summaryrefslogtreecommitdiff
path: root/vp8/encoder/ratectrl.c
diff options
context:
space:
mode:
Diffstat (limited to 'vp8/encoder/ratectrl.c')
-rw-r--r--vp8/encoder/ratectrl.c698
1 files changed, 0 insertions, 698 deletions
diff --git a/vp8/encoder/ratectrl.c b/vp8/encoder/ratectrl.c
deleted file mode 100644
index 1ce5e0eb8..000000000
--- a/vp8/encoder/ratectrl.c
+++ /dev/null
@@ -1,698 +0,0 @@
-/*
- * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
- *
- * Use of this source code is governed by a BSD-style license
- * that can be found in the LICENSE file in the root of the source
- * tree. An additional intellectual property rights grant can be found
- * in the file PATENTS. All contributing project authors may
- * be found in the AUTHORS file in the root of the source tree.
- */
-
-
-#include <stdlib.h>
-#include <stdio.h>
-#include <string.h>
-#include <limits.h>
-#include <assert.h>
-
-#include "math.h"
-#include "vp8/common/alloccommon.h"
-#include "vp8/common/common.h"
-#include "ratectrl.h"
-#include "vp8/common/entropymode.h"
-#include "vpx_mem/vpx_mem.h"
-#include "vp8/common/systemdependent.h"
-#include "encodemv.h"
-#include "vp8/common/quant_common.h"
-
-#define MIN_BPB_FACTOR 0.005
-#define MAX_BPB_FACTOR 50
-
-#ifdef MODE_STATS
-extern unsigned int y_modes[VP9_YMODES];
-extern unsigned int uv_modes[VP9_UV_MODES];
-extern unsigned int b_modes[B_MODE_COUNT];
-
-extern unsigned int inter_y_modes[MB_MODE_COUNT];
-extern unsigned int inter_uv_modes[VP9_UV_MODES];
-extern unsigned int inter_b_modes[B_MODE_COUNT];
-#endif
-
-// Bits Per MB at different Q (Multiplied by 512)
-#define BPER_MB_NORMBITS 9
-
-// % adjustment to target kf size based on seperation from previous frame
-static const int kf_boost_seperation_adjustment[16] = {
- 30, 40, 50, 55, 60, 65, 70, 75,
- 80, 85, 90, 95, 100, 100, 100, 100,
-};
-
-static const int gf_adjust_table[101] = {
- 100,
- 115, 130, 145, 160, 175, 190, 200, 210, 220, 230,
- 240, 260, 270, 280, 290, 300, 310, 320, 330, 340,
- 350, 360, 370, 380, 390, 400, 400, 400, 400, 400,
- 400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
- 400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
- 400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
- 400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
- 400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
- 400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
- 400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
-};
-
-static const int gf_intra_usage_adjustment[20] = {
- 125, 120, 115, 110, 105, 100, 95, 85, 80, 75,
- 70, 65, 60, 55, 50, 50, 50, 50, 50, 50,
-};
-
-static const int gf_interval_table[101] = {
- 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
- 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
- 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
- 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
- 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
-};
-
-static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] = { 1, 2, 3, 4, 5 };
-
-// These functions use formulaic calculations to make playing with the
-// quantizer tables easier. If necessary they can be replaced by lookup
-// tables if and when things settle down in the experimental bitstream
-double vp9_convert_qindex_to_q(int qindex) {
- // Convert the index to a real Q value (scaled down to match old Q values)
- return (double)vp9_ac_yquant(qindex) / 4.0;
-}
-
-int vp9_gfboost_qadjust(int qindex) {
- int retval;
- double q;
-
- q = vp9_convert_qindex_to_q(qindex);
- retval = (int)((0.00000828 * q * q * q) +
- (-0.0055 * q * q) +
- (1.32 * q) + 79.3);
- return retval;
-}
-
-static int kfboost_qadjust(int qindex) {
- int retval;
- double q;
-
- q = vp9_convert_qindex_to_q(qindex);
- retval = (int)((0.00000973 * q * q * q) +
- (-0.00613 * q * q) +
- (1.316 * q) + 121.2);
- return retval;
-}
-
-int vp9_bits_per_mb(FRAME_TYPE frame_type, int qindex) {
- if (frame_type == KEY_FRAME)
- return (int)(4500000 / vp9_convert_qindex_to_q(qindex));
- else
- return (int)(2850000 / vp9_convert_qindex_to_q(qindex));
-}
-
-
-void vp9_save_coding_context(VP9_COMP *cpi) {
- CODING_CONTEXT *const cc = &cpi->coding_context;
- VP9_COMMON *cm = &cpi->common;
- MACROBLOCKD *xd = &cpi->mb.e_mbd;
-
- // Stores a snapshot of key state variables which can subsequently be
- // restored with a call to vp9_restore_coding_context. These functions are
- // intended for use in a re-code loop in vp9_compress_frame where the
- // quantizer value is adjusted between loop iterations.
