->mb; if (pc->frame_type == KEY_FRAME) { /* Various keyframe initializations */ vpx_memcpy(pc->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context)); #if CONFIG_HIGH_PRECISION_MV vpx_memcpy(pc->fc.mvc_hp, vp8_default_mv_context_hp, sizeof(vp8_default_mv_context_hp)); #endif vp8_init_mbmode_probs(pc); vp8_default_coef_probs(pc); vp8_kf_default_bmode_probs(pc->kf_bmode_prob); // Reset the segment feature data to the default stats: // Features disabled, 0, with delta coding (Default state). clearall_segfeatures( xd ); xd->mb_segment_abs_delta = SEGMENT_DELTADATA; /* reset the mode ref deltasa for loop filter */ vpx_memset(xd->ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas)); vpx_memset(xd->mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas)); /* All buffers are implicitly updated on key frames. */ pc->refresh_golden_frame = 1; pc->refresh_alt_ref_frame = 1; pc->copy_buffer_to_gf = 0; pc->copy_buffer_to_arf = 0; /* Note that Golden and Altref modes cannot be used on a key frame so * ref_frame_sign_bias[] is undefined and meaningless */ pc->ref_frame_sign_bias[GOLDEN_FRAME] = 0; pc->ref_frame_sign_bias[ALTREF_FRAME] = 0; vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc)); vpx_memcpy(&pc->lfc_a, &pc->fc, sizeof(pc->fc)); vp8_init_mode_contexts(&pbi->common); vpx_memcpy( pbi->common.vp8_mode_contexts, pbi->common.mode_context, sizeof(pbi->common.mode_context)); } else { if (!pc->use_bilinear_mc_filter) #if CONFIG_ENHANCED_INTERP pc->mcomp_filter_type = EIGHTTAP; #else pc->mcomp_filter_type = SIXTAP; #endif else pc->mcomp_filter_type = BILINEAR; /* To enable choice of different interploation filters */ if (pc->mcomp_filter_type == SIXTAP) { xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap4x4); xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap8x4); xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap8x8); xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap16x16); xd->subpixel_predict_avg = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap_avg4x4); xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap_avg8x8); xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap_avg16x16); } #if CONFIG_ENHANCED_INTERP else if (pc->mcomp_filter_type == EIGHTTAP) { xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap4x4); xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap8x4); xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap8x8); xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap16x16); xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE( RTCD_VTABLE(subpix), eighttap_avg8x8); xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE( RTCD_VTABLE(subpix), eighttap_avg16x16); xd->subpixel_predict_avg = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap_avg4x4); } else if (pc->mcomp_filter_type == EIGHTTAP_SHARP) { xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap4x4_sharp); xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap8x4_sharp); xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap8x8_sharp); xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap16x16_sharp); xd->subpixel_predict_avg = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap_avg4x4_sharp); xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE( RTCD_VTABLE(subpix), eighttap_avg8x8_sharp); xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE( RTCD_VTABLE(subpix), eighttap_avg16x16_sharp); } #endif else { xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear4x4); xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear8x4); xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear8x8); xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear16x16); xd->subpixel_predict_avg = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear_avg4x4); xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear_avg8x8); xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear_avg16x16); } } xd->left_context = &pc->left_context; xd->mode_info_context = pc->mi; xd->frame_type = pc->frame_type; xd->mode_info_context->mbmi.mode = DC_PRED; xd->mode_info_stride = pc->mode_info_stride; xd->corrupted = 0; /* init without corruption */ xd->fullpixel_mask = 0xffffffff; if(pc->full_pixel) xd->fullpixel_mask = 0xfffffff8; } #if CONFIG_NEWUPDATE static void read_coef_probs3(VP8D_COMP *pbi) { const vp8_prob grpupd = 216; int i, j, k, l; vp8_reader *const bc = & pbi->bc; VP8_COMMON *const pc = & pbi->common; for (i = 0; i < BLOCK_TYPES; i++) for (l = 0; l < ENTROPY_NODES; l++) { if(vp8_read(bc, grpupd)) { //printf("Decoding %d\n", l); for (j = !i; j < COEF_BANDS; j++) for (k = 0; k < PREV_COEF_CONTEXTS; k++) { #if CONFIG_EXPANDED_COEF_CONTEXT if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0))) continue; #endif { vp8_prob *const p = pc->fc.coef_probs [i][j][k] + l; int u = vp8_read(bc, COEF_UPDATE_PROB); if (u) *p = read_prob_diff_update(bc, *p); } } } } if(pbi->common.txfm_mode == ALLOW_8X8) { for (i = 0; i < BLOCK_TYPES_8X8; i++) for (l = 0; l < ENTROPY_NODES; l++) { if(vp8_read(bc, grpupd)) { for (j = !i; j < COEF_BANDS; j++) for (k = 0; k < PREV_COEF_CONTEXTS; k++) { #if CONFIG_EXPANDED_COEF_CONTEXT if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0))) continue; #endif { vp8_prob *const p = pc->fc.coef_probs_8x8 [i][j][k] + l; int u = vp8_read(bc, COEF_UPDATE_PROB_8X8); if (u) *p = read_prob_diff_update(bc, *p); } } } } } } static void read_coef_probs2(VP8D_COMP *pbi) { const vp8_prob grpupd = 192; int i, j, k, l; vp8_reader *const bc = & pbi->bc; VP8_COMMON *const pc = & pbi->common; for (l = 0; l < ENTROPY_NODES; l++) { if(vp8_read(bc, grpupd)) { //printf("Decoding %d\n", l); for (i = 0; i < BLOCK_TYPES; i++) for (j = !i; j < COEF_BANDS; j++) for (k = 0; k < PREV_COEF_CONTEXTS; k++) { #if CONFIG_EXPANDED_COEF_CONTEXT if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0))) continue; #endif { vp8_prob *const p = pc->fc.coef_probs [i][j][k] + l; int u = vp8_read(bc, COEF_UPDATE_PROB); if (u) *p = read_prob_diff_update(bc, *p); } } } } if(pbi->common.txfm_mode == ALLOW_8X8) { for (l = 0; l < ENTROPY_NODES; l++) { if(vp8_read(bc, grpupd)) { for (i = 0; i < BLOCK_TYPES_8X8; i++) for (j = !i; j < COEF_BANDS; j++) for (k = 0; k < PREV_COEF_CONTEXTS; k++) { #if CONFIG_EXPANDED_COEF_CONTEXT if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0))) continue; #endif { vp8_prob *const p = pc->fc.coef_probs_8x8 [i][j][k] + l; int u = vp8_read(bc, COEF_UPDATE_PROB_8X8); if (u) *p = read_prob_diff_update(bc, *p); } } } } } } #endif static void read_coef_probs(VP8D_COMP *pbi) { int i, j, k, l; vp8_reader *const bc = & pbi->bc; VP8_COMMON *const pc = & pbi->common; { if(vp8_read_bit(bc)) { /* read coef probability tree */ for (i = 0; i < BLOCK_TYPES; i++) #if CONFIG_NEWUPDATE for (j = !i; j < COEF_BANDS; j++) #else for (j = 0; j < COEF_BANDS; j++) #endif for (k = 0; k < PREV_COEF_CONTEXTS; k++) { #if CONFIG_EXPANDED_COEF_CONTEXT if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0))) continue; #endif for (l = 0; l < ENTROPY_NODES; l++) { vp8_prob *const p = pc->fc.coef_probs [i][j][k] + l; if (vp8_read(bc, COEF_UPDATE_PROB)) { #if CONFIG_NEWUPDATE *p = read_prob_diff_update(bc, *p); #else *p = (vp8_prob)vp8_read_literal(bc, 8); #endif } } } } } if(pbi->common.txfm_mode == ALLOW_8X8 && vp8_read_bit(bc)) { // read coef probability tree for (i = 0; i < BLOCK_TYPES_8X8; i++) #if CONFIG_NEWUPDATE for (j = !i; j < COEF_BANDS; j++) #else for (j = 0; j < COEF_BANDS; j++) #endif for (k = 0; k < PREV_COEF_CONTEXTS; k++) { #if CONFIG_EXPANDED_COEF_CONTEXT