summaryrefslogtreecommitdiff
path: root/vp9
diff options
context:
space:
mode:
Diffstat (limited to 'vp9')
-rw-r--r--vp9/common/vp9_loopfilter.c642
-rw-r--r--vp9/common/vp9_rtcd_defs.sh2
-rw-r--r--vp9/encoder/vp9_quantize.c13
-rw-r--r--vp9/encoder/x86/vp9_quantize_ssse3.asm20
4 files changed, 656 insertions, 21 deletions
diff --git a/vp9/common/vp9_loopfilter.c b/vp9/common/vp9_loopfilter.c
index cb90502c1..cfa61c20b 100644
--- a/vp9/common/vp9_loopfilter.c
+++ b/vp9/common/vp9_loopfilter.c
@@ -22,6 +22,210 @@ struct loop_filter_info {
const uint8_t *hev_thr;
};
+// This structure holds bit masks for all 8x8 blocks in a 64x64 region.
+// Each 1 bit represents a position in which we want to apply the loop filter.
+// Left_ entries refer to whether we apply a filter on the border to the
+// left of the block. Above_ entries refer to whether or not to apply a
+// filter on the above border. Int_ entries refer to whether or not to
+// apply borders on the 4x4 edges within the 8x8 block that each bit
+// represents.
+// Since each transform is accompanied by a potentially different type of
+// loop filter there is a different entry in the array for each transform size.
+typedef struct {
+ uint64_t left_y[TX_SIZES];
+ uint64_t above_y[TX_SIZES];
+ uint64_t int_4x4_y;
+ uint16_t left_uv[TX_SIZES];
+ uint16_t above_uv[TX_SIZES];
+ uint16_t int_4x4_uv;
+} LOOP_FILTER_MASK;
+
+// 64 bit masks for left transform size. Each 1 represents a position where
+// we should apply a loop filter across the left border of an 8x8 block
+// boundary.
+//
+// In the case of TX_16X16-> ( in low order byte first we end up with
+// a mask that looks like this
+//
+// 10101010
+// 10101010
+// 10101010
+// 10101010
+// 10101010
+// 10101010
+// 10101010
+// 10101010
+//
+// A loopfilter should be applied to every other 8x8 horizontally.
+static const uint64_t left_64x64_txform_mask[TX_SIZES]= {
+ 0xffffffffffffffff, // TX_4X4
+ 0xffffffffffffffff, // TX_8x8
+ 0x5555555555555555, // TX_16x16
+ 0x1111111111111111, // TX_32x32
+};
+
+// 64 bit masks for above transform size. Each 1 represents a position where
+// we should apply a loop filter across the top border of an 8x8 block
+// boundary.
+//
+// In the case of TX_32x32 -> ( in low order byte first we end up with
+// a mask that looks like this
+//
+// 11111111
+// 00000000
+// 00000000
+// 00000000
+// 11111111
+// 00000000
+// 00000000
+// 00000000
+//
+// A loopfilter should be applied to every other 4 the row vertically.
+static const uint64_t above_64x64_txform_mask[TX_SIZES]= {
+ 0xffffffffffffffff, // TX_4X4
+ 0xffffffffffffffff, // TX_8x8
+ 0x00ff00ff00ff00ff, // TX_16x16
+ 0x000000ff000000ff, // TX_32x32
+};
+
+// 64 bit masks for prediction sizes (left). Each 1 represents a position
+// where left border of an 8x8 block. These are aligned to the right most
+// appropriate bit, and then shifted into place.
+//
+// In the case of TX_16x32 -> ( low order byte first ) we end up with
+// a mask that looks like this :
+//
+// 10000000
+// 10000000
+// 10000000
+// 10000000
+// 00000000
+// 00000000
+// 00000000
+// 00000000
+static const uint64_t left_prediction_mask[BLOCK_SIZES] = {
+ 0x0000000000000001, // BLOCK_4X4,
+ 0x0000000000000001, // BLOCK_4X8,
+ 0x0000000000000001, // BLOCK_8X4,
+ 0x0000000000000001, // BLOCK_8X8,
+ 0x0000000000000101, // BLOCK_8X16,
+ 0x0000000000000001, // BLOCK_16X8,
+ 0x0000000000000101, // BLOCK_16X16,
+ 0x0000000001010101, // BLOCK_16X32,
+ 0x0000000000000101, // BLOCK_32X16,
+ 0x0000000001010101, // BLOCK_32X32,
+ 0x0101010101010101, // BLOCK_32X64,
+ 0x0000000001010101, // BLOCK_64X32,
+ 0x0101010101010101, // BLOCK_64X64
+};
+
+// 64 bit mask to shift and set for each prediction size.
