summaryrefslogtreecommitdiff
path: root/vp9/encoder
diff options
context:
space:
mode:
Diffstat (limited to 'vp9/encoder')
-rw-r--r--vp9/encoder/vp9_block.h2
-rw-r--r--vp9/encoder/vp9_dct.c36
-rw-r--r--vp9/encoder/x86/vp9_dct32x32_sse2.c20
-rw-r--r--vp9/encoder/x86/vp9_dct_sse2.c38
4 files changed, 49 insertions, 47 deletions
diff --git a/vp9/encoder/vp9_block.h b/vp9/encoder/vp9_block.h
index 12dad0311..db2564b4a 100644
--- a/vp9/encoder/vp9_block.h
+++ b/vp9/encoder/vp9_block.h
@@ -173,7 +173,7 @@ struct macroblock {
BLOCK_SIZE sb_partitioning[4];
BLOCK_SIZE sb64_partitioning;
- void (*fwd_txm4x4)(int16_t *input, int16_t *output, int pitch);
+ void (*fwd_txm4x4)(const int16_t *input, int16_t *output, int stride);
};
// TODO(jingning): the variables used here are little complicated. need further
diff --git a/vp9/encoder/vp9_dct.c b/vp9/encoder/vp9_dct.c
index 94fcf9101..0a0afedfd 100644
--- a/vp9/encoder/vp9_dct.c
+++ b/vp9/encoder/vp9_dct.c
@@ -36,7 +36,7 @@ static void fdct4(const int16_t *input, int16_t *output) {
output[3] = dct_const_round_shift(temp2);
}
-void vp9_fdct4x4_c(int16_t *input, int16_t *output, int stride) {
+void vp9_fdct4x4_c(const int16_t *input, int16_t *output, int stride) {
// The 2D transform is done with two passes which are actually pretty
// similar. In the first one, we transform the columns and transpose
// the results. In the second one, we transform the rows. To achieve that,
@@ -46,7 +46,7 @@ void vp9_fdct4x4_c(int16_t *input, int16_t *output, int stride) {
int pass;
// We need an intermediate buffer between passes.
int16_t intermediate[4 * 4];
- int16_t *in = input;
+ const int16_t *in = input;
int16_t *out = intermediate;
// Do the two transform/transpose passes
for (pass = 0; pass < 2; ++pass) {
@@ -148,8 +148,8 @@ static const transform_2d FHT_4[] = {
{ fadst4, fadst4 } // ADST_ADST = 3
};
-void vp9_short_fht4x4_c(int16_t *input, int16_t *output,
- int pitch, TX_TYPE tx_type) {
+void vp9_short_fht4x4_c(const int16_t *input, int16_t *output,
+ int stride, TX_TYPE tx_type) {
int16_t out[4 * 4];
int16_t *outptr = &out[0];
int i, j;
@@ -159,7 +159,7 @@ void vp9_short_fht4x4_c(int16_t *input, int16_t *output,
// Columns
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j)
- temp_in[j] = input[j * pitch + i] * 16;
+ temp_in[j] = input[j * stride + i] * 16;
if (i == 0 && temp_in[0])
temp_in[0] += 1;
ht.cols(temp_in, temp_out);
@@ -229,7 +229,7 @@ static void fdct8(const int16_t *input, int16_t *output) {
output[7] = dct_const_round_shift(t3);
}
-void vp9_fdct8x8_c(int16_t *input, int16_t *final_output, int stride) {
+void vp9_fdct8x8_c(const int16_t *input, int16_t *final_output, int stride) {
int i, j;
int16_t intermediate[64];
@@ -300,7 +300,7 @@ void vp9_fdct8x8_c(int16_t *input, int16_t *final_output, int stride) {
}
}
-void vp9_fdct16x16_c(int16_t *input, int16_t *output, int stride) {
+void vp9_fdct16x16_c(const int16_t *input, int16_t *output, int stride) {
// The 2D transform is done with two passes which are actually pretty
// similar. In the first one, we transform the columns and transpose
// the results. In the second one, we transform the rows. To achieve that,
@@ -310,7 +310,7 @@ void vp9_fdct16x16_c(int16_t *input, int16_t *output, int stride) {
int pass;
// We need an intermediate buffer between passes.