if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0))) continue; #endif for (l = 0; l < ENTROPY_NODES; l++) { vp8_prob *const p = pc->fc.coef_probs_8x8 [i][j][k] + l; if (vp8_read(bc, COEF_UPDATE_PROB_8X8)) { #if CONFIG_NEWUPDATE *p = read_prob_diff_update(bc, *p); #else *p = (vp8_prob)vp8_read_literal(bc, 8); #endif } } } } } int vp8_decode_frame(VP8D_COMP *pbi) { vp8_reader *const bc = & pbi->bc; VP8_COMMON *const pc = & pbi->common; MACROBLOCKD *const xd = & pbi->mb; const unsigned char *data = (const unsigned char *)pbi->Source; const unsigned char *data_end = data + pbi->source_sz; ptrdiff_t first_partition_length_in_bytes; int mb_row; int i, j, k, l; int corrupt_tokens = 0; /* start with no corruption of current frame */ xd->corrupted = 0; pc->yv12_fb[pc->new_fb_idx].corrupted = 0; if (data_end - data < 3) { vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet"); } else { pc->last_frame_type = pc->frame_type; pc->frame_type = (FRAME_TYPE)(data[0] & 1); pc->version = (data[0] >> 1) & 7; pc->show_frame = (data[0] >> 4) & 1; first_partition_length_in_bytes = (data[0] | (data[1] << 8) | (data[2] << 16)) >> 5; if ((data + first_partition_length_in_bytes > data_end || data + first_partition_length_in_bytes < data)) vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt partition 0 length"); data += 3; vp8_setup_version(pc); if (pc->frame_type == KEY_FRAME) { const int Width = pc->Width; const int Height = pc->Height; /* vet via sync code */ /* When error concealment is enabled we should only check the sync * code if we have enough bits available */ if (data + 3 < data_end) { if (data[0] != 0x9d || data[1] != 0x01 || data[2] != 0x2a) vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); } /* If error concealment is enabled we should only parse the new size * if we have enough data. Otherwise we will end up with the wrong * size. */ if (data + 6 < data_end) { pc->Width = (data[3] | (data[4] << 8)) & 0x3fff; pc->horiz_scale = data[4] >> 6; pc->Height = (data[5] | (data[6] << 8)) & 0x3fff; pc->vert_scale = data[6] >> 6; } data += 7; if (Width != pc->Width || Height != pc->Height) { if (pc->Width <= 0) { pc->Width = Width; vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Invalid frame width"); } if (pc->Height <= 0) { pc->Height = Height; vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Invalid frame height"); } if (vp8_alloc_frame_buffers(pc, pc->Width, pc->Height)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffers"); } } } if ((!pbi->decoded_key_frame && pc->frame_type != KEY_FRAME) || pc->Width == 0 || pc->Height == 0) { return -1; } init_frame(pbi); if (vp8dx_start_decode(bc, data, data_end - data)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder 0"); if (pc->frame_type == KEY_FRAME) { pc->clr_type = (YUV_TYPE)vp8_read_bit(bc); pc->clamp_type = (CLAMP_TYPE)vp8_read_bit(bc); } /* Is segmentation enabled */ xd->segmentation_enabled = (unsigned char)vp8_read_bit(bc); if (xd->segmentation_enabled) { // Read whether or not the segmentation map is being explicitly // updated this frame. xd->update_mb_segmentation_map = (unsigned char)vp8_read_bit(bc); // If so what method will be used. if ( xd->update_mb_segmentation_map ) pc->temporal_update = (unsigned char)vp8_read_bit(bc); // Is the segment data being updated xd->update_mb_segmentation_data = (unsigned char)vp8_read_bit(bc); if (xd->update_mb_segmentation_data) { int data; xd->mb_segment_abs_delta = (unsigned char)vp8_read_bit(bc); clearall_segfeatures( xd ); // For each segmentation... for (i = 0; i < MAX_MB_SEGMENTS; i++) { // For each of the segments features... for (j = 0; j < SEG_LVL_MAX; j++) { #if CONFIG_FEATUREUPDATES // feature updated? if (vp8_read_bit(bc)) { int active=1; if ( segfeature_active( xd, i, j )) active=vp8_read_bit(bc); // Is the