/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include "third_party/googletest/src/include/gtest/gtest.h" #include "test/clear_system_state.h" #include "test/register_state_check.h" #include "vpx_ports/mem.h" extern "C" { #include "./vp9_rtcd.h" void vp9_short_idct8x8_add_c(int16_t *input, uint8_t *output, int pitch); } #include "test/acm_random.h" #include "vpx/vpx_integer.h" using libvpx_test::ACMRandom; namespace { void fdct8x8(int16_t *in, int16_t *out, uint8_t* /*dst*/, int stride, int /*tx_type*/) { vp9_short_fdct8x8_c(in, out, stride); } void idct8x8_add(int16_t* /*in*/, int16_t *out, uint8_t *dst, int stride, int /*tx_type*/) { vp9_short_idct8x8_add_c(out, dst, stride >> 1); } void fht8x8(int16_t *in, int16_t *out, uint8_t* /*dst*/, int stride, int tx_type) { // TODO(jingning): need to refactor this to test both _c and _sse2 functions, // when we have all inverse dct functions done sse2. #if HAVE_SSE2 vp9_short_fht8x8_sse2(in, out, stride >> 1, tx_type); #else vp9_short_fht8x8_c(in, out, stride >> 1, tx_type); #endif } void iht8x8_add(int16_t* /*in*/, int16_t *out, uint8_t *dst, int stride, int tx_type) { vp9_short_iht8x8_add_c(out, dst, stride >> 1, tx_type); } class FwdTrans8x8Test : public ::testing::TestWithParam { public: virtual ~FwdTrans8x8Test() {} virtual void SetUp() { tx_type_ = GetParam(); if (tx_type_ == 0) { fwd_txfm = fdct8x8; inv_txfm = idct8x8_add; } else { fwd_txfm = fht8x8; inv_txfm = iht8x8_add; } } virtual void TearDown() { libvpx_test::ClearSystemState(); } protected: void RunFwdTxfm(int16_t *in, int16_t *out, uint8_t *dst, int stride, int tx_type) { (*fwd_txfm)(in, out, dst, stride, tx_type); } void RunInvTxfm(int16_t *in, int16_t *out, uint8_t *dst, int stride, int tx_type) { (*inv_txfm)(in, out, dst, stride, tx_type); } int tx_type_; void (*fwd_txfm)(int16_t*, int16_t*, uint8_t*, int, int); void (*inv_txfm)(int16_t*, int16_t*, uint8_t*, int, int); }; TEST_P(FwdTrans8x8Test, SignBiasCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, 64); DECLARE_ALIGNED_ARRAY(16, int16_t, test_output_block, 64); const int pitch = 16; int count_sign_block[64][2]; const int count_test_block = 100000; memset(count_sign_block, 0, sizeof(count_sign_block)); for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-255, 255]. for (int j = 0; j < 64; ++j) test_input_block[j] = rnd.Rand8() - rnd.Rand8(); REGISTER_STATE_CHECK( RunFwdTxfm(test_input_block, test_output_block, NULL, pitch, tx_type_)); for (int j = 0; j < 64; ++j) { if (test_output_block[j] < 0) ++count_sign_block[j][0]; else if (test_output_block[j] > 0) ++count_sign_block[j][1]; } } for (int j = 0; j < 64; ++j) { const int diff = abs(count_sign_block[j][0] - count_sign_block[j][1]); const int max_diff = 1125; EXPECT_LT(diff, max_diff) << "Error: 8x8 FDCT/FHT has a sign bias > " << 1. * max_diff / count_test_block * 100 << "%" << " for input range [-255, 255] at index " << j << " count0: " << count_sign_block[j][0] << " count1: " << count_sign_block[j][1] << " diff: " << diff; } memset(count_sign_block, 0, sizeof(count_sign_block)); for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-15, 15]. for (int j = 0; j < 64; ++j) test_input_block[j] = (rnd.Rand8() >> 4) - (rnd.Rand8() >> 4); REGISTER_STATE_CHECK( RunFwdTxfm(test_input_block, test_output_block, NULL, pitch, tx_type_)); for (int j = 0; j < 64; ++j) { if (test_output_block[j] < 0) ++count_sign_block[j][0]; else if (test_output_block[j] > 0) ++count_sign_block[j][1]; } } for (int j = 0; j < 64; ++j) { const int diff = abs(count_sign_block[j][0] - count_sign_block[j][1]); const int max_diff = 10000; EXPECT_LT(diff, max_diff) << "Error: 4x4 FDCT/FHT has a sign bias > " << 1. * max_diff / count_test_block * 100 << "%" << " for input range [-15, 15] at index " << j << " count0: " << count_sign_block[j][0] << " count1: " << count_sign_block[j][1] << " diff: " << diff; } } TEST_P(FwdTrans8x8Test, RoundTripErrorCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); int max_error = 0; int total_error = 0; const int count_test_block = 100000; for (int i = 0; i < count_test_block; ++i) { DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, 64); DECLARE_ALIGNED_ARRAY(16, int16_t, test_temp_block, 64); DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, 64); DECLARE_ALIGNED_ARRAY(16, uint8_t, src, 64); for (int j = 0; j < 64; ++j) { src[j] = rnd.Rand8(); dst[j] = rnd.Rand8(); } // Initialize a test block with input range [-255, 255]. for (int j = 0; j < 64; ++j) test_input_block[j] = src[j] - dst[j]; const int pitch = 16; REGISTER_STATE_CHECK( RunFwdTxfm(test_input_block, test_temp_block, dst, pitch, tx_type_)); for (int j = 0; j < 64; ++j) { if (test_temp_block[j] > 0) { test_temp_block[j] += 2; test_temp_block[j] /= 4; test_temp_block[j] *= 4; } else { test_temp_block[j] -= 2; test_temp_block[j] /= 4; test_temp_block[j] *= 4; } } REGISTER_STATE_CHECK( RunInvTxfm(test_input_block, test_temp_block, dst, pitch, tx_type_)); for (int j = 0; j < 64; ++j) { const int diff = dst[j] - src[j]; const int error = diff * diff; if (max_error < error) max_error = error; total_error += error; } } EXPECT_GE(1, max_error) << "Error: 8x8 FDCT/IDCT or FHT/IHT has an individual roundtrip error > 1"; EXPECT_GE(count_test_block/5, total_error) << "Error: 8x8 FDCT/IDCT or FHT/IHT has average roundtrip " "error > 1/5 per block"; } TEST_P(FwdTrans8x8Test, ExtremalCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); int max_error = 0; int total_error = 0; const int count_test_block = 100000; for (int i = 0; i < count_test_block; ++i) { DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, 64); DECLARE_ALIGNED_ARRAY(16, int16_t, test_temp_block, 64); DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, 64); DECLARE_ALIGNED_ARRAY(16, uint8_t, src, 64); for (int j = 0; j < 64; ++j) { src[j] = rnd.Rand8() % 2 ? 255 : 0; dst[j] = src[j] > 0 ? 0 : 255; } // Initialize a test block with input range [-255, 255]. for (int j = 0; j < 64; ++j) test_input_block[j] = src[j] - dst[j]; const int pitch = 16; REGISTER_STATE_CHECK( RunFwdTxfm(test_input_block, test_temp_block, dst, pitch, tx_type_)); REGISTER_STATE_CHECK( RunInvTxfm(test_input_block, test_temp_block, dst, pitch, tx_type_)); for (int j = 0; j < 64; ++j) { const int diff = dst[j] - src[j]; const int error = diff * diff; if (max_error < error) max_error = error; total_error += error; } EXPECT_GE(1, max_error) << "Error: Extremal 8x8 FDCT/IDCT or FHT/IHT has an" << " individual roundtrip error > 1"; EXPECT_GE(count_test_block/5, total_error) << "Error: Extremal 8x8 FDCT/IDCT or FHT/IHT has average" << " roundtrip error > 1/5 per block"; } } INSTANTIATE_TEST_CASE_P(VP9, FwdTrans8x8Test, ::testing::Range(0, 4)); } // namespace