+static const uint64_t above_prediction_mask[BLOCK_SIZES] = {
+ 0x0000000000000001, // BLOCK_4X4
+ 0x0000000000000001, // BLOCK_4X8
+ 0x0000000000000001, // BLOCK_8X4
+ 0x0000000000000001, // BLOCK_8X8
+ 0x0000000000000001, // BLOCK_8X16,
+ 0x0000000000000003, // BLOCK_16X8
+ 0x0000000000000003, // BLOCK_16X16
+ 0x0000000000000003, // BLOCK_16X32,
+ 0x000000000000000f, // BLOCK_32X16,
+ 0x000000000000000f, // BLOCK_32X32,
+ 0x000000000000000f, // BLOCK_32X64,
+ 0x00000000000000ff, // BLOCK_64X32,
+ 0x00000000000000ff, // BLOCK_64X64
+};
+// 64 bit mask to shift and set for each prediction size. A bit is set for
+// each 8x8 block that would be in the left most block of the given block
+// size in the 64x64 block.
+static const uint64_t size_mask[BLOCK_SIZES] = {
+ 0x0000000000000001, // BLOCK_4X4
+ 0x0000000000000001, // BLOCK_4X8
+ 0x0000000000000001, // BLOCK_8X4
+ 0x0000000000000001, // BLOCK_8X8
+ 0x0000000000000101, // BLOCK_8X16,
+ 0x0000000000000003, // BLOCK_16X8
+ 0x0000000000000303, // BLOCK_16X16
+ 0x0000000003030303, // BLOCK_16X32,
+ 0x0000000000000f0f, // BLOCK_32X16,
+ 0x000000000f0f0f0f, // BLOCK_32X32,
+ 0x0f0f0f0f0f0f0f0f, // BLOCK_32X64,
+ 0x00000000ffffffff, // BLOCK_64X32,
+ 0xffffffffffffffff, // BLOCK_64X64
+};
+
+// These are used for masking the left and above borders.
+static const uint64_t left_border = 0x1111111111111111;
+static const uint64_t above_border = 0x000000ff000000ff;
+
+// 16 bit masks for uv transform sizes.
+static const uint16_t left_64x64_txform_mask_uv[TX_SIZES]= {
+ 0xffff, // TX_4X4
+ 0xffff, // TX_8x8
+ 0x5555, // TX_16x16
+ 0x1111, // TX_32x32
+};
+
+static const uint16_t above_64x64_txform_mask_uv[TX_SIZES]= {
+ 0xffff, // TX_4X4
+ 0xffff, // TX_8x8
+ 0x0f0f, // TX_16x16
+ 0x000f, // TX_32x32
+};
+
+// 16 bit left mask to shift and set for each uv prediction size.
+static const uint16_t left_prediction_mask_uv[BLOCK_SIZES] = {
+ 0x0001, // BLOCK_4X4,
+ 0x0001, // BLOCK_4X8,
+ 0x0001, // BLOCK_8X4,
+ 0x0001, // BLOCK_8X8,
+ 0x0001, // BLOCK_8X16,
+ 0x0001, // BLOCK_16X8,
+ 0x0001, // BLOCK_16X16,
+ 0x0011, // BLOCK_16X32,
+ 0x0001, // BLOCK_32X16,
+ 0x0011, // BLOCK_32X32,
+ 0x1111, // BLOCK_32X64
+ 0x0011, // BLOCK_64X32,
+ 0x1111, // BLOCK_64X64
+};
+// 16 bit above mask to shift and set for uv each prediction size.
+static const uint16_t above_prediction_mask_uv[BLOCK_SIZES] = {
+ 0x0001, // BLOCK_4X4
+ 0x0001, // BLOCK_4X8
+ 0x0001, // BLOCK_8X4
+ 0x0001, // BLOCK_8X8
+ 0x0001, // BLOCK_8X16,
+ 0x0001, // BLOCK_16X8
+ 0x0001, // BLOCK_16X16
+ 0x0001, // BLOCK_16X32,
+ 0x0003, // BLOCK_32X16,
+ 0x0003, // BLOCK_32X32,
+ 0x0003, // BLOCK_32X64,
+ 0x000f, // BLOCK_64X32,
+ 0x000f, // BLOCK_64X64
+};
+
+// 64 bit mask to shift and set for each uv prediction size
+static const uint16_t size_mask_uv[BLOCK_SIZES] = {
+ 0x0001, // BLOCK_4X4
+ 0x0001, // BLOCK_4X8
+ 0x0001, // BLOCK_8X4
+ 0x0001, // BLOCK_8X8
+ 0x0001, // BLOCK_8X16,
+ 0x0001, // BLOCK_16X8
+ 0x0001, // BLOCK_16X16
+ 0x0011, // BLOCK_16X32,
+ 0x0003, // BLOCK_32X16,
+ 0x0033, // BLOCK_32X32,
+ 0x3333, // BLOCK_32X64,
+ 0x00ff, // BLOCK_64X32,
+ 0xffff, // BLOCK_64X64
+};
+static const uint16_t left_border_uv = 0x1111;
+static const uint16_t above_border_uv = 0x000f;
+
+
static void lf_init_lut(loop_filter_info_n *lfi) {
lfi->mode_lf_lut[DC_PRED] = 0;
lfi->mode_lf_lut[D45_PRED] = 0;
@@ -236,10 +440,347 @@ static void filter_selectively_horiz(uint8_t *s, int pitch,
}
}
-static void filter_block_plane(VP9_COMMON *cm,
- struct macroblockd_plane *plane,
- const MODE_INFO *mi,
- int mi_row, int mi_col) {
+// This function ors into the current lfm structure, where to do loop
+// filters for the specific mi we are looking at. It uses information
+// including the block_size_type (32x16, 32x32, etc), the transform size,
+// whether there were any coefficients encoded, and the loop filter strength
+// block we are currently looking at. Shift is used to position the
+// 1's we produce.