feature enabled if (active) { // Update the feature data and mask enable_segfeature(xd, i, j); data = (signed char)vp8_read_literal( bc, seg_feature_data_bits(j)); // Is the segment data signed.. if ( is_segfeature_signed(j) ) { if (vp8_read_bit(bc)) data = - data; } } else data = 0; set_segdata(xd, i, j, data); } #else // Is the feature enabled if (vp8_read_bit(bc)) { // Update the feature data and mask enable_segfeature(xd, i, j); data = (signed char)vp8_read_literal( bc, seg_feature_data_bits(j)); // Is the segment data signed.. if ( is_segfeature_signed(j) ) { if (vp8_read_bit(bc)) data = - data; } } else data = 0; set_segdata(xd, i, j, data); #endif } } } if (xd->update_mb_segmentation_map) { // Which macro block level features are enabled vpx_memset(xd->mb_segment_tree_probs, 255, sizeof(xd->mb_segment_tree_probs)); vpx_memset(pc->segment_pred_probs, 255, sizeof(pc->segment_pred_probs)); // Read the probs used to decode the segment id for each macro // block. for (i = 0; i < MB_FEATURE_TREE_PROBS; i++) { // If not explicitly set value is defaulted to 255 by //memset above if (vp8_read_bit(bc)) xd->mb_segment_tree_probs[i] = (vp8_prob)vp8_read_literal(bc, 8); } // If predictive coding of segment map is enabled read the // prediction probabilities. if ( pc->temporal_update ) { // Read the prediction probs needed to decode the segment id // when predictive coding enabled for (i = 0; i < PREDICTION_PROBS; i++) { // If not explicitly set value is defaulted to 255 by // memset above if (vp8_read_bit(bc)) pc->segment_pred_probs[i] = (vp8_prob)vp8_read_literal(bc, 8); } } } } // Read common prediction model status flag probability updates for the // reference frame if ( pc->frame_type == KEY_FRAME ) { // Set the prediction probabilities to defaults pc->ref_pred_probs[0] = 120; pc->ref_pred_probs[1] = 80; pc->ref_pred_probs[2] = 40; } else { for (i = 0; i < PREDICTION_PROBS; i++) { if ( vp8_read_bit(bc) ) pc->ref_pred_probs[i] = (vp8_prob)vp8_read_literal(bc, 8); } } /* Read the loop filter level and type */ pc->txfm_mode = (TXFM_MODE) vp8_read_bit(bc); pc->filter_type = (LOOPFILTERTYPE) vp8_read_bit(bc); pc->filter_level = vp8_read_literal(bc, 6); pc->sharpness_level = vp8_read_literal(bc, 3); /* Read in loop filter deltas applied at the MB level based on mode or ref frame. */ xd->mode_ref_lf_delta_update = 0; xd->mode_ref_lf_delta_enabled = (unsigned char)vp8_read_bit(bc); if (xd->mode_ref_lf_delta_enabled) { /* Do the deltas need to be updated */ xd->mode_ref_lf_delta_update = (unsigned char)vp8_read_bit(bc); if (xd->mode_ref_lf_delta_update) { /* Send update */ for (i = 0; i < MAX_REF_LF_DELTAS; i++) { if (vp8_read_bit(bc)) { /*sign = vp8_read_bit( bc );*/ xd->ref_lf_deltas[i] = (signed char)vp8_read_literal(bc, 6); if (vp8_read_bit(bc)) /* Apply sign */ xd->ref_lf_deltas[i] = xd->ref_lf_deltas[i] * -1; } } /* Send update */ for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { if (vp8_read_bit(bc)) { /*sign = vp8_read_bit( bc );*/ xd->mode_lf_deltas[i] = (signed char)vp8_read_literal(bc, 6); if (vp8_read_bit(bc)) /* Apply sign */ xd->mode_lf_deltas[i] = xd->mode_lf_deltas[i] * -1; } } } } setup_token_decoder(pbi, data + first_partition_length_in_bytes); xd->current_bc = &pbi->bc2; /* Read the default quantizers. */ { int Q, q_update; Q = vp8_read_literal(bc, QINDEX_BITS); /* AC 1st order Q = default */ pc->base_qindex = Q; q_update = 0; pc->y1dc_delta_q = get_delta_q(bc, pc->y1dc_delta_q, &q_update); pc->y2dc_delta_q = get_delta_q(bc, pc->y2dc_delta_q, &q_update); pc->y2ac_delta_q = get_delta_q(bc, pc->y2ac_delta_q, &q_update); pc->uvdc_delta_q = get_delta_q(bc, pc->uvdc_delta_q, &q_update); pc->uvac_delta_q = get_delta_q(bc, pc->uvac_delta_q, &q_update); if (q_update) vp8cx_init_de_quantizer(pbi); /* MB