-
- cc->nmvc = cm->fc.nmvc;
- vp9_copy(cc->nmvjointcost, cpi->mb.nmvjointcost);
- vp9_copy(cc->nmvcosts, cpi->mb.nmvcosts);
- vp9_copy(cc->nmvcosts_hp, cpi->mb.nmvcosts_hp);
-
- vp9_copy(cc->mv_ref_ct, cm->fc.mv_ref_ct);
- vp9_copy(cc->mode_context, cm->fc.mode_context);
- vp9_copy(cc->mv_ref_ct_a, cm->fc.mv_ref_ct_a);
- vp9_copy(cc->mode_context_a, cm->fc.mode_context_a);
-
- vp9_copy(cc->ymode_prob, cm->fc.ymode_prob);
- vp9_copy(cc->bmode_prob, cm->fc.bmode_prob);
- vp9_copy(cc->uv_mode_prob, cm->fc.uv_mode_prob);
- vp9_copy(cc->i8x8_mode_prob, cm->fc.i8x8_mode_prob);
- vp9_copy(cc->sub_mv_ref_prob, cm->fc.sub_mv_ref_prob);
- vp9_copy(cc->mbsplit_prob, cm->fc.mbsplit_prob);
-
- // Stats
-#ifdef MODE_STATS
- vp9_copy(cc->y_modes, y_modes);
- vp9_copy(cc->uv_modes, uv_modes);
- vp9_copy(cc->b_modes, b_modes);
- vp9_copy(cc->inter_y_modes, inter_y_modes);
- vp9_copy(cc->inter_uv_modes, inter_uv_modes);
- vp9_copy(cc->inter_b_modes, inter_b_modes);
-#endif
-
- vp9_copy(cc->segment_pred_probs, cm->segment_pred_probs);
- vp9_copy(cc->ref_pred_probs_update, cpi->ref_pred_probs_update);
- vp9_copy(cc->ref_pred_probs, cm->ref_pred_probs);
- vp9_copy(cc->prob_comppred, cm->prob_comppred);
-
- vpx_memcpy(cpi->coding_context.last_frame_seg_map_copy,
- cm->last_frame_seg_map, (cm->mb_rows * cm->mb_cols));
-
- vp9_copy(cc->last_ref_lf_deltas, xd->last_ref_lf_deltas);
- vp9_copy(cc->last_mode_lf_deltas, xd->last_mode_lf_deltas);
-
- vp9_copy(cc->coef_probs, cm->fc.coef_probs);
- vp9_copy(cc->hybrid_coef_probs, cm->fc.hybrid_coef_probs);
- vp9_copy(cc->coef_probs_8x8, cm->fc.coef_probs_8x8);
- vp9_copy(cc->hybrid_coef_probs_8x8, cm->fc.hybrid_coef_probs_8x8);
- vp9_copy(cc->coef_probs_16x16, cm->fc.coef_probs_16x16);
- vp9_copy(cc->hybrid_coef_probs_16x16, cm->fc.hybrid_coef_probs_16x16);
- vp9_copy(cc->switchable_interp_prob, cm->fc.switchable_interp_prob);
-}
-
-void vp9_restore_coding_context(VP9_COMP *cpi) {
- CODING_CONTEXT *const cc = &cpi->coding_context;
- VP9_COMMON *cm = &cpi->common;
- MACROBLOCKD *xd = &cpi->mb.e_mbd;
-
- // Restore key state variables to the snapshot state stored in the
- // previous call to vp9_save_coding_context.