+// TODO(JBB) Need another function for different resolution color..
+static void build_masks(const loop_filter_info_n *const lfi_n,
+ const MODE_INFO *mi, const int shift_y,
+ const int shift_uv,
+ LOOP_FILTER_MASK *lfm) {
+ const BLOCK_SIZE block_size = mi->mbmi.sb_type;
+ const TX_SIZE tx_size_y = mi->mbmi.tx_size;
+ const TX_SIZE tx_size_uv = get_uv_tx_size(&mi->mbmi);
+ const int skip = mi->mbmi.skip_coeff;
+ const int seg = mi->mbmi.segment_id;
+ const int ref = mi->mbmi.ref_frame[0];
+ const int mode = lfi_n->mode_lf_lut[mi->mbmi.mode];
+ const int filter_level = lfi_n->lvl[seg][ref][mode];
+ uint64_t *left_y = &lfm->left_y[tx_size_y];
+ uint64_t *above_y = &lfm->above_y[tx_size_y];
+ uint64_t *int_4x4_y = &lfm->int_4x4_y;
+ uint16_t *left_uv = &lfm->left_uv[tx_size_uv];
+ uint16_t *above_uv = &lfm->above_uv[tx_size_uv];
+ uint16_t *int_4x4_uv = &lfm->int_4x4_uv;
+
+ // If filter level is 0 we don't loop filter.
+ if (!filter_level)
+ return;
+
+ // These set 1 in the current block size for the block size edges.
+ // For instance if the block size is 32x16, we'll set :
+ // above = 1111
+ // 0000
+ // and
+ // left = 1000
+ // = 1000
+ // NOTE : In this example the low bit is left most ( 1000 ) is stored as
+ // 1, not 8...
+ //
+ // U and v set things on a 16 bit scale.
+ //
+ *above_y |= above_prediction_mask[block_size] << shift_y;
+ *above_uv |= above_prediction_mask_uv[block_size] << shift_uv;
+ *left_y |= left_prediction_mask[block_size] << shift_y;
+ *left_uv |= left_prediction_mask_uv[block_size] << shift_uv;
+
+ // If the block has no coefficients and is not intra we skip applying
+ // the loop filter on block edges.
+ if (skip && ref > INTRA_FRAME)
+ return;
+
+ // Here we are adding a mask for the transform size. The transform
+ // size mask is set to be correct for a 64x64 prediction block size. We
+ // mask to match the size of the block we are working on and then shift it
+ // into place..
+ *above_y |= (size_mask[block_size] &
+ above_64x64_txform_mask[tx_size_y]) << shift_y;
+ *above_uv |= (size_mask_uv[block_size] &
+ above_64x64_txform_mask_uv[tx_size_uv]) << shift_uv;
+
+ *left_y |= (size_mask[block_size] &
+ left_64x64_txform_mask[tx_size_y]) << shift_y;
+ *left_uv |= (size_mask_uv[block_size] &
+ left_64x64_txform_mask_uv[tx_size_uv]) << shift_uv;
+
+ // Here we are trying to determine what to do with the internal 4x4 block
+ // boundaries. These differ from the 4x4 boundaries on the outside edge of
+ // an 8x8 in that the internal ones can be skipped and don't depend on
+ // the prediction block size.
+ if (tx_size_y == TX_4X4) {
+ *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffff) << shift_y;
+ }
+ if (tx_size_uv == TX_4X4) {
+ *int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv;
+ }
+}
+
+// This function does the same thing as the one above with the exception that
+// it only affects the y masks. It exists because for blocks < 16x16 in size,
+// we only update u and v masks on the first block.
