summaryrefslogtreecommitdiff
path: root/vp9/encoder/vp9_firstpass.c
diff options
context:
space:
mode:
Diffstat (limited to 'vp9/encoder/vp9_firstpass.c')
-rw-r--r--vp9/encoder/vp9_firstpass.c64
1 files changed, 32 insertions, 32 deletions
diff --git a/vp9/encoder/vp9_firstpass.c b/vp9/encoder/vp9_firstpass.c
index 8fdd97681..22669ab84 100644
--- a/vp9/encoder/vp9_firstpass.c
+++ b/vp9/encoder/vp9_firstpass.c
@@ -606,11 +606,11 @@ static int get_smooth_intra_threshold(VP9_COMMON *cm) {
#define FP_MAX_DN_THRESH 24
#define KERNEL_SIZE 3
-// Baseline Kernal weights for first pass noise metric
-static uint8_t fp_dn_kernal_3[KERNEL_SIZE * KERNEL_SIZE] = { 1, 2, 1, 2, 4,
+// Baseline Kernel weights for first pass noise metric
+static uint8_t fp_dn_kernel_3[KERNEL_SIZE * KERNEL_SIZE] = { 1, 2, 1, 2, 4,
2, 1, 2, 1 };
-// Estimate noise at a single point based on the impace of a spatial kernal
+// Estimate noise at a single point based on the impact of a spatial kernel
// on the point value
static int fp_estimate_point_noise(uint8_t *src_ptr, const int stride) {
int sum_weight = 0;
@@ -620,23 +620,23 @@ static int fp_estimate_point_noise(uint8_t *src_ptr, const int stride) {
int diff;
int dn_diff;
uint8_t *tmp_ptr;
- uint8_t *kernal_ptr;
+ uint8_t *kernel_ptr;
uint8_t dn_val;
uint8_t centre_val = *src_ptr;
- kernal_ptr = fp_dn_kernal_3;
+ kernel_ptr = fp_dn_kernel_3;
- // Apply the kernal
+ // Apply the kernel
tmp_ptr = src_ptr - stride - 1;
for (i = 0; i < KERNEL_SIZE; ++i) {
for (j = 0; j < KERNEL_SIZE; ++j) {
diff = abs((int)centre_val - (int)tmp_ptr[j]);
max_diff = VPXMAX(max_diff, diff);
if (diff <= FP_DN_THRESH) {
- sum_weight += *kernal_ptr;
- sum_val += (int)tmp_ptr[j] * (int)*kernal_ptr;
+ sum_weight += *kernel_ptr;
+ sum_val += (int)tmp_ptr[j] * (int)*kernel_ptr;
}
- ++kernal_ptr;
+ ++kernel_ptr;
}
tmp_ptr += stride;
}
@@ -662,13 +662,13 @@ static int fp_highbd_estimate_point_noise(uint8_t *src_ptr, const int stride) {
int dn_diff;
uint8_t *tmp_ptr;
uint16_t *tmp_ptr16;
- uint8_t *kernal_ptr;
+ uint8_t *kernel_ptr;
uint16_t dn_val;
uint16_t centre_val = *CONVERT_TO_SHORTPTR(src_ptr);
- kernal_ptr = fp_dn_kernal_3;
+ kernel_ptr = fp_dn_kernel_3;
- // Apply the kernal
+ // Apply the kernel
tmp_ptr = src_ptr - stride - 1;
for (i = 0; i < KERNEL_SIZE; ++i) {
tmp_ptr16 = CONVERT_TO_SHORTPTR(tmp_ptr);
@@ -676,10 +676,10 @@ static int fp_highbd_estimate_point_noise(uint8_t *src_ptr, const int stride) {
diff = abs((int)centre_val - (int)tmp_ptr16[j]);
max_diff = VPXMAX(max_diff, diff);
if (diff <= FP_DN_THRESH) {
- sum_weight += *kernal_ptr;
- sum_val += (int)tmp_ptr16[j] * (int)*kernal_ptr;
+ sum_weight += *kernel_ptr;
+ sum_val += (int)tmp_ptr16[j] * (int)*kernel_ptr;
}
- ++kernal_ptr;
+ ++kernel_ptr;
}
tmp_ptr += stride;
}
@@ -1264,7 +1264,7 @@ void vp9_first_pass_encode_tile_mb_row(VP9_COMP *cpi, ThreadData *td,
xd->mi[0]->mv[0].as_mv = mv;
xd->mi[0]->tx_size = TX_4X4;
xd->mi[0]->ref_frame[0] = LAST_FRAME;
- xd->mi[0]->ref_frame[1] = NONE;
+ xd->mi[0]->ref_frame[1] = NO_REF_FRAME;
vp9_build_inter_predictors_sby(xd, mb_row << 1, mb_col << 1, bsize);
vp9_encode_sby_pass1(x, bsize);
fp_acc_data->sum_mvr += mv.row;
@@ -1448,7 +1448,7 @@ void vp9_first_pass(VP9_COMP *cpi, const struct lookahead_entry *source) {
first_pass_stat_calc(cpi, &fps, &(first_tile_col->fp_data));
}
- // Dont allow a value of 0 for duration.
+ // Don't allow a value of 0 for duration.
// (Section duration is also defaulted to minimum of 1.0).
fps.duration = VPXMAX(1.0, (double)(source->ts_end - source->ts_start));
@@ -1458,7 +1458,7 @@ void vp9_first_pass(VP9_COMP *cpi, const struct lookahead_entry *source) {
accumulate_stats(&twopass->total_stats, &fps);
}
- // Copy the previous Last Frame back into gf and and arf buffers if
+ // Copy the previous Last Frame back into gf and arf buffers if
// the prediction is good enough... but also don't allow it to lag too far.
if ((twopass->sr_update_lag > 3) ||
((cm->current_video_frame > 0) &&
@@ -1675,7 +1675,7 @@ void vp9_init_second_pass(VP9_COMP *cpi) {
// Scan the first pass file and calculate a modified score for each
// frame that is used to distribute bits. The modified score is assumed
- // to provide a linear basis for bit allocation. I.e a frame A with a score
+ // to provide a linear basis for bit allocation. I.e., a frame A with a score
// that is double that of frame B will be allocated 2x as many bits.
{
double modified_score_total = 0.0;
@@ -1700,8 +1700,8 @@ void vp9_init_second_pass(VP9_COMP *cpi) {
}
// Second scan using clamps based on the previous cycle average.
- // This may modify the total and average somewhat but we dont bother with
- // further itterations.
+ // This may modify the total and average somewhat but we don't bother with
+ // further iterations.
modified_score_total = 0.0;
s = twopass->stats_in;
while (s < twopass->stats_in_end) {
@@ -1858,7 +1858,7 @@ static int detect_flash_from_frame_stats(const FIRSTPASS_STATS *frame_stats) {
// brief break in prediction (such as a flash) but subsequent frames
// are reasonably well predicted by an earlier (pre flash) frame.
// The recovery after a flash is indicated by a high pcnt_second_ref
- // useage or a second ref coded error notabley lower than the last
+ // usage or a second ref coded error notabley lower than the last
// frame coded error.
if (frame_stats == NULL) {
return 0;
@@ -2038,7 +2038,7 @@ static int compute_arf_boost(const FRAME_INFO *frame_info,
this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
&abs_mv_in_out_accumulator, &mv_ratio_accumulator);
- // We want to discount the the flash frame itself and the recovery
+ // We want to discount the flash frame itself and the recovery
// frame that follows as both will have poor scores.
flash_detected = detect_flash_from_frame_stats(this_frame) ||
detect_flash_from_frame_stats(next_frame);
@@ -2169,7 +2169,7 @@ static double calculate_group_score(VP9_COMP *cpi, double av_score,
double score_total = 0.0;
int i = 0;
- // We dont ever want to return a 0 score here.