-
- cm->fc.nmvc = cc->nmvc;
- vp9_copy(cpi->mb.nmvjointcost, cc->nmvjointcost);
- vp9_copy(cpi->mb.nmvcosts, cc->nmvcosts);
- vp9_copy(cpi->mb.nmvcosts_hp, cc->nmvcosts_hp);
-
- vp9_copy(cm->fc.mv_ref_ct, cc->mv_ref_ct);
- vp9_copy(cm->fc.mode_context, cc->mode_context);
- vp9_copy(cm->fc.mv_ref_ct_a, cc->mv_ref_ct_a);
- vp9_copy(cm->fc.mode_context_a, cc->mode_context_a);
-
- vp9_copy(cm->fc.ymode_prob, cc->ymode_prob);
- vp9_copy(cm->fc.bmode_prob, cc->bmode_prob);
- vp9_copy(cm->fc.i8x8_mode_prob, cc->i8x8_mode_prob);
- vp9_copy(cm->fc.uv_mode_prob, cc->uv_mode_prob);
- vp9_copy(cm->fc.sub_mv_ref_prob, cc->sub_mv_ref_prob);
- vp9_copy(cm->fc.mbsplit_prob, cc->mbsplit_prob);
-
- // Stats
-#ifdef MODE_STATS
- vp9_copy(y_modes, cc->y_modes);
- vp9_copy(uv_modes, cc->uv_modes);
- vp9_copy(b_modes, cc->b_modes);
- vp9_copy(inter_y_modes, cc->inter_y_modes);
- vp9_copy(inter_uv_modes, cc->inter_uv_modes);
- vp9_copy(inter_b_modes, cc->inter_b_modes);
-#endif
-
- vp9_copy(cm->segment_pred_probs, cc->segment_pred_probs);
- vp9_copy(cpi->ref_pred_probs_update, cc->ref_pred_probs_update);
- vp9_copy(cm->ref_pred_probs, cc->ref_pred_probs);
- vp9_copy(cm->prob_comppred, cc->prob_comppred);
-
- vpx_memcpy(cm->last_frame_seg_map,
- cpi->coding_context.last_frame_seg_map_copy,
- (cm->mb_rows * cm->mb_cols));
-
- vp9_copy(xd->last_ref_lf_deltas, cc->last_ref_lf_deltas);
- vp9_copy(xd->last_mode_lf_deltas, cc->last_mode_lf_deltas);
-
- vp9_copy(cm->fc.coef_probs, cc->coef_probs);
- vp9_copy(cm->fc.hybrid_coef_probs, cc->hybrid_coef_probs);
- vp9_copy(cm->fc.coef_probs_8x8, cc->coef_probs_8x8);
- vp9_copy(cm->fc.hybrid_coef_probs_8x8, cc->hybrid_coef_probs_8x8);
- vp9_copy(cm->fc.coef_probs_16x16, cc->coef_probs_16x16);
- vp9_copy(cm->fc.hybrid_coef_probs_16x16, cc->hybrid_coef_probs_16x16);
- vp9_copy(cm->fc.switchable_interp_prob, cc->switchable_interp_prob);
-}
-
-
-void vp9_setup_key_frame(VP9_COMP *cpi) {
- VP9_COMMON *cm = &cpi->common;
- // Setup for Key frame:
- vp9_default_coef_probs(& cpi->common);
- vp9_kf_default_bmode_probs(cpi->common.kf_bmode_prob);
- vp9_init_mbmode_probs(& cpi->common);
- vp9_default_bmode_probs(cm->fc.bmode_prob);
-
- vp9_init_mv_probs(& cpi->common);
-
- // cpi->common.filter_level = 0; // Reset every key frame.