int16_t intermediate[256];
- int16_t *in = input;
+ const int16_t *in = input;
int16_t *out = intermediate;
// Do the two transform/transpose passes
for (pass = 0; pass < 2; ++pass) {
@@ -556,8 +556,8 @@ static const transform_2d FHT_8[] = {
{ fadst8, fadst8 } // ADST_ADST = 3
};
-void vp9_short_fht8x8_c(int16_t *input, int16_t *output,
- int pitch, TX_TYPE tx_type) {
+void vp9_short_fht8x8_c(const int16_t *input, int16_t *output,
+ int stride, TX_TYPE tx_type) {
int16_t out[64];
int16_t *outptr = &out[0];
int i, j;
@@ -567,7 +567,7 @@ void vp9_short_fht8x8_c(int16_t *input, int16_t *output,
// Columns
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j)
- temp_in[j] = input[j * pitch + i] * 4;
+ temp_in[j] = input[j * stride + i] * 4;
ht.cols(temp_in, temp_out);
for (j = 0; j < 8; ++j)
outptr[j * 8 + i] = temp_out[j];
@@ -585,10 +585,10 @@ void vp9_short_fht8x8_c(int16_t *input, int16_t *output,
/* 4-point reversible, orthonormal Walsh-Hadamard in 3.5 adds, 0.5 shifts per
pixel. */
-void vp9_fwht4x4_c(int16_t *input, int16_t *output, int stride) {
+void vp9_fwht4x4_c(const int16_t *input, int16_t *output, int stride) {
int i;
int a1, b1, c1, d1, e1;
- int16_t *ip = input;
+ const int16_t *ip = input;
int16_t *op = output;
for (i = 0; i < 4; i++) {
@@ -949,8 +949,8 @@ static const transform_2d FHT_16[] = {
{ fadst16, fadst16 } // ADST_ADST = 3
};
-void vp9_short_fht16x16_c(int16_t *input, int16_t *output,
- int pitch, TX_TYPE tx_type) {
+void vp9_short_fht16x16_c(const int16_t *input, int16_t *output,
+ int stride, TX_TYPE tx_type) {
int16_t out[256];
int16_t *outptr = &out[0];
int i, j;
@@ -960,7 +960,7 @@ void vp9_short_fht16x16_c(int16_t *input, int16_t *output,
// Columns
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j)
- temp_in[j] = input[j * pitch + i] * 4;
+ temp_in[j] = input[j * stride + i] * 4;
ht.cols(temp_in, temp_out);
for (j = 0; j < 16; ++j)
outptr[j * 16 + i] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2;
@@ -1311,7 +1311,7 @@ static void dct32_1d(const int *input, int *output, int round) {
output[31] = dct_32_round(step[31] * cospi_31_64 + step[16] * -cospi_1_64);
}
-void vp9_fdct32x32_c(int16_t *input, int16_t *out, int stride) {
+void vp9_fdct32x32_c(const int16_t *input, int16_t *out, int stride) {
int i, j;
int output[32 * 32];
@@ -1339,7 +1339,7 @@ void vp9_fdct32x32_c(int16_t *input, int16_t *out, int stride) {
// Note that although we use dct_32_round in dct32_1d computation flow,
// this 2d fdct32x32 for rate-distortion optimization loop is operating
// within 16 bits precision.
-void vp9_fdct32x32_rd_c(int16_t *input, int16_t *out, int stride) {
+void vp9_fdct32x32_rd_c(const int16_t *input, int16_t *out, int stride) {
int i, j;
int output[32 * 32];
diff --git a/vp9/encoder/x86/vp9_dct32x32_sse2.c b/vp9/encoder/x86/vp9_dct32x32_sse2.c
index de47a5bf1..2d59775ce 100644
--- a/vp9/encoder/x86/vp9_dct32x32_sse2.c
+++ b/vp9/encoder/x86/vp9_dct32x32_sse2.c
@@ -29,7 +29,7 @@ static INLINE __m128i k_packs_epi64(__m128i a, __m128i b) {
}
#endif
-void FDCT32x32_2D(int16_t *input,
+void FDCT32x32_2D(const int16_t *input,
int16_t *output_org, int stride) {
// Calculate pre-multiplied strides
const int str1 = stride;
@@ -93,13 +93,13 @@ void FDCT32x32_2D(int16_t *input,
// Note: even though all the loads below are aligned, using the aligned
// intrinsic make the code slightly slower.
if (0 == pass) {
- int16_t *in = &input[column_start];
+ const int16_t *in = &input[column_start];
// step1[i] = (in[ 0 * stride] + in[(32 - 1) * stride]) << 2;
// Note: the next four blocks could be in a loop. That would help the
// instruction cache but is actually slower.