+static void build_y_mask(const loop_filter_info_n *const lfi_n,
+ const MODE_INFO *mi, const int shift_y,
+ LOOP_FILTER_MASK *lfm) {
+ const BLOCK_SIZE block_size = mi->mbmi.sb_type;
+ const TX_SIZE tx_size_y = mi->mbmi.tx_size;
+ const int skip = mi->mbmi.skip_coeff;
+ const int seg = mi->mbmi.segment_id;
+ const int ref = mi->mbmi.ref_frame[0];
+ const int mode = lfi_n->mode_lf_lut[mi->mbmi.mode];
+ const int filter_level = lfi_n->lvl[seg][ref][mode];
+ uint64_t *left_y = &lfm->left_y[tx_size_y];
+ uint64_t *above_y = &lfm->above_y[tx_size_y];
+ uint64_t *int_4x4_y = &lfm->int_4x4_y;
+
+ if (!filter_level)
+ return;
+
+ *above_y |= above_prediction_mask[block_size] << shift_y;
+ *left_y |= left_prediction_mask[block_size] << shift_y;
+
+ if (skip && ref > INTRA_FRAME)
+ return;
+
+ *above_y |= (size_mask[block_size] &
+ above_64x64_txform_mask[tx_size_y]) << shift_y;
+
+ *left_y |= (size_mask[block_size] &
+ left_64x64_txform_mask[tx_size_y]) << shift_y;
+
+ if (tx_size_y == TX_4X4) {
+ *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffff) << shift_y;
+ }
+}
+
+// This function sets up the bit masks for the entire 64x64 region represented
+// by mi_row, mi_col.
+// TODO(JBB): This function only works for yv12.
+static void setup_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col,
+ const MODE_INFO *mi, const int mode_info_stride,
+ LOOP_FILTER_MASK *lfm) {
+ int idx_32, idx_16, idx_8;
+ const loop_filter_info_n *const lfi_n = &cm->lf_info;
+ const MODE_INFO *mip = mi;
+ const MODE_INFO *mip2 = mi;
+
+ // These are offsets to the next mi in the 64x64 block. It is what gets
+ // added to the mi ptr as we go through each loop. It helps us to avoids
+ // setting up special row and column counters for each index. The last step
+ // brings us out back to the starting position.
+ const int offset_32[] = {4, (mode_info_stride << 2) - 4, 4,
+ -(mode_info_stride << 2) - 4};
+ const int offset_16[] = {2, (mode_info_stride << 1) - 2, 2,
+ -(mode_info_stride << 1) - 2};
+ const int offset[] = {1, mode_info_stride - 1, 1, -mode_info_stride - 1};
+
+ // Following variables represent shifts to position the current block
+ // mask over the appropriate block. A shift of 36 to the left will move
+ // the bits for the final 32 by 32 block in the 64x64 up 4 rows and left
+ // 4 rows to the appropriate spot.
+ const int shift_32_y[] = {0, 4, 32, 36};
+ const int shift_16_y[] = {0, 2, 16, 18};
+ const int shift_8_y[] = {0, 1, 8, 9};
+ const int shift_32_uv[] = {0, 2, 8, 10};
+ const int shift_16_uv[] = {0, 1, 4, 5};
+ int i;
+ const int max_rows = (mi_row + MI_BLOCK_SIZE > cm->mi_rows ?
+ cm->mi_rows - mi_row : MI_BLOCK_SIZE);
+ const int max_cols = (mi_col + MI_BLOCK_SIZE > cm->mi_cols ?
+ cm->mi_cols - mi_col : MI_BLOCK_SIZE);
+
+ vp9_zero(*lfm);
+
+ // TODO(jimbankoski): Try moving most of the following code into decode
+ // loop and storing lfm in the mbmi structure so that we don't have to go
+ // through the recursive loop structure multiple times.
+ switch (mip->mbmi.sb_type) {
+ case BLOCK_64X64:
+ build_masks(lfi_n, mip , 0, 0, lfm);
+ break;
+ case BLOCK_64X32:
+ build_masks(lfi_n, mip, 0, 0, lfm);
+ mip2 = mip + mode_info_stride * 4;
+ build_masks(lfi_n, mip2 , 32, 8, lfm);
+ break;
+ case BLOCK_32X64:
+ build_masks(lfi_n, mip, 0, 0, lfm);
+ mip2 = mip + 4;
+ build_masks(lfi_n, mip2, 4, 2, lfm);
+ break;
+ default:
+ for (idx_32 = 0; idx_32 < 4; mip += offset_32[idx_32], ++idx_32) {
+ const int shift_y = shift_32_y[idx_32];
+ const int shift_uv = shift_32_uv[idx_32];
+ const int mi_32_col_offset = ((idx_32 & 1) << 2);
+ const int mi_32_row_offset = ((idx_32 >> 1) << 2);