- cpi->common.filter_level = cpi->common.base_qindex * 3 / 8;
-
- // interval before next GF
- cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
-
- cpi->common.refresh_golden_frame = TRUE;
- cpi->common.refresh_alt_ref_frame = TRUE;
-
- vp9_init_mode_contexts(&cpi->common);
- vpx_memcpy(&cpi->common.lfc, &cpi->common.fc, sizeof(cpi->common.fc));
- vpx_memcpy(&cpi->common.lfc_a, &cpi->common.fc, sizeof(cpi->common.fc));
-
- vpx_memset(cm->prev_mip, 0,
- (cm->mb_cols + 1) * (cm->mb_rows + 1)* sizeof(MODE_INFO));
- vpx_memset(cm->mip, 0,
- (cm->mb_cols + 1) * (cm->mb_rows + 1)* sizeof(MODE_INFO));
-
- vp9_update_mode_info_border(cm, cm->mip);
- vp9_update_mode_info_in_image(cm, cm->mi);
-}
-
-void vp9_setup_inter_frame(VP9_COMP *cpi) {
- if (cpi->common.refresh_alt_ref_frame) {
- vpx_memcpy(&cpi->common.fc,
- &cpi->common.lfc_a,
- sizeof(cpi->common.fc));
- vpx_memcpy(cpi->common.fc.vp8_mode_contexts,
- cpi->common.fc.mode_context_a,
- sizeof(cpi->common.fc.vp8_mode_contexts));
- } else {
- vpx_memcpy(&cpi->common.fc,
- &cpi->common.lfc,
- sizeof(cpi->common.fc));
- vpx_memcpy(cpi->common.fc.vp8_mode_contexts,
- cpi->common.fc.mode_context,
- sizeof(cpi->common.fc.vp8_mode_contexts));
- }
-}
-
-
-static int estimate_bits_at_q(int frame_kind, int Q, int MBs,
- double correction_factor) {
- int Bpm = (int)(.5 + correction_factor * vp9_bits_per_mb(frame_kind, Q));
-
- /* Attempt to retain reasonable accuracy without overflow. The cutoff is
- * chosen such that the maximum product of Bpm and MBs fits 31 bits. The
- * largest Bpm takes 20 bits.
- */
- if (MBs > (1 << 11))
- return (Bpm >> BPER_MB_NORMBITS) * MBs;
- else
- return (Bpm * MBs) >> BPER_MB_NORMBITS;
-}
-
-
-static void calc_iframe_target_size(VP9_COMP *cpi) {
- // boost defaults to half second
- int target;
-
- // Clear down mmx registers to allow floating point in what follows
- vp9_clear_system_state(); // __asm emms;
-
- // New Two pass RC
- target = cpi->per_frame_bandwidth;
-
- if (cpi->oxcf.rc_max_intra_bitrate_pct) {
- unsigned int max_rate = cpi->per_frame_bandwidth
- * cpi->oxcf.rc_max_intra_bitrate_pct / 100;
-
- if (target > max_rate)
- target = max_rate;
- }
-
- cpi->this_frame_target = target;
-
-}
-
-
-// Do the best we can to define the parameteres for the next GF based
-// on what information we have available.
-//
-// In this experimental code only two pass is supported
-// so we just use the interval determined in the two pass code.
-static void calc_gf_params(VP9_COMP *cpi) {
- // Set the gf interval
- cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
-}
-
-
-static void calc_pframe_target_size(VP9_COMP *cpi) {
- int min_frame_target;
-
- min_frame_target = 0;
-
- min_frame_target = cpi->min_frame_bandwidth;
-
- if (min_frame_target < (cpi->av_per_frame_bandwidth >> 5))
- min_frame_target = cpi->av_per_frame_bandwidth >> 5;
-
-
- // Special alt reference frame case
- if (cpi->common.refresh_alt_ref_frame) {
- // Per frame bit target for the alt ref frame
- cpi->per_frame_bandwidth = cpi->twopass.gf_bits;
- cpi->this_frame_target = cpi->per_frame_bandwidth;
- }
-
- // Normal frames (gf,and inter)
- else {
- cpi->this_frame_target = cpi->per_frame_bandwidth;
- }
-
- // Sanity check that the total sum of adjustments is not above the maximum allowed
- // That is that having allowed for KF and GF penalties we have not pushed the
- // current interframe target to low. If the adjustment we apply here is not capable of recovering
- // all the extra bits we have spent in the KF or GF then the remainder will have to be recovered over
- // a longer time span via other buffer / rate control mechanisms.