{
- int16_t *ina = in + 0 * str1;
- int16_t *inb = in + 31 * str1;
+ const int16_t *ina = in + 0 * str1;
+ const int16_t *inb = in + 31 * str1;
__m128i *step1a = &step1[ 0];
__m128i *step1b = &step1[31];
const __m128i ina0 = _mm_loadu_si128((const __m128i *)(ina));
@@ -128,8 +128,8 @@ void FDCT32x32_2D(int16_t *input,
step1b[-0] = _mm_slli_epi16(step1b[-0], 2);
}
{
- int16_t *ina = in + 4 * str1;
- int16_t *inb = in + 27 * str1;
+ const int16_t *ina = in + 4 * str1;
+ const int16_t *inb = in + 27 * str1;
__m128i *step1a = &step1[ 4];
__m128i *step1b = &step1[27];
const __m128i ina0 = _mm_loadu_si128((const __m128i *)(ina));
@@ -158,8 +158,8 @@ void FDCT32x32_2D(int16_t *input,
step1b[-0] = _mm_slli_epi16(step1b[-0], 2);
}
{
- int16_t *ina = in + 8 * str1;
- int16_t *inb = in + 23 * str1;
+ const int16_t *ina = in + 8 * str1;
+ const int16_t *inb = in + 23 * str1;
__m128i *step1a = &step1[ 8];
__m128i *step1b = &step1[23];
const __m128i ina0 = _mm_loadu_si128((const __m128i *)(ina));
@@ -188,8 +188,8 @@ void FDCT32x32_2D(int16_t *input,
step1b[-0] = _mm_slli_epi16(step1b[-0], 2);
}
{
- int16_t *ina = in + 12 * str1;
- int16_t *inb = in + 19 * str1;
+ const int16_t *ina = in + 12 * str1;
+ const int16_t *inb = in + 19 * str1;
__m128i *step1a = &step1[12];
__m128i *step1b = &step1[19];
const __m128i ina0 = _mm_loadu_si128((const __m128i *)(ina));
diff --git a/vp9/encoder/x86/vp9_dct_sse2.c b/vp9/encoder/x86/vp9_dct_sse2.c
index 25b9e7e46..dc115018e 100644
--- a/vp9/encoder/x86/vp9_dct_sse2.c
+++ b/vp9/encoder/x86/vp9_dct_sse2.c
@@ -12,7 +12,7 @@
#include "vp9/common/vp9_idct.h" // for cospi constants
#include "vpx_ports/mem.h"
-void vp9_fdct4x4_sse2(int16_t *input, int16_t *output, int stride) {
+void vp9_fdct4x4_sse2(const int16_t *input, int16_t *output, int stride) {
// The 2D transform is done with two passes which are actually pretty
// similar. In the first one, we transform the columns and transpose
// the results. In the second one, we transform the rows. To achieve that,
@@ -111,7 +111,8 @@ void vp9_fdct4x4_sse2(int16_t *input, int16_t *output, int stride) {
}
}
-static INLINE void load_buffer_4x4(int16_t *input, __m128i *in, int stride) {
+static INLINE void load_buffer_4x4(const int16_t *input, __m128i *in,
+ int stride) {
const __m128i k__nonzero_bias_a = _mm_setr_epi16(0, 1, 1, 1, 1, 1, 1, 1);
const __m128i k__nonzero_bias_b = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0);
__m128i mask;
@@ -242,7 +243,7 @@ void fadst4_1d_sse2(__m128i *in) {
transpose_4x4(in);
}
-void vp9_short_fht4x4_sse2(int16_t *input, int16_t *output,
+void vp9_short_fht4x4_sse2(const int16_t *input, int16_t *output,
int stride, int tx_type) {
__m128i in[4];
load_buffer_4x4(input, in, stride);
@@ -270,7 +271,7 @@ void vp9_short_fht4x4_sse2(int16_t *input, int16_t *output,
write_buffer_4x4(output, in);
}
-void vp9_fdct8x8_sse2(int16_t *input, int16_t *output, int stride) {
+void vp9_fdct8x8_sse2(const int16_t *input, int16_t *output, int stride) {
int pass;
// Constants
// When we use them, in one case, they are all the same. In all others