+ if (mi_32_col_offset >= max_cols || mi_32_row_offset >= max_rows)
+ continue;
+ switch (mip->mbmi.sb_type) {
+ case BLOCK_32X32:
+ build_masks(lfi_n, mip, shift_y, shift_uv, lfm);
+ break;
+ case BLOCK_32X16:
+ build_masks(lfi_n, mip, shift_y, shift_uv, lfm);
+ mip2 = mip + mode_info_stride * 2;
+ build_masks(lfi_n, mip2, shift_y + 16, shift_uv + 4, lfm);
+ break;
+ case BLOCK_16X32:
+ build_masks(lfi_n, mip, shift_y, shift_uv, lfm);
+ mip2 = mip + 2;
+ build_masks(lfi_n, mip2, shift_y + 2, shift_uv + 1, lfm);
+ break;
+ default:
+ for (idx_16 = 0; idx_16 < 4; mip += offset_16[idx_16], ++idx_16) {
+ const int shift_y = shift_32_y[idx_32] + shift_16_y[idx_16];
+ const int shift_uv = shift_32_uv[idx_32] + shift_16_uv[idx_16];
+ const int mi_16_col_offset = mi_32_col_offset +
+ ((idx_16 & 1) << 1);
+ const int mi_16_row_offset = mi_32_row_offset +
+ ((idx_16 >> 1) << 1);
+
+ if (mi_16_col_offset >= max_cols || mi_16_row_offset >= max_rows)
+ continue;
+
+ switch (mip->mbmi.sb_type) {
+ case BLOCK_16X16:
+ build_masks(lfi_n, mip, shift_y, shift_uv, lfm);
+ break;
+ case BLOCK_16X8:
+ build_masks(lfi_n, mip, shift_y, shift_uv, lfm);
+ mip2 = mip + mode_info_stride;
+ build_y_mask(lfi_n, mip2, shift_y+8, lfm);
+ break;
+ case BLOCK_8X16:
+ build_masks(lfi_n, mip, shift_y, shift_uv, lfm);
+ mip2 = mip + 1;
+ build_y_mask(lfi_n, mip2, shift_y+1, lfm);
+ break;
+ default: {
+ const int shift_y = shift_32_y[idx_32] +
+ shift_16_y[idx_16] +
+ shift_8_y[0];
+ build_masks(lfi_n, mip, shift_y, shift_uv, lfm);
+ mip += offset[0];
+ for (idx_8 = 1; idx_8 < 4; mip += offset[idx_8], ++idx_8) {
+ const int shift_y = shift_32_y[idx_32] +
+ shift_16_y[idx_16] +
+ shift_8_y[idx_8];
+ const int mi_8_col_offset = mi_16_col_offset +
+ ((idx_8 & 1));
+ const int mi_8_row_offset = mi_16_row_offset +
+ ((idx_8 >> 1));
+
+ if (mi_8_col_offset >= max_cols ||
+ mi_8_row_offset >= max_rows)
+ continue;
+ build_y_mask(lfi_n, mip, shift_y, lfm);
+ }
+ break;
+ }
+ }
+ }
+ break;
+ }
+ }
+ break;
+ }
+ // The largest loopfilter we have is 16x16 so we use the 16x16 mask
+ // for 32x32 transforms also also.
+ lfm->left_y[TX_16X16] |= lfm->left_y[TX_32X32];
+ lfm->above_y[TX_16X16] |= lfm->above_y[TX_32X32];
+ lfm->left_uv[TX_16X16] |= lfm->left_uv[TX_32X32];
+ lfm->above_uv[TX_16X16] |= lfm->above_uv[TX_32X32];
+
+ // We do at least 8 tap filter on every 32x32 even if the transform size
+ // is 4x4. So if the 4x4 is set on a border pixel add it to the 8x8 and
+ // remove it from the 4x4.
+ lfm->left_y[TX_8X8] |= lfm->left_y[TX_4X4] & left_border;
+ lfm->left_y[TX_4X4] &= ~left_border;
+ lfm->above_y[TX_8X8] |= lfm->above_y[TX_4X4] & above_border;
+ lfm->above_y[TX_4X4] &= ~above_border;
+ lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_4X4] & left_border_uv;
+ lfm->left_uv[TX_4X4] &= ~left_border_uv;
+ lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_4X4] & above_border_uv;
+ lfm->above_uv[TX_4X4] &= ~above_border_uv;
+
+ // We do some special edge handling.
+ if (mi_row + MI_BLOCK_SIZE > cm->mi_rows) {
+ const uint64_t rows = cm->mi_rows - mi_row;
+
+ // Each pixel inside the border gets a 1,
+ const uint64_t mask_y = (((uint64_t) 1 << (rows << 3)) - 1);
+ const uint16_t mask_uv = (((uint16_t) 1 << (((rows + 1) >> 1) << 2)) - 1);
+
+ // Remove values completely outside our border.
+ for (i = 0; i < TX_32X32; i++) {
+ lfm->left_y[i] &= mask_y;
+ lfm->above_y[i] &= mask_y;
+ lfm->left_uv[i] &= mask_uv;
+ lfm->above_uv[i] &= mask_uv;
+ }
+ lfm->int_4x4_y &= mask_y;
+ lfm->int_4x4_uv &= mask_uv;
+
+ // We don't apply a wide loop filter on the last uv block row. If set
+ // apply the shorter one instead.