- if (cpi->this_frame_target < min_frame_target)
- cpi->this_frame_target = min_frame_target;
-
- if (!cpi->common.refresh_alt_ref_frame)
- // Note the baseline target data rate for this inter frame.
- cpi->inter_frame_target = cpi->this_frame_target;
-
- // Adjust target frame size for Golden Frames:
- if (cpi->frames_till_gf_update_due == 0) {
- // int Boost = 0;
- int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
-
- cpi->common.refresh_golden_frame = TRUE;
-
- calc_gf_params(cpi);
-
- // If we are using alternate ref instead of gf then do not apply the boost
- // It will instead be applied to the altref update
- // Jims modified boost
- if (!cpi->source_alt_ref_active) {
- if (cpi->oxcf.fixed_q < 0) {
- // The spend on the GF is defined in the two pass code
- // for two pass encodes
- cpi->this_frame_target = cpi->per_frame_bandwidth;
- } else
- cpi->this_frame_target =
- (estimate_bits_at_q(1, Q, cpi->common.MBs, 1.0)
- * cpi->last_boost) / 100;
-
- }
- // If there is an active ARF at this location use the minimum
- // bits on this frame even if it is a contructed arf.
- // The active maximum quantizer insures that an appropriate
- // number of bits will be spent if needed for contstructed ARFs.
- else {
- cpi->this_frame_target = 0;
- }
-
- cpi->current_gf_interval = cpi->frames_till_gf_update_due;
- }
-}
-
-
-void vp9_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) {
- int Q = cpi->common.base_qindex;
- int correction_factor = 100;
- double rate_correction_factor;
- double adjustment_limit;
-
- int projected_size_based_on_q = 0;
-
- // Clear down mmx registers to allow floating point in what follows
- vp9_clear_system_state(); // __asm emms;
-
- if (cpi->common.frame_type == KEY_FRAME) {
- rate_correction_factor = cpi->key_frame_rate_correction_factor;
- } else {
- if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame)
- rate_correction_factor = cpi->gf_rate_correction_factor;
- else
- rate_correction_factor = cpi->rate_correction_factor;
- }
-
- // Work out how big we would have expected the frame to be at this Q given the current correction factor.
- // Stay in double to avoid int overflow when values are large
- projected_size_based_on_q =
- (int)(((.5 + rate_correction_factor *
- vp9_bits_per_mb(cpi->common.frame_type, Q)) *
- cpi->common.MBs) / (1 << BPER_MB_NORMBITS));
-
- // Make some allowance for cpi->zbin_over_quant
- if (cpi->zbin_over_quant > 0) {
- int Z = cpi->zbin_over_quant;
- double Factor = 0.99;
- double factor_adjustment = 0.01 / 256.0; // (double)ZBIN_OQ_MAX;
-
- while (Z > 0) {
- Z--;
- projected_size_based_on_q =
- (int)(Factor * projected_size_based_on_q);
- Factor += factor_adjustment;
-
- if (Factor >= 0.999)
- Factor = 0.999;
- }
- }
-
- // Work out a size correction factor.
- // if ( cpi->this_frame_target > 0 )
- // correction_factor = (100 * cpi->projected_frame_size) / cpi->this_frame_target;
- if (projected_size_based_on_q > 0)
- correction_factor = (100 * cpi->projected_frame_size) / projected_size_based_on_q;
-
- // More heavily damped adjustment used if we have been oscillating either side of target
- switch (damp_var) {
- case 0:
- adjustment_limit = 0.75;
- break;
- case 1:
- adjustment_limit = 0.375;
- break;
- case 2:
- default:
- adjustment_limit = 0.25;
- break;
- }
-
- // if ( (correction_factor > 102) && (Q < cpi->active_worst_quality) )
- if (correction_factor > 102) {
- // We are not already at the worst allowable quality
- correction_factor = (int)(100.5 + ((correction_factor - 100) * adjustment_limit));
- rate_correction_factor = ((rate_correction_factor * correction_factor) / 100);
-
- // Keep rate_correction_factor within limits
- if (rate_correction_factor > MAX_BPB_FACTOR)
- rate_correction_factor = MAX_BPB_FACTOR;
- }
- // else if ( (correction_factor < 99) && (Q > cpi->active_best_quality) )
- else if (correction_factor < 99) {
- // We are not already at the best allowable quality
- correction_factor = (int)(100.5 - ((100 - correction_factor) * adjustment_limit));
- rate_correction_factor = ((rate_correction_factor * correction_factor) / 100);
-
- // Keep rate_correction_factor within limits
- if (rate_correction_factor < MIN_BPB_FACTOR)
- rate_correction_factor = MIN_BPB_FACTOR;
- }
-
- if (cpi->common.frame_type == KEY_FRAME)
- cpi->key_frame_rate_correction_factor = rate_correction_factor;
- else {
- if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame)
- cpi->gf_rate_correction_factor = rate_correction_factor;
- else
- cpi->rate_correction_factor = rate_correction_factor;
- }
-}
-
-
-int vp9_regulate_q(VP9_COMP *cpi, int target_bits_per_frame) {
- int Q = cpi->active_worst_quality;
-
- int i;
- int last_error = INT_MAX;
- int target_bits_per_mb;
- int bits_per_mb_at_this_q;
- double correction_factor;
-
- // Reset Zbin OQ value
- cpi->zbin_over_quant = 0;
-
- // Select the appropriate correction factor based upon type of frame.
- if (cpi->common.frame_type == KEY_FRAME)
- correction_factor = cpi->key_frame_rate_correction_factor;
- else {
- if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame)
- correction_factor = cpi->gf_rate_correction_factor;
- else
- correction_factor = cpi->rate_correction_factor;
- }
-
- // Calculate required scaling factor based on target frame size and size of frame produced using previous Q
- if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS))
- target_bits_per_mb = (target_bits_per_frame / cpi->common.MBs) << BPER_MB_NORMBITS; // Case where we would overflow int
- else
- target_bits_per_mb = (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs;
-
- i = cpi->active_best_quality;
-
- do {
- bits_per_mb_at_this_q =
- (int)(.5 + correction_factor *
- vp9_bits_per_mb(cpi->common.frame_type, i));
-
- if (bits_per_mb_at_this_q <= target_bits_per_mb) {
- if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
- Q = i;
- else
- Q = i - 1;
-
- break;
- } else
- last_error = bits_per_mb_at_this_q - target_bits_per_mb;
- } while (++i <= cpi->active_worst_quality);
-
-
- // If we are at MAXQ then enable Q over-run which seeks to claw back additional bits through things like
- // the RD multiplier and zero bin size.
- if (Q >= MAXQ) {
- int zbin_oqmax;
-
- double Factor = 0.99;
- double factor_adjustment = 0.01 / 256.0; // (double)ZBIN_OQ_MAX;
-
- if (cpi->common.frame_type == KEY_FRAME)
- zbin_oqmax = 0; // ZBIN_OQ_MAX/16
- else if (cpi->common.refresh_alt_ref_frame || (cpi->common.refresh_golden_frame && !cpi->source_alt_ref_active))
- zbin_oqmax = 16;
- else
- zbin_oqmax = ZBIN_OQ_MAX;
-
- // Each incrment in the zbin is assumed to have a fixed effect on bitrate. This is not of course true.
- // The effect will be highly clip dependent and may well have sudden steps.
- // The idea here is to acheive higher effective quantizers than the normal maximum by expanding the zero
- // bin and hence decreasing the number of low magnitude non zero coefficients.
