/* * Copyright (c) 2014 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include "vpx_mem/vpx_mem.h" #include "vp10/common/quant_common.h" #include "vp10/common/seg_common.h" #include "vp10/encoder/encoder.h" #include "vp10/encoder/quantize.h" #include "vp10/encoder/rd.h" void vp10_quantize_fp_neon(const int16_t *coeff_ptr, intptr_t count, int skip_block, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, int16_t *qcoeff_ptr, int16_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan) { // TODO(jingning) Decide the need of these arguments after the // quantization process is completed. (void)zbin_ptr; (void)quant_shift_ptr; (void)scan; if (!skip_block) { // Quantization pass: All coefficients with index >= zero_flag are // skippable. Note: zero_flag can be zero. int i; const int16x8_t v_zero = vdupq_n_s16(0); const int16x8_t v_one = vdupq_n_s16(1); int16x8_t v_eobmax_76543210 = vdupq_n_s16(-1); int16x8_t v_round = vmovq_n_s16(round_ptr[1]); int16x8_t v_quant = vmovq_n_s16(quant_ptr[1]); int16x8_t v_dequant = vmovq_n_s16(dequant_ptr[1]); // adjust for dc v_round = vsetq_lane_s16(round_ptr[0], v_round, 0); v_quant = vsetq_lane_s16(quant_ptr[0], v_quant, 0); v_dequant = vsetq_lane_s16(dequant_ptr[0], v_dequant, 0); // process dc and the first seven ac coeffs { const int16x8_t v_iscan = vld1q_s16(&iscan[0]); const int16x8_t v_coeff = vld1q_s16(&coeff_ptr[0]); const int16x8_t v_coeff_sign = vshrq_n_s16(v_coeff, 15); const int16x8_t v_tmp = vabaq_s16(v_round, v_coeff, v_zero); const int32x4_t v_tmp_lo = vmull_s16(vget_low_s16(v_tmp), vget_low_s16(v_quant)); const int32x4_t v_tmp_hi = vmull_s16(vget_high_s16(v_tmp), vget_high_s16(v_quant)); const int16x8_t v_tmp2 = vcombine_s16(vshrn_n_s32(v_tmp_lo, 16), vshrn_n_s32(v_tmp_hi, 16)); const uint16x8_t v_nz_mask = vceqq_s16(v_tmp2, v_zero); const int16x8_t v_iscan_plus1 = vaddq_s16(v_iscan, v_one); const int16x8_t v_nz_iscan = vbslq_s16(v_nz_mask, v_zero, v_iscan_plus1); const int16x8_t v_qcoeff_a = veorq_s16(v_tmp2, v_coeff_sign); const int16x8_t v_qcoeff = vsubq_s16(v_qcoeff_a, v_coeff_sign); const int16x8_t v_dqcoeff = vmulq_s16(v_qcoeff, v_dequant); v_eobmax_76543210 = vmaxq_s16(v_eobmax_76543210, v_nz_iscan); vst1q_s16(&qcoeff_ptr[0], v_qcoeff); vst1q_s16(&dqcoeff_ptr[0], v_dqcoeff); v_round = vmovq_n_s16(round_ptr[1]); v_quant = vmovq_n_s16(quant_ptr[1]); v_dequant = vmovq_n_s16(dequant_ptr[1]); } // now process the rest of the ac coeffs for (i = 8; i < count; i += 8) { const int16x8_t v_iscan = vld1q_s16(&iscan[i]); const int16x8_t v_coeff = vld1q_s16(&coeff_ptr[i]); const int16x8_t v_coeff_sign = vshrq_n_s16(v_coeff, 15); const int16x8_t v_tmp = vabaq_s16(v_round, v_coeff, v_zero); const int32x4_t v_tmp_lo = vmull_s16(vget_low_s16(v_tmp), vget_low_s16(v_quant)); const int32x4_t v_tmp_hi = vmull_s16(vget_high_s16(v_tmp), vget_high_s16(v_quant)); const int16x8_t v_tmp2 = vcombine_s16(vshrn_n_s32(v_tmp_lo, 16), vshrn_n_s32(v_tmp_hi, 16)); const uint16x8_t v_nz_mask = vceqq_s16(v_tmp2, v_zero); const int16x8_t v_iscan_plus1 = vaddq_s16(v_iscan, v_one); const int16x8_t v_nz_iscan = vbslq_s16(v_nz_mask, v_zero, v_iscan_plus1); const int16x8_t v_qcoeff_a = veorq_s16(v_tmp2, v_coeff_sign); const int16x8_t v_qcoeff = vsubq_s16(v_qcoeff_a, v_coeff_sign); const int16x8_t v_dqcoeff = vmulq_s16(v_qcoeff, v_dequant); v_eobmax_76543210 = vmaxq_s16(v_eobmax_76543210, v_nz_iscan); vst1q_s16(&qcoeff_ptr[i], v_qcoeff); vst1q_s16(&dqcoeff_ptr[i], v_dqcoeff); } { const int16x4_t v_eobmax_3210 = vmax_s16(vget_low_s16(v_eobmax_76543210), vget_high_s16(v_eobmax_76543210)); const int64x1_t v_eobmax_xx32 = vshr_n_s64(vreinterpret_s64_s16(v_eobmax_3210), 32); const int16x4_t v_eobmax_tmp = vmax_s16(v_eobmax_3210, vreinterpret_s16_s64(v_eobmax_xx32)); const int64x1_t v_eobmax_xxx3 = vshr_n_s64(vreinterpret_s64_s16(v_eobmax_tmp), 16); const int16x4_t v_eobmax_final = vmax_s16(v_eobmax_tmp, vreinterpret_s16_s64(v_eobmax_xxx3)); *eob_ptr = (uint16_t)vget_lane_s16(v_eobmax_final, 0); } } else { memset(qcoeff_ptr, 0, count * sizeof(int16_t)); memset(dqcoeff_ptr, 0, count * sizeof(int16_t)); *eob_ptr = 0; } }