+ if (rows == 1) {
+ lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16];
+ lfm->above_uv[TX_16X16] = 0;
+ }
+ if (rows == 5) {
+ lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16] & 0xff00;
+ lfm->above_uv[TX_16X16] &= ~(lfm->above_uv[TX_16X16] & 0xff00);
+ }
+ }
+
+ if (mi_col + MI_BLOCK_SIZE > cm->mi_cols) {
+ const uint64_t columns = cm->mi_cols - mi_col;
+
+ // Each pixel inside the border gets a 1, the multiply copies the border
+ // to where we need it.
+ const uint64_t mask_y = (((1 << columns) - 1)) * 0x0101010101010101;
+ const uint16_t mask_uv = ((1 << ((columns + 1) >> 1)) - 1) * 0x1111;
+
+ // Internal edges are not applied on the last column of the image so
+ // we mask 1 more for the internal edges
+ const uint16_t mask_uv_int = ((1 << (columns >> 1)) - 1) * 0x1111;
+
+ // Remove the bits outside the image edge.
+ for (i = 0; i < TX_32X32; i++) {
+ lfm->left_y[i] &= mask_y;
+ lfm->above_y[i] &= mask_y;
+ lfm->left_uv[i] &= mask_uv;
+ lfm->above_uv[i] &= mask_uv;
+ }
+ lfm->int_4x4_y &= mask_y;
+ lfm->int_4x4_uv &= mask_uv_int;
+
+ // We don't apply a wide loop filter on the last uv column. If set
+ // apply the shorter one instead.
+ if (columns == 1) {
+ lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_16X16];
+ lfm->left_uv[TX_16X16] = 0;
+ }
+ if (columns == 5) {
+ lfm->left_uv[TX_8X8] |= (lfm->left_uv[TX_16X16] & 0xcccc);
+ lfm->left_uv[TX_16X16] &= ~(lfm->left_uv[TX_16X16] & 0xcccc);
+ }
+ }
+ // We don't a loop filter on the first column in the image. Mask that out.
+ if (mi_col == 0) {
+ for (i = 0; i < TX_32X32; i++) {
+ lfm->left_y[i] &= 0xfefefefefefefefe;
+ lfm->left_uv[i] &= 0xeeee;
+ }
+ }
+}
+static void filter_block_plane_non420(VP9_COMMON *cm,
+ struct macroblockd_plane *plane,
+ const MODE_INFO *mi,
+ int mi_row, int mi_col) {
const int ss_x = plane->subsampling_x;
const int ss_y = plane->subsampling_y;
const int row_step = 1 << ss_x;
@@ -356,11 +897,92 @@ static void filter_block_plane(VP9_COMMON *cm,
}
}
+static void filter_block_plane(VP9_COMMON *const cm,
+ struct macroblockd_plane *const plane,
+ const MODE_INFO *mi,
+ int mi_row, int mi_col,
+ LOOP_FILTER_MASK *lfm) {
+ const int ss_x = plane->subsampling_x;
+ const int ss_y = plane->subsampling_y;
+ const int row_step = 1 << ss_x;
+ const int col_step = 1 << ss_y;
+ const int row_step_stride = cm->mode_info_stride * row_step;
+ struct buf_2d *const dst = &plane->dst;
+ uint8_t* const dst0 = dst->buf;
+ unsigned int mask_4x4_int[MI_BLOCK_SIZE] = {0};
+ struct loop_filter_info lfi[MI_BLOCK_SIZE][MI_BLOCK_SIZE];
+ int r, c;
+ int row_shift = 3 - ss_x;
+ int row_mask = 0xff >> (ss_x << 2);
+
+#define MASK_ROW(value) ((value >> (r_sampled << row_shift)) & row_mask)
+
+ for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) {
+ int r_sampled = r >> ss_x;
+
+ // Determine the vertical edges that need filtering
+ for (c = 0; c < MI_BLOCK_SIZE && mi_col + c < cm->mi_cols; c += col_step) {
+ if (!build_lfi(&cm->lf_info, &mi[c].mbmi, lfi[r] + (c >> ss_x)))
+ continue;
+ }
+ if (!plane->plane_type) {
+ mask_4x4_int[r] = MASK_ROW(lfm->int_4x4_y);
+ // Disable filtering on the leftmost column
+ filter_selectively_vert(dst->buf, dst->stride,
+ MASK_ROW(lfm->left_y[TX_16X16]),
+ MASK_ROW(lfm->left_y[TX_8X8]),
+ MASK_ROW(lfm->left_y[TX_4X4]),
+ MASK_ROW(lfm->int_4x4_y),
+ lfi[r]);
+ } else {
+ mask_4x4_int[r] = MASK_ROW(lfm->int_4x4_uv);
+ // Disable filtering on the leftmost column
+ filter_selectively_vert(dst->buf, dst->stride,
+ MASK_ROW(lfm->left_uv[TX_16X16]),
+ MASK_ROW(lfm->left_uv[TX_8X8]),
+ MASK_ROW(lfm->left_uv[TX_4X4]),
+ MASK_ROW(lfm->int_4x4_uv),
+ lfi[r]);
+ }
+ dst->buf += 8 * dst->stride;
+ mi += row_step_stride;
+ }
+