@@ -527,15 +528,16 @@ void vp9_fdct8x8_sse2(int16_t *input, int16_t *output, int stride) {
}
// load 8x8 array
-static INLINE void load_buffer_8x8(int16_t *input, __m128i *in, int stride) {
- in[0] = _mm_load_si128((__m128i *)(input + 0 * stride));
- in[1] = _mm_load_si128((__m128i *)(input + 1 * stride));
- in[2] = _mm_load_si128((__m128i *)(input + 2 * stride));
- in[3] = _mm_load_si128((__m128i *)(input + 3 * stride));
- in[4] = _mm_load_si128((__m128i *)(input + 4 * stride));
- in[5] = _mm_load_si128((__m128i *)(input + 5 * stride));
- in[6] = _mm_load_si128((__m128i *)(input + 6 * stride));
- in[7] = _mm_load_si128((__m128i *)(input + 7 * stride));
+static INLINE void load_buffer_8x8(const int16_t *input, __m128i *in,
+ int stride) {
+ in[0] = _mm_load_si128((const __m128i *)(input + 0 * stride));
+ in[1] = _mm_load_si128((const __m128i *)(input + 1 * stride));
+ in[2] = _mm_load_si128((const __m128i *)(input + 2 * stride));
+ in[3] = _mm_load_si128((const __m128i *)(input + 3 * stride));
+ in[4] = _mm_load_si128((const __m128i *)(input + 4 * stride));
+ in[5] = _mm_load_si128((const __m128i *)(input + 5 * stride));
+ in[6] = _mm_load_si128((const __m128i *)(input + 6 * stride));
+ in[7] = _mm_load_si128((const __m128i *)(input + 7 * stride));
in[0] = _mm_slli_epi16(in[0], 2);
in[1] = _mm_slli_epi16(in[1], 2);
@@ -1025,7 +1027,7 @@ void fadst8_1d_sse2(__m128i *in) {
array_transpose_8x8(in, in);
}
-void vp9_short_fht8x8_sse2(int16_t *input, int16_t *output,
+void vp9_short_fht8x8_sse2(const int16_t *input, int16_t *output,
int stride, int tx_type) {
__m128i in[8];
load_buffer_8x8(input, in, stride);
@@ -1054,7 +1056,7 @@ void vp9_short_fht8x8_sse2(int16_t *input, int16_t *output,
write_buffer_8x8(output, in, 8);
}
-void vp9_fdct16x16_sse2(int16_t *input, int16_t *output, int stride) {
+void vp9_fdct16x16_sse2(const int16_t *input, int16_t *output, int stride) {
// The 2D transform is done with two passes which are actually pretty
// similar. In the first one, we transform the columns and transpose
// the results. In the second one, we transform the rows. To achieve that,
@@ -1064,7 +1066,7 @@ void vp9_fdct16x16_sse2(int16_t *input, int16_t *output, int stride) {
int pass;
// We need an intermediate buffer between passes.
DECLARE_ALIGNED_ARRAY(16, int16_t, intermediate, 256);
- int16_t *in = input;
+ const int16_t *in = input;
int16_t *out = intermediate;
// Constants
// When we use them, in one case, they are all the same. In all others
@@ -1679,7 +1681,7 @@ void vp9_fdct16x16_sse2(int16_t *input, int16_t *output, int stride) {
}
}
-static INLINE void load_buffer_16x16(int16_t* input, __m128i *in0,
+static INLINE void load_buffer_16x16(const int16_t* input, __m128i *in0,
__m128i *in1, int stride) {
// load first 8 columns
load_buffer_8x8(input, in0, stride);
@@ -2531,7 +2533,7 @@ void fadst16_1d_sse2(__m128i *in0, __m128i *in1) {
array_transpose_16x16(in0, in1);
}
-void vp9_short_fht16x16_sse2(int16_t *input, int16_t *output,
+void vp9_short_fht16x16_sse2(const int16_t *input, int16_t *output,
int stride, int tx_type) {
__m128i in0[16], in1[16];
load_buffer_16x16(input, in0, in1, stride);