level dequantizer setup */ mb_init_dequantizer(pbi, &pbi->mb); } /* Determine if the golden frame or ARF buffer should be updated and how. * For all non key frames the GF and ARF refresh flags and sign bias * flags must be set explicitly. */ if (pc->frame_type != KEY_FRAME) { /* Should the GF or ARF be updated from the current frame */ pc->refresh_golden_frame = vp8_read_bit(bc); pc->refresh_alt_ref_frame = vp8_read_bit(bc); if(pc->refresh_alt_ref_frame) { vpx_memcpy(&pc->fc, &pc->lfc_a, sizeof(pc->fc)); vpx_memcpy( pc->vp8_mode_contexts, pc->mode_context_a, sizeof(pc->vp8_mode_contexts)); } else { vpx_memcpy(&pc->fc, &pc->lfc, sizeof(pc->fc)); vpx_memcpy( pc->vp8_mode_contexts, pc->mode_context, sizeof(pc->vp8_mode_contexts)); } /* Buffer to buffer copy flags. */ pc->copy_buffer_to_gf = 0; if (!pc->refresh_golden_frame) pc->copy_buffer_to_gf = vp8_read_literal(bc, 2); pc->copy_buffer_to_arf = 0; if (!pc->refresh_alt_ref_frame) pc->copy_buffer_to_arf = vp8_read_literal(bc, 2); pc->ref_frame_sign_bias[GOLDEN_FRAME] = vp8_read_bit(bc); pc->ref_frame_sign_bias[ALTREF_FRAME] = vp8_read_bit(bc); #if CONFIG_HIGH_PRECISION_MV /* Is high precision mv allowed */ xd->allow_high_precision_mv = (unsigned char)vp8_read_bit(bc); #endif #if CONFIG_ENHANCED_INTERP // Read the type of subpel filter to use pc->mcomp_filter_type = vp8_read_literal(bc, 2); /* To enable choice of different interploation filters */ if (pc->mcomp_filter_type == SIXTAP) { xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap4x4); xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap8x4); xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap8x8); xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap16x16); xd->subpixel_predict_avg = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap_avg4x4); xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap_avg8x8); xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap_avg16x16); } else if (pc->mcomp_filter_type == EIGHTTAP) { xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap4x4); xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap8x4); xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap8x8); xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap16x16); xd->subpixel_predict_avg = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap_avg4x4); xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap_avg8x8); xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap_avg16x16); } else if (pc->mcomp_filter_type == EIGHTTAP_SHARP) { xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap4x4_sharp); xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap8x4_sharp); xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap8x8_sharp); xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap16x16_sharp); xd->subpixel_predict_avg = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap_avg4x4_sharp); xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap_avg8x8_sharp); xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap_avg16x16_sharp); } else { xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear4x4); xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear8x4); xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear8x8); xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear16x16); xd->subpixel_predict_avg = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear_avg4x4); xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear_avg8x8); xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear_avg16x16); } #endif } pc->refresh_entropy_probs = vp8_read_bit(bc); if (pc->refresh_entropy_probs == 0) { vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc)); } pc->refresh_last_frame = pc->frame_type == KEY_FRAME || vp8_read_bit(bc); if (0) { FILE *z = fopen("decodestats.stt", "a"); fprintf(z, "%6d F:%d,G:%d,A:%d,L:%d,Q:%d\n", pc->current_video_frame, pc->frame_type, pc->refresh_golden_frame, pc->refresh_alt_ref_frame, pc->refresh_last_frame, pc->base_qindex); fclose(z); } #if CONFIG_ADAPTIVE_ENTROPY vp8_copy(pbi->common.fc.pre_coef_probs, pbi->common.fc.coef_probs); vp8_copy(pbi->common.fc.pre_coef_probs_8x8, pbi->common.fc.coef_probs_8x8); vp8_copy(pbi->common.fc.pre_ymode_prob, pbi->common.fc.ymode_prob); vp8_copy(pbi->common.fc.pre_uv_mode_prob, pbi->common.fc.uv_mode_prob); vp8_copy(pbi->common.fc.pre_bmode_prob, pbi->common.fc.bmode_prob); vp8_copy(pbi->common.fc.pre_i8x8_mode_prob, pbi->common.fc.i8x8_mode_prob); vp8_copy(pbi->common.fc.pre_mvc, pbi->common.fc.mvc); #if CONFIG_HIGH_PRECISION_MV vp8_copy(pbi->common.fc.pre_mvc_hp, pbi->common.fc.mvc_hp); #endif vp8_zero(pbi->common.fc.coef_counts); vp8_zero(pbi->common.fc.coef_counts_8x8); vp8_zero(pbi->common.fc.ymode_counts); vp8_zero(pbi->common.fc.uv_mode_counts); vp8_zero(pbi->common.fc.bmode_counts); vp8_zero(pbi->common.fc.i8x8_mode_counts); vp8_zero(pbi->common.fc.MVcount); #if CONFIG_HIGH_PRECISION_MV vp8_zero(pbi->common.fc.MVcount_hp); #endif #endif #if COEFUPDATETYPE == 2 read_coef_probs2(pbi); #elif COEFUPDATETYPE == 3 read_coef_probs3(pbi); #else read_coef_probs(pbi); #endif vpx_memcpy(&xd->pre, &pc->yv12_fb[pc->lst_fb_idx], sizeof(YV12_BUFFER_CONFIG)); vpx_memcpy(&xd->dst, &pc->yv12_fb[pc->new_fb_idx], sizeof(YV12_BUFFER_CONFIG)); // Create the segmentation map structure and set to 0 if (!pc->last_frame_seg_map) CHECK_MEM_ERROR(pc->last_frame_seg_map, vpx_calloc((pc->mb_rows * pc->mb_cols), 1)); /* set up frame new frame for intra coded blocks */ vp8_setup_intra_recon(&pc->yv12_fb[pc->new_fb_idx]); vp8_setup_block_dptrs(xd); vp8_build_block_doffsets(xd); /* clear out the coeff buffer */ vpx_memset(xd->qcoeff, 0, sizeof(xd->qcoeff)); /* Read the mb_no_coeff_skip flag */ pc->mb_no_coeff_skip = (int)vp8_read_bit(bc); vp8_decode_mode_mvs(pbi); if(pbi->common.frame_type != KEY_FRAME) { vp8_update_mode_context(&pbi->common); } vpx_memset(pc->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * pc->mb_cols); // Resset the macroblock mode info context to the start of the list xd->mode_info_context = pc->mi; /* Decode a row of superblocks */ for (mb_row = 0; mb_row < pc->mb_rows; mb_row+=2) { decode_sb_row(pbi, pc, mb_row, xd); } corrupt_tokens |= xd->corrupted; /* Collect information about decoder corruption. */ /* 1. Check first boolean decoder for errors. */ pc->yv12_fb[pc->new_fb_idx].corrupted = vp8dx_bool_error(bc); /* 2. Check the macroblock information */ pc->yv12_fb[pc->new_fb_idx].corrupted |= corrupt_tokens; if (!pbi->decoded_key_frame) { if (pc->frame_type == KEY_FRAME && !pc->yv12_fb[pc->new_fb_idx].corrupted) pbi->decoded_key_frame = 1; else vpx_internal_error(&pbi->common.error, VPX_CODEC_CORRUPT_FRAME, "A stream must start with a complete key frame"); } /* vpx_log("Decoder: Frame Decoded, Size Roughly:%d bytes \n",bc->pos+pbi->bc2.pos); */ #if CONFIG_ADAPTIVE_ENTROPY vp8_adapt_coef_probs(pc); if (pc->frame_type != KEY_FRAME) { vp8_adapt_mode_probs(pc); vp8_adapt_mv_probs(pc); } #endif /* If this was a kf or Gf note the Q used */ if ((pc->frame_type == KEY_FRAME) || pc->refresh_golden_frame || pc->refresh_alt_ref_frame) { pc->last_kf_gf_q = pc->base_qindex; } if(pc->refresh_entropy_probs) { if(pc->refresh_alt_ref_frame) vpx_memcpy(&pc->lfc_a, &pc->fc, sizeof(pc->fc)); else vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc)); } #ifdef PACKET_TESTING { FILE *f = fopen("decompressor.VP8", "ab"); unsigned int size = pbi->bc2.pos + pbi->bc.pos + 8; fwrite((void *) &size, 4, 1, f); fwrite((void *) pbi->Source, size, 1, f); fclose(f); } #endif //printf("Frame %d Done\n", frame_count++); return 0; }