+ // Now do horizontal pass
+ dst->buf = dst0;
+ for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) {
+ const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1;
+ const unsigned int mask_4x4_int_r = skip_border_4x4_r ? 0 : mask_4x4_int[r];
+ int r_sampled = r >> ss_x;
+
+ if (!plane->plane_type) {
+ filter_selectively_horiz(dst->buf, dst->stride,
+ MASK_ROW(lfm->above_y[TX_16X16]),
+ MASK_ROW(lfm->above_y[TX_8X8]),
+ MASK_ROW(lfm->above_y[TX_4X4]),
+ MASK_ROW(lfm->int_4x4_y),
+ mi_row + r == 0, lfi[r]);
+ } else {
+ filter_selectively_horiz(dst->buf, dst->stride,
+ MASK_ROW(lfm->above_uv[TX_16X16]),
+ MASK_ROW(lfm->above_uv[TX_8X8]),
+ MASK_ROW(lfm->above_uv[TX_4X4]),
+ mask_4x4_int_r,
+ mi_row + r == 0, lfi[r]);
+ }
+ dst->buf += 8 * dst->stride;
+ }
+#undef MASK_ROW
+}
+
void vp9_loop_filter_rows(const YV12_BUFFER_CONFIG *frame_buffer,
VP9_COMMON *cm, MACROBLOCKD *xd,
int start, int stop, int y_only) {
const int num_planes = y_only ? 1 : MAX_MB_PLANE;
int mi_row, mi_col;
+ LOOP_FILTER_MASK lfm;
+ int use_420 = y_only || (xd->plane[1].subsampling_y == 1 &&
+ xd->plane[1].subsampling_x == 1);
for (mi_row = start; mi_row < stop; mi_row += MI_BLOCK_SIZE) {
MODE_INFO* const mi = cm->mi + mi_row * cm->mode_info_stride;
@@ -369,8 +991,18 @@ void vp9_loop_filter_rows(const YV12_BUFFER_CONFIG *frame_buffer,
int plane;
setup_dst_planes(xd, frame_buffer, mi_row, mi_col);
+
+ // TODO(JBB): Make setup_mask work for non 420.
+ if (use_420)
+ setup_mask(cm, mi_row, mi_col, mi + mi_col, cm->mode_info_stride, &lfm);
+
for (plane = 0; plane < num_planes; ++plane) {
- filter_block_plane(cm, &xd->plane[plane], mi + mi_col, mi_row, mi_col);
+ if (use_420)
+ filter_block_plane(cm, &xd->plane[plane], mi + mi_col, mi_row, mi_col,
+ &lfm);
+ else
+ filter_block_plane_non420(cm, &xd->plane[plane], mi + mi_col,
+ mi_row, mi_col);
}
}
}
diff --git a/vp9/common/vp9_rtcd_defs.sh b/vp9/common/vp9_rtcd_defs.sh
index c6d01c1f6..615e07ba9 100644
--- a/vp9/common/vp9_rtcd_defs.sh
+++ b/vp9/common/vp9_rtcd_defs.sh
@@ -701,7 +701,7 @@ prototype void vp9_quantize_b "int16_t *coeff_ptr, intptr_t n_coeffs, int skip_b
specialize vp9_quantize_b $ssse3_x86_64
prototype void vp9_quantize_b_32x32 "int16_t *coeff_ptr, intptr_t n_coeffs, int skip_block, int16_t *zbin_ptr, int16_t *round_ptr, int16_t *quant_ptr, int16_t *quant_shift_ptr, int16_t *qcoeff_ptr, int16_t *dqcoeff_ptr, int16_t *dequant_ptr, int zbin_oq_value, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan"
-specialize vp9_quantize_b_32x32
+specialize vp9_quantize_b_32x32 $ssse3_x86_64
#
# Structured Similarity (SSIM)
diff --git a/vp9/encoder/vp9_quantize.c b/vp9/encoder/vp9_quantize.c
index 02c068552..fb0e4707a 100644
--- a/vp9/encoder/vp9_quantize.c
+++ b/vp9/encoder/vp9_quantize.c
@@ -84,7 +84,6 @@ void vp9_quantize_b_c(int16_t *coeff_ptr, intptr_t n_coeffs, int skip_block,
*eob_ptr = eob + 1;
}
-// This function works well for large transform size.
void vp9_quantize_b_32x32_c(int16_t *coeff_ptr, intptr_t n_coeffs,
int skip_block,
int16_t *zbin_ptr, int16_t *round_ptr,
@@ -105,8 +104,8 @@ void vp9_quantize_b_32x32_c(int16_t *coeff_ptr, intptr_t n_coeffs,
eob = -1;
// Base ZBIN
- zbins[0] = zbin_ptr[0] + zbin_oq_value;
- zbins[1] = zbin_ptr[1] + zbin_oq_value;
+ zbins[0] = ROUND_POWER_OF_TWO(zbin_ptr[0] + zbin_oq_value, 1);
+ zbins[1] = ROUND_POWER_OF_TWO(zbin_ptr[1] + zbin_oq_value, 1);
nzbins[0] = zbins[0] * -1;
nzbins[1] = zbins[1] * -1;
@@ -114,7 +113,7 @@ void vp9_quantize_b_32x32_c(int16_t *coeff_ptr, intptr_t n_coeffs,
// Pre-scan pass
for (i = 0; i < n_coeffs; i++) {
rc = scan[i];
- z = coeff_ptr[rc] * 2;
+ z = coeff_ptr[rc];
// If the coefficient is out of the base ZBIN range, keep it for
// quantization.