- while (cpi->zbin_over_quant < zbin_oqmax) {
- cpi->zbin_over_quant++;
-
- if (cpi->zbin_over_quant > zbin_oqmax)
- cpi->zbin_over_quant = zbin_oqmax;
-
- // Adjust bits_per_mb_at_this_q estimate
- bits_per_mb_at_this_q = (int)(Factor * bits_per_mb_at_this_q);
- Factor += factor_adjustment;
-
- if (Factor >= 0.999)
- Factor = 0.999;
-
- if (bits_per_mb_at_this_q <= target_bits_per_mb) // Break out if we get down to the target rate
- break;
- }
-
- }
-
- return Q;
-}
-
-
-static int estimate_keyframe_frequency(VP9_COMP *cpi) {
- int i;
-
- // Average key frame frequency
- int av_key_frame_frequency = 0;
-
- /* First key frame at start of sequence is a special case. We have no
- * frequency data.
- */
- if (cpi->key_frame_count == 1) {
- /* Assume a default of 1 kf every 2 seconds, or the max kf interval,
- * whichever is smaller.
- */
- int key_freq = cpi->oxcf.key_freq > 0 ? cpi->oxcf.key_freq : 1;
- av_key_frame_frequency = (int)cpi->output_frame_rate * 2;
-
- if (cpi->oxcf.auto_key && av_key_frame_frequency > key_freq)
- av_key_frame_frequency = cpi->oxcf.key_freq;
-
- cpi->prior_key_frame_distance[KEY_FRAME_CONTEXT - 1]
- = av_key_frame_frequency;
- } else {
- unsigned int total_weight = 0;
- int last_kf_interval =
- (cpi->frames_since_key > 0) ? cpi->frames_since_key : 1;
-
- /* reset keyframe context and calculate weighted average of last
- * KEY_FRAME_CONTEXT keyframes
- */
- for (i = 0; i < KEY_FRAME_CONTEXT; i++) {
- if (i < KEY_FRAME_CONTEXT - 1)
- cpi->prior_key_frame_distance[i]
- = cpi->prior_key_frame_distance[i + 1];
- else
- cpi->prior_key_frame_distance[i] = last_kf_interval;
-
- av_key_frame_frequency += prior_key_frame_weight[i]
- * cpi->prior_key_frame_distance[i];
- total_weight += prior_key_frame_weight[i];
- }
-
- av_key_frame_frequency /= total_weight;
-
- }
- return av_key_frame_frequency;
-}
-
-
-void vp9_adjust_key_frame_context(VP9_COMP *cpi) {
- // Clear down mmx registers to allow floating point in what follows
- vp9_clear_system_state();
-
- cpi->frames_since_key = 0;
- cpi->key_frame_count++;
-}
-
-
-void vp9_compute_frame_size_bounds(VP9_COMP *cpi, int *frame_under_shoot_limit,
- int *frame_over_shoot_limit) {
- // Set-up bounds on acceptable frame size:
- if (cpi->oxcf.fixed_q >= 0) {
- // Fixed Q scenario: frame size never outranges target (there is no target!)
- *frame_under_shoot_limit = 0;
- *frame_over_shoot_limit = INT_MAX;
- } else {
- if (cpi->common.frame_type == KEY_FRAME) {
- *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8;
- *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8;
- } else {
- if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame) {
- *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8;
- *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8;
- } else {
- // Stron overshoot limit for constrained quality
- if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
- *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8;
- *frame_under_shoot_limit = cpi->this_frame_target * 2 / 8;
- } else {
- *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8;
- *frame_under_shoot_limit = cpi->this_frame_target * 5 / 8;
- }
- }
- }
-
- // For very small rate targets where the fractional adjustment
- // (eg * 7/8) may be tiny make sure there is at least a minimum
- // range.
- *frame_over_shoot_limit += 200;
- *frame_under_shoot_limit -= 200;
- if (*frame_under_shoot_limit < 0)
- *frame_under_shoot_limit = 0;
- }
-}
-
-
-// return of 0 means drop frame
-int vp9_pick_frame_size(VP9_COMP *cpi) {
- VP9_COMMON *cm = &cpi->common;
-
- if (cm->frame_type == KEY_FRAME)
- calc_iframe_target_size(cpi);
- else
- calc_pframe_target_size(cpi);
-
- return 1;
-}