+ // We don't ever want to return a 0 score here.
if (frame_count == 0) return 1.0;
while ((i < frame_count) && (s < twopass->stats_in_end)) {
@@ -2597,7 +2597,7 @@ static int get_gop_coding_frame_num(
if (
// Don't break out with a very short interval.
(gop_coding_frames >= active_gf_interval->min) &&
- // If possible dont break very close to a kf
+ // If possible don't break very close to a kf
((rc->frames_to_key - gop_coding_frames) >= rc->min_gf_interval) &&
(gop_coding_frames & 0x01) && (!flash_detected) &&
((mv_ratio_accumulator > mv_ratio_accumulator_thresh) ||
@@ -3031,7 +3031,7 @@ static int intra_step_transition(const FIRSTPASS_STATS *this_frame,
next_frame->intra_error / DOUBLE_DIVIDE_CHECK(next_frame->coded_error);
// Return true the intra/inter ratio for the current frame is
- // low but better in the next and previous frame and the relative useage of
+ // low but better in the next and previous frame and the relative usage of
// intra in the current frame is markedly higher than the last and next frame.
if ((this_ii_ratio < 2.0) && (last_ii_ratio > 2.25) &&
(next_ii_ratio > 2.25) && (this_pcnt_intra > (3 * last_pcnt_intra)) &&
@@ -3052,8 +3052,8 @@ static int intra_step_transition(const FIRSTPASS_STATS *this_frame,
// Minimum % intra coding observed in first pass (1.0 = 100%)
#define MIN_INTRA_LEVEL 0.25
// Threshold for use of the lagging second reference frame. Scene cuts do not
-// usually have a high second ref useage.
-#define SECOND_REF_USEAGE_THRESH 0.2
+// usually have a high second ref usage.
+#define SECOND_REF_USAGE_THRESH 0.2
// Hard threshold where the first pass chooses intra for almost all blocks.
// In such a case even if the frame is not a scene cut coding a key frame
// may be a good option.
@@ -3083,7 +3083,7 @@ static int test_candidate_kf(const FIRST_PASS_INFO *first_pass_info,
detect_flash_from_frame_stats(next_frame);
if (!detect_flash_from_frame_stats(this_frame) &&
!detect_flash_from_frame_stats(next_frame) &&
- (this_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) &&
+ (this_frame->pcnt_second_ref < SECOND_REF_USAGE_THRESH) &&
((this_frame->pcnt_inter < VERY_LOW_INTER_THRESH) ||
(slide_transition(this_frame, last_frame, next_frame)) ||
(intra_step_transition(this_frame, last_frame, next_frame)) ||
@@ -3361,7 +3361,7 @@ static void find_next_key_frame(VP9_COMP *cpi, int kf_show_idx) {
// The second (lagging) ref error is not valid immediately after
// a key frame because either the lag has not built up (in the case of
- // the first key frame or it points to a refernce before the new key
+ // the first key frame or it points to a reference before the new key
// frame.
if (i < 2) sr_accumulator = 0.0;
frame_boost =
@@ -3391,7 +3391,7 @@ static void find_next_key_frame(VP9_COMP *cpi, int kf_show_idx) {
twopass->key_frame_section_intra_rating = calculate_section_intra_ratio(
start_position, twopass->stats_in_end, rc->frames_to_key);
- // Special case for static / slide show content but dont apply
+ // Special case for static / slide show content but don't apply
// if the kf group is very short.
if ((zero_motion_accumulator > 0.99) && (rc->frames_to_key > 8)) {
rc->kf_boost = (int)(twopass->kf_max_total_boost);
@@ -3523,7 +3523,7 @@ void vp9_rc_get_second_pass_params(VP9_COMP *cpi) {
vp9_init_vizier_params(twopass, screen_area);
}
- // If this is an arf frame then we dont want to read the stats file or
+ // If this is an arf frame then we don't want to read the stats file or
// advance the input pointer as we already have what we need.
if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
int target_rate;