@@ -130,14 +129,14 @@ void vp9_quantize_b_32x32_c(int16_t *coeff_ptr, intptr_t n_coeffs,
// Calculate ZBIN
zbin = (zbins[rc != 0]);
- z = coeff_ptr[rc] * 2;
+ z = coeff_ptr[rc];
sz = (z >> 31); // sign of z
x = (z ^ sz) - sz; // x = abs(z)
if (x >= zbin) {
- x += (round_ptr[rc != 0]);
+ x += ROUND_POWER_OF_TWO(round_ptr[rc != 0], 1);
y = (((int)(((int)(x * quant_ptr[rc != 0]) >> 16) + x)) *
- quant_shift_ptr[rc != 0]) >> 16; // quantize (x)
+ quant_shift_ptr[rc != 0]) >> 15; // quantize (x)
x = (y ^ sz) - sz; // get the sign back
qcoeff_ptr[rc] = x; // write to destination
diff --git a/vp9/encoder/x86/vp9_quantize_ssse3.asm b/vp9/encoder/x86/vp9_quantize_ssse3.asm
index 60f799195..7deb9815a 100644
--- a/vp9/encoder/x86/vp9_quantize_ssse3.asm
+++ b/vp9/encoder/x86/vp9_quantize_ssse3.asm
@@ -36,6 +36,14 @@ cglobal quantize_%1, 0, %2, 15, coeff, ncoeff, skip, zbin, round, quant, \
pshufd m4, m4, 0
mova m2, [quantq] ; m2 = quant
paddw m0, m4 ; m0 = zbin + zbin_oq
+%ifidn %1, b_32x32
+ pcmpeqw m5, m5
+ psrlw m5, 15
+ paddw m0, m5
+ paddw m1, m5
+ psrlw m0, 1 ; m0 = (m0 + 1) / 2
+ psrlw m1, 1 ; m1 = (m1 + 1) / 2
+%endif
mova m3, [r2q] ; m3 = dequant
psubw m0, [pw_1]
mov r2, shiftmp
@@ -43,6 +51,9 @@ cglobal quantize_%1, 0, %2, 15, coeff, ncoeff, skip, zbin, round, quant, \
mova m4, [r2] ; m4 = shift
mov r4, dqcoeffmp
mov r5, iscanmp
+%ifidn %1, b_32x32
+ psllw m4, 1
+%endif
pxor m5, m5 ; m5 = dedicated zero
DEFINE_ARGS coeff, ncoeff, d1, qcoeff, dqcoeff, iscan, d2, d3, d4, d5, d6, eob
lea coeffq, [ coeffq+ncoeffq*2]
@@ -56,10 +67,6 @@ cglobal quantize_%1, 0, %2, 15, coeff, ncoeff, skip, zbin, round, quant, \
mova m10, [ coeffq+ncoeffq*2+16] ; m10 = c[i]
pabsw m6, m9 ; m6 = abs(m9)
pabsw m11, m10 ; m11 = abs(m10)
-%ifidn %1, b_32x32
- paddw m6, m6
- paddw m11, m11
-%endif
pcmpgtw m7, m6, m0 ; m7 = c[i] >= zbin
punpckhqdq m0, m0
pcmpgtw m12, m11, m0 ; m12 = c[i] >= zbin
@@ -112,10 +119,6 @@ cglobal quantize_%1, 0, %2, 15, coeff, ncoeff, skip, zbin, round, quant, \
mova m10, [ coeffq+ncoeffq*2+16] ; m10 = c[i]
pabsw m6, m9 ; m6 = abs(m9)
pabsw m11, m10 ; m11 = abs(m10)
-%ifidn %1, b_32x32
- paddw m6, m6
- paddw m11, m11
-%endif
pcmpgtw m7, m6, m0 ; m7 = c[i] >= zbin
pcmpgtw m12, m11, m0 ; m12 = c[i] >= zbin
%ifidn %1, b_32x32
@@ -164,6 +167,7 @@ cglobal quantize_%1, 0, %2, 15, coeff, ncoeff, skip, zbin, round, quant, \
pmaxsw m8, m13
add ncoeffq, mmsize
jl .ac_only_loop
+
%ifidn %1, b_32x32
jmp .accumulate_eob
.skip_iter: