summaryrefslogtreecommitdiff
path: root/vp8/encoder/firstpass.c
diff options
context:
space:
mode:
Diffstat (limited to 'vp8/encoder/firstpass.c')
-rw-r--r--vp8/encoder/firstpass.c4359
1 files changed, 2095 insertions, 2264 deletions
diff --git a/vp8/encoder/firstpass.c b/vp8/encoder/firstpass.c
index 77076ff5f..6715c80f6 100644
--- a/vp8/encoder/firstpass.c
+++ b/vp8/encoder/firstpass.c
@@ -30,7 +30,7 @@
#include "vp8/common/quant_common.h"
#include "encodemv.h"
-//#define OUTPUT_FPF 1
+// #define OUTPUT_FPF 1
#if CONFIG_RUNTIME_CPU_DETECT
#define IF_RTCD(x) (x)
@@ -67,788 +67,736 @@ extern void vp8_alloc_compressor_data(VP8_COMP *cpi);
static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame);
-static int select_cq_level( int qindex )
-{
- int ret_val = QINDEX_RANGE - 1;
- int i;
+static int select_cq_level(int qindex) {
+ int ret_val = QINDEX_RANGE - 1;
+ int i;
- double target_q = ( vp8_convert_qindex_to_q( qindex ) * 0.5847 ) + 1.0;
+ double target_q = (vp8_convert_qindex_to_q(qindex) * 0.5847) + 1.0;
- for ( i = 0; i < QINDEX_RANGE; i++ )
- {
- if ( target_q <= vp8_convert_qindex_to_q( i ) )
- {
- ret_val = i;
- break;
- }
+ for (i = 0; i < QINDEX_RANGE; i++) {
+ if (target_q <= vp8_convert_qindex_to_q(i)) {
+ ret_val = i;
+ break;
}
+ }
- return ret_val;
+ return ret_val;
}
// Resets the first pass file to the given position using a relative seek from the current position
-static void reset_fpf_position(VP8_COMP *cpi, FIRSTPASS_STATS *Position)
-{
- cpi->twopass.stats_in = Position;
+static void reset_fpf_position(VP8_COMP *cpi, FIRSTPASS_STATS *Position) {
+ cpi->twopass.stats_in = Position;
}
-static int lookup_next_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame)
-{
- if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end)
- return EOF;
+static int lookup_next_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame) {
+ if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end)
+ return EOF;
- *next_frame = *cpi->twopass.stats_in;
- return 1;
+ *next_frame = *cpi->twopass.stats_in;
+ return 1;
}
// Read frame stats at an offset from the current position
-static int read_frame_stats( VP8_COMP *cpi,
- FIRSTPASS_STATS *frame_stats,
- int offset )
-{
- FIRSTPASS_STATS * fps_ptr = cpi->twopass.stats_in;
-
- // Check legality of offset
- if ( offset >= 0 )
- {
- if ( &fps_ptr[offset] >= cpi->twopass.stats_in_end )
- return EOF;
- }
- else if ( offset < 0 )
- {
- if ( &fps_ptr[offset] < cpi->twopass.stats_in_start )
- return EOF;
- }
-
- *frame_stats = fps_ptr[offset];
- return 1;
+static int read_frame_stats(VP8_COMP *cpi,
+ FIRSTPASS_STATS *frame_stats,
+ int offset) {
+ FIRSTPASS_STATS *fps_ptr = cpi->twopass.stats_in;
+
+ // Check legality of offset
+ if (offset >= 0) {
+ if (&fps_ptr[offset] >= cpi->twopass.stats_in_end)
+ return EOF;
+ } else if (offset < 0) {
+ if (&fps_ptr[offset] < cpi->twopass.stats_in_start)
+ return EOF;
+ }
+
+ *frame_stats = fps_ptr[offset];
+ return 1;
}
-static int input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps)
-{
- if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end)
- return EOF;
+static int input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps) {
+ if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end)
+ return EOF;
- *fps = *cpi->twopass.stats_in;
- cpi->twopass.stats_in =
- (void*)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS));
- return 1;
+ *fps = *cpi->twopass.stats_in;
+ cpi->twopass.stats_in =
+ (void *)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS));
+ return 1;
}
static void output_stats(const VP8_COMP *cpi,
struct vpx_codec_pkt_list *pktlist,
- FIRSTPASS_STATS *stats)
-{
- struct vpx_codec_cx_pkt pkt;
- pkt.kind = VPX_CODEC_STATS_PKT;
- pkt.data.twopass_stats.buf = stats;
- pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS);
- vpx_codec_pkt_list_add(pktlist, &pkt);
+ FIRSTPASS_STATS *stats) {
+ struct vpx_codec_cx_pkt pkt;
+ pkt.kind = VPX_CODEC_STATS_PKT;
+ pkt.data.twopass_stats.buf = stats;
+ pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS);
+ vpx_codec_pkt_list_add(pktlist, &pkt);
// TEMP debug code
#if OUTPUT_FPF
- {
- FILE *fpfile;
- fpfile = fopen("firstpass.stt", "a");
-
- fprintf(fpfile, "%12.0f %12.0f %12.0f %12.0f %12.0f %12.4f %12.4f"
- "%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f"
- "%12.0f %12.0f %12.4f %12.0f %12.0f %12.4f\n",
- stats->frame,
- stats->intra_error,
- stats->coded_error,
- stats->sr_coded_error,
- stats->ssim_weighted_pred_err,
- stats->pcnt_inter,
- stats->pcnt_motion,
- stats->pcnt_second_ref,
- stats->pcnt_neutral,
- stats->MVr,
- stats->mvr_abs,
- stats->MVc,
- stats->mvc_abs,
- stats->MVrv,
- stats->MVcv,
- stats->mv_in_out_count,
- stats->new_mv_count,
- stats->count,
- stats->duration);
- fclose(fpfile);
- }
+ {
+ FILE *fpfile;
+ fpfile = fopen("firstpass.stt", "a");
+
+ fprintf(fpfile, "%12.0f %12.0f %12.0f %12.0f %12.0f %12.4f %12.4f"
+ "%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f"
+ "%12.0f %12.0f %12.4f %12.0f %12.0f %12.4f\n",
+ stats->frame,
+ stats->intra_error,
+ stats->coded_error,
+ stats->sr_coded_error,
+ stats->ssim_weighted_pred_err,
+ stats->pcnt_inter,
+ stats->pcnt_motion,
+ stats->pcnt_second_ref,
+ stats->pcnt_neutral,
+ stats->MVr,
+ stats->mvr_abs,
+ stats->MVc,
+ stats->mvc_abs,
+ stats->MVrv,
+ stats->MVcv,
+ stats->mv_in_out_count,
+ stats->new_mv_count,
+ stats->count,
+ stats->duration);
+ fclose(fpfile);
+ }
#endif
}
-static void zero_stats(FIRSTPASS_STATS *section)
-{
- section->frame = 0.0;
- section->intra_error = 0.0;
- section->coded_error = 0.0;
- section->sr_coded_error = 0.0;
- section->ssim_weighted_pred_err = 0.0;
- section->pcnt_inter = 0.0;
- section->pcnt_motion = 0.0;
- section->pcnt_second_ref = 0.0;
- section->pcnt_neutral = 0.0;
- section->MVr = 0.0;
- section->mvr_abs = 0.0;
- section->MVc = 0.0;
- section->mvc_abs = 0.0;
- section->MVrv = 0.0;
- section->MVcv = 0.0;
- section->mv_in_out_count = 0.0;
- section->new_mv_count = 0.0;
- section->count = 0.0;
- section->duration = 1.0;
+static void zero_stats(FIRSTPASS_STATS *section) {
+ section->frame = 0.0;
+ section->intra_error = 0.0;
+ section->coded_error = 0.0;
+ section->sr_coded_error = 0.0;
+ section->ssim_weighted_pred_err = 0.0;
+ section->pcnt_inter = 0.0;
+ section->pcnt_motion = 0.0;
+ section->pcnt_second_ref = 0.0;
+ section->pcnt_neutral = 0.0;
+ section->MVr = 0.0;
+ section->mvr_abs = 0.0;
+ section->MVc = 0.0;
+ section->mvc_abs = 0.0;
+ section->MVrv = 0.0;
+ section->MVcv = 0.0;
+ section->mv_in_out_count = 0.0;
+ section->new_mv_count = 0.0;
+ section->count = 0.0;
+ section->duration = 1.0;
}
-static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame)
-{
- section->frame += frame->frame;
- section->intra_error += frame->intra_error;
- section->coded_error += frame->coded_error;
- section->sr_coded_error += frame->sr_coded_error;
- section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err;
- section->pcnt_inter += frame->pcnt_inter;
- section->pcnt_motion += frame->pcnt_motion;
- section->pcnt_second_ref += frame->pcnt_second_ref;
- section->pcnt_neutral += frame->pcnt_neutral;
- section->MVr += frame->MVr;
- section->mvr_abs += frame->mvr_abs;
- section->MVc += frame->MVc;
- section->mvc_abs += frame->mvc_abs;
- section->MVrv += frame->MVrv;
- section->MVcv += frame->MVcv;
- section->mv_in_out_count += frame->mv_in_out_count;
- section->new_mv_count += frame->new_mv_count;
- section->count += frame->count;
- section->duration += frame->duration;
+static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) {
+ section->frame += frame->frame;
+ section->intra_error += frame->intra_error;
+ section->coded_error += frame->coded_error;
+ section->sr_coded_error += frame->sr_coded_error;
+ section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err;
+ section->pcnt_inter += frame->pcnt_inter;
+ section->pcnt_motion += frame->pcnt_motion;
+ section->pcnt_second_ref += frame->pcnt_second_ref;
+ section->pcnt_neutral += frame->pcnt_neutral;
+ section->MVr += frame->MVr;
+ section->mvr_abs += frame->mvr_abs;
+ section->MVc += frame->MVc;
+ section->mvc_abs += frame->mvc_abs;
+ section->MVrv += frame->MVrv;
+ section->MVcv += frame->MVcv;
+ section->mv_in_out_count += frame->mv_in_out_count;
+ section->new_mv_count += frame->new_mv_count;
+ section->count += frame->count;
+ section->duration += frame->duration;
}
-static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame)
-{
- section->frame -= frame->frame;
- section->intra_error -= frame->intra_error;
- section->coded_error -= frame->coded_error;
- section->sr_coded_error -= frame->sr_coded_error;
- section->ssim_weighted_pred_err -= frame->ssim_weighted_pred_err;
- section->pcnt_inter -= frame->pcnt_inter;
- section->pcnt_motion -= frame->pcnt_motion;
- section->pcnt_second_ref -= frame->pcnt_second_ref;
- section->pcnt_neutral -= frame->pcnt_neutral;
- section->MVr -= frame->MVr;
- section->mvr_abs -= frame->mvr_abs;
- section->MVc -= frame->MVc;
- section->mvc_abs -= frame->mvc_abs;
- section->MVrv -= frame->MVrv;
- section->MVcv -= frame->MVcv;
- section->mv_in_out_count -= frame->mv_in_out_count;
- section->new_mv_count -= frame->new_mv_count;
- section->count -= frame->count;
- section->duration -= frame->duration;
+static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) {
+ section->frame -= frame->frame;
+ section->intra_error -= frame->intra_error;
+ section->coded_error -= frame->coded_error;
+ section->sr_coded_error -= frame->sr_coded_error;
+ section->ssim_weighted_pred_err -= frame->ssim_weighted_pred_err;
+ section->pcnt_inter -= frame->pcnt_inter;
+ section->pcnt_motion -= frame->pcnt_motion;
+ section->pcnt_second_ref -= frame->pcnt_second_ref;
+ section->pcnt_neutral -= frame->pcnt_neutral;
+ section->MVr -= frame->MVr;
+ section->mvr_abs -= frame->mvr_abs;
+ section->MVc -= frame->MVc;
+ section->mvc_abs -= frame->mvc_abs;
+ section->MVrv -= frame->MVrv;
+ section->MVcv -= frame->MVcv;
+ section->mv_in_out_count -= frame->mv_in_out_count;
+ section->new_mv_count -= frame->new_mv_count;
+ section->count -= frame->count;
+ section->duration -= frame->duration;
}
-static void avg_stats(FIRSTPASS_STATS *section)
-{
- if (section->count < 1.0)
- return;
-
- section->intra_error /= section->count;
- section->coded_error /= section->count;
- section->sr_coded_error /= section->count;
- section->ssim_weighted_pred_err /= section->count;
- section->pcnt_inter /= section->count;
- section->pcnt_second_ref /= section->count;
- section->pcnt_neutral /= section->count;
- section->pcnt_motion /= section->count;
- section->MVr /= section->count;
- section->mvr_abs /= section->count;
- section->MVc /= section->count;
- section->mvc_abs /= section->count;
- section->MVrv /= section->count;
- section->MVcv /= section->count;
- section->mv_in_out_count /= section->count;
- section->duration /= section->count;
+static void avg_stats(FIRSTPASS_STATS *section) {
+ if (section->count < 1.0)
+ return;
+
+ section->intra_error /= section->count;
+ section->coded_error /= section->count;
+ section->sr_coded_error /= section->count;
+ section->ssim_weighted_pred_err /= section->count;
+ section->pcnt_inter /= section->count;
+ section->pcnt_second_ref /= section->count;
+ section->pcnt_neutral /= section->count;
+ section->pcnt_motion /= section->count;
+ section->MVr /= section->count;
+ section->mvr_abs /= section->count;
+ section->MVc /= section->count;
+ section->mvc_abs /= section->count;
+ section->MVrv /= section->count;
+ section->MVcv /= section->count;
+ section->mv_in_out_count /= section->count;
+ section->duration /= section->count;
}
// Calculate a modified Error used in distributing bits between easier and harder frames
-static double calculate_modified_err(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
-{
- double av_err = ( cpi->twopass.total_stats->ssim_weighted_pred_err /
- cpi->twopass.total_stats->count );
- double this_err = this_frame->ssim_weighted_pred_err;
- double modified_err;
-
- if (this_err > av_err)
- modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW1);
- else
- modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW2);
-
- return modified_err;
+static double calculate_modified_err(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) {
+ double av_err = (cpi->twopass.total_stats->ssim_weighted_pred_err /
+ cpi->twopass.total_stats->count);
+ double this_err = this_frame->ssim_weighted_pred_err;
+ double modified_err;
+
+ if (this_err > av_err)
+ modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW1);
+ else
+ modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW2);
+
+ return modified_err;
}
static const double weight_table[256] = {
-0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
-0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
-0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
-0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
-0.020000, 0.031250, 0.062500, 0.093750, 0.125000, 0.156250, 0.187500, 0.218750,
-0.250000, 0.281250, 0.312500, 0.343750, 0.375000, 0.406250, 0.437500, 0.468750,
-0.500000, 0.531250, 0.562500, 0.593750, 0.625000, 0.656250, 0.687500, 0.718750,
-0.750000, 0.781250, 0.812500, 0.843750, 0.875000, 0.906250, 0.937500, 0.968750,
-1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
-1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
-1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
-1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
-1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
-1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
-1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
-1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
-1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
-1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
-1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
-1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
-1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
-1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
-1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
-1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
-1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
-1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
-1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
-1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
-1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
-1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
-1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
-1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000
+ 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
+ 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
+ 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
+ 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
+ 0.020000, 0.031250, 0.062500, 0.093750, 0.125000, 0.156250, 0.187500, 0.218750,
+ 0.250000, 0.281250, 0.312500, 0.343750, 0.375000, 0.406250, 0.437500, 0.468750,
+ 0.500000, 0.531250, 0.562500, 0.593750, 0.625000, 0.656250, 0.687500, 0.718750,
+ 0.750000, 0.781250, 0.812500, 0.843750, 0.875000, 0.906250, 0.937500, 0.968750,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000
};
-static double simple_weight(YV12_BUFFER_CONFIG *source)
-{
- int i, j;
-
- unsigned char *src = source->y_buffer;
- double sum_weights = 0.0;
-
- // Loop throught the Y plane raw examining levels and creating a weight for the image
- i = source->y_height;
- do
- {
- j = source->y_width;
- do
- {
- sum_weights += weight_table[ *src];
- src++;
- }while(--j);
- src -= source->y_width;
- src += source->y_stride;
- }while(--i);
-
- sum_weights /= (source->y_height * source->y_width);
-
- return sum_weights;
+static double simple_weight(YV12_BUFFER_CONFIG *source) {
+ int i, j;
+
+ unsigned char *src = source->y_buffer;
+ double sum_weights = 0.0;
+
+ // Loop throught the Y plane raw examining levels and creating a weight for the image
+ i = source->y_height;
+ do {
+ j = source->y_width;
+ do {
+ sum_weights += weight_table[ *src];
+ src++;
+ } while (--j);
+ src -= source->y_width;
+ src += source->y_stride;
+ } while (--i);
+
+ sum_weights /= (source->y_height * source->y_width);
+
+ return sum_weights;
}
// This function returns the current per frame maximum bitrate target
-static int frame_max_bits(VP8_COMP *cpi)
-{
- // Max allocation for a single frame based on the max section guidelines passed in and how many bits are left
- int max_bits;
+static int frame_max_bits(VP8_COMP *cpi) {
+ // Max allocation for a single frame based on the max section guidelines passed in and how many bits are left
+ int max_bits;
- // For VBR base this on the bits and frames left plus the two_pass_vbrmax_section rate passed in by the user
- max_bits = (int)(((double)cpi->twopass.bits_left / (cpi->twopass.total_stats->count - (double)cpi->common.current_video_frame)) * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0));
+ // For VBR base this on the bits and frames left plus the two_pass_vbrmax_section rate passed in by the user
+ max_bits = (int)(((double)cpi->twopass.bits_left / (cpi->twopass.total_stats->count - (double)cpi->common.current_video_frame)) * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0));
- // Trap case where we are out of bits
- if (max_bits < 0)
- max_bits = 0;
+ // Trap case where we are out of bits
+ if (max_bits < 0)
+ max_bits = 0;
- return max_bits;
+ return max_bits;
}
-void vp8_init_first_pass(VP8_COMP *cpi)
-{
- zero_stats(cpi->twopass.total_stats);
+void vp8_init_first_pass(VP8_COMP *cpi) {
+ zero_stats(cpi->twopass.total_stats);
}
-void vp8_end_first_pass(VP8_COMP *cpi)
-{
- output_stats(cpi, cpi->output_pkt_list, cpi->twopass.total_stats);
+void vp8_end_first_pass(VP8_COMP *cpi) {
+ output_stats(cpi, cpi->output_pkt_list, cpi->twopass.total_stats);
}
-static void zz_motion_search( VP8_COMP *cpi, MACROBLOCK * x, YV12_BUFFER_CONFIG * recon_buffer, int * best_motion_err, int recon_yoffset )
-{
- MACROBLOCKD * const xd = & x->e_mbd;
- BLOCK *b = &x->block[0];
- BLOCKD *d = &x->e_mbd.block[0];
+static void zz_motion_search(VP8_COMP *cpi, MACROBLOCK *x, YV12_BUFFER_CONFIG *recon_buffer, int *best_motion_err, int recon_yoffset) {
+ MACROBLOCKD *const xd = & x->e_mbd;
+ BLOCK *b = &x->block[0];
+ BLOCKD *d = &x->e_mbd.block[0];
- unsigned char *src_ptr = (*(b->base_src) + b->src);
- int src_stride = b->src_stride;
- unsigned char *ref_ptr;
- int ref_stride=d->pre_stride;
+ unsigned char *src_ptr = (*(b->base_src) + b->src);
+ int src_stride = b->src_stride;
+ unsigned char *ref_ptr;
+ int ref_stride = d->pre_stride;
- // Set up pointers for this macro block recon buffer
- xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset;
+ // Set up pointers for this macro block recon buffer
+ xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset;
- ref_ptr = (unsigned char *)(*(d->base_pre) + d->pre );
+ ref_ptr = (unsigned char *)(*(d->base_pre) + d->pre);
- VARIANCE_INVOKE(IF_RTCD(&cpi->rtcd.variance), mse16x16) ( src_ptr, src_stride, ref_ptr, ref_stride, (unsigned int *)(best_motion_err));
+ VARIANCE_INVOKE(IF_RTCD(&cpi->rtcd.variance), mse16x16)(src_ptr, src_stride, ref_ptr, ref_stride, (unsigned int *)(best_motion_err));
}
static void first_pass_motion_search(VP8_COMP *cpi, MACROBLOCK *x,
int_mv *ref_mv, MV *best_mv,
YV12_BUFFER_CONFIG *recon_buffer,
- int *best_motion_err, int recon_yoffset )
-{
- MACROBLOCKD *const xd = & x->e_mbd;
- BLOCK *b = &x->block[0];
- BLOCKD *d = &x->e_mbd.block[0];
- int num00;
-
- int_mv tmp_mv;
- int_mv ref_mv_full;
-
- int tmp_err;
- int step_param = 3;
- int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
- int n;
- vp8_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16];
- int new_mv_mode_penalty = 256;
-
- // override the default variance function to use MSE
- v_fn_ptr.vf = VARIANCE_INVOKE(IF_RTCD(&cpi->rtcd.variance), mse16x16);
-
- // Set up pointers for this macro block recon buffer
- xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset;
-
- // Initial step/diamond search centred on best mv
- tmp_mv.as_int = 0;
- ref_mv_full.as_mv.col = ref_mv->as_mv.col>>3;
- ref_mv_full.as_mv.row = ref_mv->as_mv.row>>3;
- tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param,
- x->sadperbit16, &num00, &v_fn_ptr,
- XMVCOST, ref_mv);
- if ( tmp_err < INT_MAX-new_mv_mode_penalty )
+ int *best_motion_err, int recon_yoffset) {
+ MACROBLOCKD *const xd = & x->e_mbd;
+ BLOCK *b = &x->block[0];
+ BLOCKD *d = &x->e_mbd.block[0];
+ int num00;
+
+ int_mv tmp_mv;
+ int_mv ref_mv_full;
+
+ int tmp_err;
+ int step_param = 3;
+ int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
+ int n;
+ vp8_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16];
+ int new_mv_mode_penalty = 256;
+
+ // override the default variance function to use MSE
+ v_fn_ptr.vf = VARIANCE_INVOKE(IF_RTCD(&cpi->rtcd.variance), mse16x16);
+
+ // Set up pointers for this macro block recon buffer
+ xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset;
+
+ // Initial step/diamond search centred on best mv
+ tmp_mv.as_int = 0;
+ ref_mv_full.as_mv.col = ref_mv->as_mv.col >> 3;
+ ref_mv_full.as_mv.row = ref_mv->as_mv.row >> 3;
+ tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param,
+ x->sadperbit16, &num00, &v_fn_ptr,
+ XMVCOST, ref_mv);
+ if (tmp_err < INT_MAX - new_mv_mode_penalty)
+ tmp_err += new_mv_mode_penalty;
+
+ if (tmp_err < *best_motion_err) {
+ *best_motion_err = tmp_err;
+ best_mv->row = tmp_mv.as_mv.row;
+ best_mv->col = tmp_mv.as_mv.col;
+ }
+
+ // Further step/diamond searches as necessary
+ n = num00;
+ num00 = 0;
+
+ while (n < further_steps) {
+ n++;
+
+ if (num00)
+ num00--;
+ else {
+ tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv,
+ step_param + n, x->sadperbit16,
+ &num00, &v_fn_ptr,
+ XMVCOST, ref_mv);
+ if (tmp_err < INT_MAX - new_mv_mode_penalty)
tmp_err += new_mv_mode_penalty;
- if (tmp_err < *best_motion_err)
- {
+ if (tmp_err < *best_motion_err) {
*best_motion_err = tmp_err;
best_mv->row = tmp_mv.as_mv.row;
best_mv->col = tmp_mv.as_mv.col;
+ }
}
-
- // Further step/diamond searches as necessary
- n = num00;
- num00 = 0;
-
- while (n < further_steps)
- {
- n++;
-
- if (num00)
- num00--;
- else
- {
- tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv,
- step_param + n, x->sadperbit16,
- &num00, &v_fn_ptr,
- XMVCOST, ref_mv);
- if ( tmp_err < INT_MAX-new_mv_mode_penalty )
- tmp_err += new_mv_mode_penalty;
-
- if (tmp_err < *best_motion_err)
- {
- *best_motion_err = tmp_err;
- best_mv->row = tmp_mv.as_mv.row;
- best_mv->col = tmp_mv.as_mv.col;
- }
- }
- }
+ }
}
-void vp8_first_pass(VP8_COMP *cpi)
-{
- int mb_row, mb_col;
- MACROBLOCK *const x = & cpi->mb;
- VP8_COMMON *const cm = & cpi->common;
- MACROBLOCKD *const xd = & x->e_mbd;
-
- int recon_yoffset, recon_uvoffset;
- YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx];
- YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx];
- YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx];
- int recon_y_stride = lst_yv12->y_stride;
- int recon_uv_stride = lst_yv12->uv_stride;
- int64_t intra_error = 0;
- int64_t coded_error = 0;
- int64_t sr_coded_error = 0;
-
- int sum_mvr = 0, sum_mvc = 0;
- int sum_mvr_abs = 0, sum_mvc_abs = 0;
- int sum_mvrs = 0, sum_mvcs = 0;
- int mvcount = 0;
- int intercount = 0;
- int second_ref_count = 0;
- int intrapenalty = 256;
- int neutral_count = 0;
- int new_mv_count = 0;
- int sum_in_vectors = 0;
- uint32_t lastmv_as_int = 0;
-
- int_mv zero_ref_mv;
-
- zero_ref_mv.as_int = 0;
-
- vp8_clear_system_state(); //__asm emms;
-
- x->src = * cpi->Source;
- xd->pre = *lst_yv12;
- xd->dst = *new_yv12;
-
- x->partition_info = x->pi;
-
- xd->mode_info_context = cm->mi;
-
- vp8_build_block_offsets(x);
-
- vp8_setup_block_dptrs(&x->e_mbd);
-
- vp8_setup_block_ptrs(x);
-
- // set up frame new frame for intra coded blocks
- vp8_setup_intra_recon(new_yv12);
- vp8cx_frame_init_quantizer(cpi);
-
- // Initialise the MV cost table to the defaults
- //if( cm->current_video_frame == 0)
- //if ( 0 )
- {
- int flag[2] = {1, 1};
- vp8_initialize_rd_consts(cpi, cm->base_qindex + cm->y1dc_delta_q);
- vpx_memcpy(cm->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context));
- vp8_build_component_cost_table(cpi->mb.mvcost, (const MV_CONTEXT *) cm->fc.mvc, flag);
+void vp8_first_pass(VP8_COMP *cpi) {
+ int mb_row, mb_col;
+ MACROBLOCK *const x = & cpi->mb;
+ VP8_COMMON *const cm = & cpi->common;
+ MACROBLOCKD *const xd = & x->e_mbd;
+
+ int recon_yoffset, recon_uvoffset;
+ YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx];
+ YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx];
+ YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx];
+ int recon_y_stride = lst_yv12->y_stride;
+ int recon_uv_stride = lst_yv12->uv_stride;
+ int64_t intra_error = 0;
+ int64_t coded_error = 0;
+ int64_t sr_coded_error = 0;
+
+ int sum_mvr = 0, sum_mvc = 0;
+ int sum_mvr_abs = 0, sum_mvc_abs = 0;
+ int sum_mvrs = 0, sum_mvcs = 0;
+ int mvcount = 0;
+ int intercount = 0;
+ int second_ref_count = 0;
+ int intrapenalty = 256;
+ int neutral_count = 0;
+ int new_mv_count = 0;
+ int sum_in_vectors = 0;
+ uint32_t lastmv_as_int = 0;
+
+ int_mv zero_ref_mv;
+
+ zero_ref_mv.as_int = 0;
+
+ vp8_clear_system_state(); // __asm emms;
+
+ x->src = * cpi->Source;
+ xd->pre = *lst_yv12;
+ xd->dst = *new_yv12;
+
+ x->partition_info = x->pi;
+
+ xd->mode_info_context = cm->mi;
+
+ vp8_build_block_offsets(x);
+
+ vp8_setup_block_dptrs(&x->e_mbd);
+
+ vp8_setup_block_ptrs(x);
+
+ // set up frame new frame for intra coded blocks
+ vp8_setup_intra_recon(new_yv12);
+ vp8cx_frame_init_quantizer(cpi);
+
+ // Initialise the MV cost table to the defaults
+ // if( cm->current_video_frame == 0)
+ // if ( 0 )
+ {
+ int flag[2] = {1, 1};
+ vp8_initialize_rd_consts(cpi, cm->base_qindex + cm->y1dc_delta_q);
+ vpx_memcpy(cm->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context));
+ vp8_build_component_cost_table(cpi->mb.mvcost, (const MV_CONTEXT *) cm->fc.mvc, flag);
#if CONFIG_HIGH_PRECISION_MV
- vpx_memcpy(cm->fc.mvc_hp, vp8_default_mv_context_hp, sizeof(vp8_default_mv_context_hp));
- vp8_build_component_cost_table_hp(cpi->mb.mvcost_hp, (const MV_CONTEXT_HP *) cm->fc.mvc_hp, flag);
+ vpx_memcpy(cm->fc.mvc_hp, vp8_default_mv_context_hp, sizeof(vp8_default_mv_context_hp));
+ vp8_build_component_cost_table_hp(cpi->mb.mvcost_hp, (const MV_CONTEXT_HP *) cm->fc.mvc_hp, flag);
#endif
- }
+ }
+
+ // for each macroblock row in image
+ for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
+ int_mv best_ref_mv;
+
+ best_ref_mv.as_int = 0;
+
+ // reset above block coeffs
+ xd->up_available = (mb_row != 0);
+ recon_yoffset = (mb_row * recon_y_stride * 16);
+ recon_uvoffset = (mb_row * recon_uv_stride * 8);
+
+ // Set up limit values for motion vectors to prevent them extending outside the UMV borders
+ x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16));
+ x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16);
+
+
+ // for each macroblock col in image
+ for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
+ int this_error;
+ int gf_motion_error = INT_MAX;
+ int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
+
+ xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset;
+ xd->dst.u_buffer = new_yv12->u_buffer + recon_uvoffset;
+ xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset;
+ xd->left_available = (mb_col != 0);
+
+ // Copy current mb to a buffer
+ RECON_INVOKE(&xd->rtcd->recon, copy16x16)(x->src.y_buffer, x->src.y_stride, x->thismb, 16);
+
+ // do intra 16x16 prediction
+ this_error = vp8_encode_intra(cpi, x, use_dc_pred);
+
+ // "intrapenalty" below deals with situations where the intra and inter error scores are very low (eg a plain black frame)
+ // We do not have special cases in first pass for 0,0 and nearest etc so all inter modes carry an overhead cost estimate fot the mv.
+ // When the error score is very low this causes us to pick all or lots of INTRA modes and throw lots of key frames.
+ // This penalty adds a cost matching that of a 0,0 mv to the intra case.
+ this_error += intrapenalty;
+
+ // Cumulative intra error total
+ intra_error += (int64_t)this_error;
+
+ // Set up limit values for motion vectors to prevent them extending outside the UMV borders
+ x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16));
+ x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16);
+
+ // Other than for the first frame do a motion search
+ if (cm->current_video_frame > 0) {
+ int tmp_err;
+ int motion_error = INT_MAX;
+ int_mv mv, tmp_mv;
+
+ // Simple 0,0 motion with no mv overhead
+ zz_motion_search(cpi, x, lst_yv12, &motion_error, recon_yoffset);
+ mv.as_int = tmp_mv.as_int = 0;
+
+ // Test last reference frame using the previous best mv as the
+ // starting point (best reference) for the search
+ first_pass_motion_search(cpi, x, &best_ref_mv,
+ &mv.as_mv, lst_yv12,
+ &motion_error, recon_yoffset);
+
+ // If the current best reference mv is not centred on 0,0 then do a 0,0 based search as well
+ if (best_ref_mv.as_int) {
+ tmp_err = INT_MAX;
+ first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv.as_mv,
+ lst_yv12, &tmp_err, recon_yoffset);
+
+ if (tmp_err < motion_error) {
+ motion_error = tmp_err;
+ mv.as_int = tmp_mv.as_int;
+ }
+ }
- // for each macroblock row in image
- for (mb_row = 0; mb_row < cm->mb_rows; mb_row++)
- {
- int_mv best_ref_mv;
+ // Experimental search in an older reference frame
+ if (cm->current_video_frame > 1) {
+ // Simple 0,0 motion with no mv overhead
+ zz_motion_search(cpi, x, gld_yv12,
+ &gf_motion_error, recon_yoffset);
+
+ first_pass_motion_search(cpi, x, &zero_ref_mv,
+ &tmp_mv.as_mv, gld_yv12,
+ &gf_motion_error, recon_yoffset);
+
+ if ((gf_motion_error < motion_error) &&
+ (gf_motion_error < this_error)) {
+ second_ref_count++;
+ }
+
+ // Reset to last frame as reference buffer
+ xd->pre.y_buffer = lst_yv12->y_buffer + recon_yoffset;
+ xd->pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset;
+ xd->pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset;
+
+ // In accumulating a score for the older reference frame
+ // take the best of the motion predicted score and
+ // the intra coded error (just as will be done for)
+ // accumulation of "coded_error" for the last frame.
+ if (gf_motion_error < this_error)
+ sr_coded_error += gf_motion_error;
+ else
+ sr_coded_error += this_error;
+ } else
+ sr_coded_error += motion_error;
+ /* Intra assumed best */
best_ref_mv.as_int = 0;
- // reset above block coeffs
- xd->up_available = (mb_row != 0);
- recon_yoffset = (mb_row * recon_y_stride * 16);
- recon_uvoffset = (mb_row * recon_uv_stride * 8);
-
- // Set up limit values for motion vectors to prevent them extending outside the UMV borders
- x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16));
- x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16);
-
-
- // for each macroblock col in image
- for (mb_col = 0; mb_col < cm->mb_cols; mb_col++)
- {
- int this_error;
- int gf_motion_error = INT_MAX;
- int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
-
- xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset;
- xd->dst.u_buffer = new_yv12->u_buffer + recon_uvoffset;
- xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset;
- xd->left_available = (mb_col != 0);
-
- //Copy current mb to a buffer
- RECON_INVOKE(&xd->rtcd->recon, copy16x16)(x->src.y_buffer, x->src.y_stride, x->thismb, 16);
-
- // do intra 16x16 prediction
- this_error = vp8_encode_intra(cpi, x, use_dc_pred);
-
- // "intrapenalty" below deals with situations where the intra and inter error scores are very low (eg a plain black frame)
- // We do not have special cases in first pass for 0,0 and nearest etc so all inter modes carry an overhead cost estimate fot the mv.
- // When the error score is very low this causes us to pick all or lots of INTRA modes and throw lots of key frames.
- // This penalty adds a cost matching that of a 0,0 mv to the intra case.
- this_error += intrapenalty;
-
- // Cumulative intra error total
- intra_error += (int64_t)this_error;
-
- // Set up limit values for motion vectors to prevent them extending outside the UMV borders
- x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16));
- x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16);
-
- // Other than for the first frame do a motion search
- if (cm->current_video_frame > 0)
- {
- int tmp_err;
- int motion_error = INT_MAX;
- int_mv mv, tmp_mv;
-
- // Simple 0,0 motion with no mv overhead
- zz_motion_search( cpi, x, lst_yv12, &motion_error, recon_yoffset );
- mv.as_int = tmp_mv.as_int = 0;
-
- // Test last reference frame using the previous best mv as the
- // starting point (best reference) for the search
- first_pass_motion_search(cpi, x, &best_ref_mv,
- &mv.as_mv, lst_yv12,
- &motion_error, recon_yoffset);
-
- // If the current best reference mv is not centred on 0,0 then do a 0,0 based search as well
- if (best_ref_mv.as_int)
- {
- tmp_err = INT_MAX;
- first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv.as_mv,
- lst_yv12, &tmp_err, recon_yoffset);
-
- if ( tmp_err < motion_error )
- {
- motion_error = tmp_err;
- mv.as_int = tmp_mv.as_int;
- }
- }
-
- // Experimental search in an older reference frame
- if (cm->current_video_frame > 1)
- {
- // Simple 0,0 motion with no mv overhead
- zz_motion_search( cpi, x, gld_yv12,
- &gf_motion_error, recon_yoffset );
-
- first_pass_motion_search(cpi, x, &zero_ref_mv,
- &tmp_mv.as_mv, gld_yv12,
- &gf_motion_error, recon_yoffset);
-
- if ( (gf_motion_error < motion_error) &&
- (gf_motion_error < this_error))
- {
- second_ref_count++;
- }
-
- // Reset to last frame as reference buffer
- xd->pre.y_buffer = lst_yv12->y_buffer + recon_yoffset;
- xd->pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset;
- xd->pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset;
-
- // In accumulating a score for the older reference frame
- // take the best of the motion predicted score and
- // the intra coded error (just as will be done for)
- // accumulation of "coded_error" for the last frame.
- if ( gf_motion_error < this_error )
- sr_coded_error += gf_motion_error;
- else
- sr_coded_error += this_error;
- }
- else
- sr_coded_error += motion_error;
-
- /* Intra assumed best */
- best_ref_mv.as_int = 0;
-
- if (motion_error <= this_error)
- {
- // Keep a count of cases where the inter and intra were
- // very close and very low. This helps with scene cut
- // detection for example in cropped clips with black bars
- // at the sides or top and bottom.
- if( (((this_error-intrapenalty) * 9) <=
- (motion_error*10)) &&
- (this_error < (2*intrapenalty)) )
- {
- neutral_count++;
- }
-
- mv.as_mv.row <<= 3;
- mv.as_mv.col <<= 3;
- this_error = motion_error;
- vp8_set_mbmode_and_mvs(x, NEWMV, &mv);
- vp8_encode_inter16x16y(IF_RTCD(&cpi->rtcd), x);
- sum_mvr += mv.as_mv.row;
- sum_mvr_abs += abs(mv.as_mv.row);
- sum_mvc += mv.as_mv.col;
- sum_mvc_abs += abs(mv.as_mv.col);
- sum_mvrs += mv.as_mv.row * mv.as_mv.row;
- sum_mvcs += mv.as_mv.col * mv.as_mv.col;
- intercount++;
-
- best_ref_mv.as_int = mv.as_int;
-
- // Was the vector non-zero
- if (mv.as_int)
- {
- mvcount++;
-
- // Was it different from the last non zero vector
- if ( mv.as_int != lastmv_as_int )
- new_mv_count++;
- lastmv_as_int = mv.as_int;
-
- // Does the Row vector point inwards or outwards
- if (mb_row < cm->mb_rows / 2)
- {
- if (mv.as_mv.row > 0)
- sum_in_vectors--;
- else if (mv.as_mv.row < 0)
- sum_in_vectors++;
- }
- else if (mb_row > cm->mb_rows / 2)
- {
- if (mv.as_mv.row > 0)
- sum_in_vectors++;
- else if (mv.as_mv.row < 0)
- sum_in_vectors--;
- }
-
- // Does the Row vector point inwards or outwards
- if (mb_col < cm->mb_cols / 2)
- {
- if (mv.as_mv.col > 0)
- sum_in_vectors--;
- else if (mv.as_mv.col < 0)
- sum_in_vectors++;
- }
- else if (mb_col > cm->mb_cols / 2)
- {
- if (mv.as_mv.col > 0)
- sum_in_vectors++;
- else if (mv.as_mv.col < 0)
- sum_in_vectors--;
- }
- }
- }
+ if (motion_error <= this_error) {
+ // Keep a count of cases where the inter and intra were
+ // very close and very low. This helps with scene cut
+ // detection for example in cropped clips with black bars
+ // at the sides or top and bottom.
+ if ((((this_error - intrapenalty) * 9) <=
+ (motion_error * 10)) &&
+ (this_error < (2 * intrapenalty))) {
+ neutral_count++;
+ }
+
+ mv.as_mv.row <<= 3;
+ mv.as_mv.col <<= 3;
+ this_error = motion_error;
+ vp8_set_mbmode_and_mvs(x, NEWMV, &mv);
+ vp8_encode_inter16x16y(IF_RTCD(&cpi->rtcd), x);
+ sum_mvr += mv.as_mv.row;
+ sum_mvr_abs += abs(mv.as_mv.row);
+ sum_mvc += mv.as_mv.col;
+ sum_mvc_abs += abs(mv.as_mv.col);
+ sum_mvrs += mv.as_mv.row * mv.as_mv.row;
+ sum_mvcs += mv.as_mv.col * mv.as_mv.col;
+ intercount++;
+
+ best_ref_mv.as_int = mv.as_int;
+
+ // Was the vector non-zero
+ if (mv.as_int) {
+ mvcount++;
+
+ // Was it different from the last non zero vector
+ if (mv.as_int != lastmv_as_int)
+ new_mv_count++;
+ lastmv_as_int = mv.as_int;
+
+ // Does the Row vector point inwards or outwards
+ if (mb_row < cm->mb_rows / 2) {
+ if (mv.as_mv.row > 0)
+ sum_in_vectors--;
+ else if (mv.as_mv.row < 0)
+ sum_in_vectors++;
+ } else if (mb_row > cm->mb_rows / 2) {
+ if (mv.as_mv.row > 0)
+ sum_in_vectors++;
+ else if (mv.as_mv.row < 0)
+ sum_in_vectors--;
}
- else
- sr_coded_error += (int64_t)this_error;
-
- coded_error += (int64_t)this_error;
- // adjust to the next column of macroblocks
- x->src.y_buffer += 16;
- x->src.u_buffer += 8;
- x->src.v_buffer += 8;
-
- recon_yoffset += 16;
- recon_uvoffset += 8;
+ // Does the Row vector point inwards or outwards
+ if (mb_col < cm->mb_cols / 2) {
+ if (mv.as_mv.col > 0)
+ sum_in_vectors--;
+ else if (mv.as_mv.col < 0)
+ sum_in_vectors++;
+ } else if (mb_col > cm->mb_cols / 2) {
+ if (mv.as_mv.col > 0)
+ sum_in_vectors++;
+ else if (mv.as_mv.col < 0)
+ sum_in_vectors--;
+ }
+ }
}
+ } else
+ sr_coded_error += (int64_t)this_error;
- // adjust to the next row of mbs
- x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
- x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
- x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
+ coded_error += (int64_t)this_error;
- //extend the recon for intra prediction
- vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8);
- vp8_clear_system_state(); //__asm emms;
- }
+ // adjust to the next column of macroblocks
+ x->src.y_buffer += 16;
+ x->src.u_buffer += 8;
+ x->src.v_buffer += 8;
- vp8_clear_system_state(); //__asm emms;
- {
- double weight = 0.0;
-
- FIRSTPASS_STATS fps;
-
- fps.frame = cm->current_video_frame ;
- fps.intra_error = intra_error >> 8;
- fps.coded_error = coded_error >> 8;
- fps.sr_coded_error = sr_coded_error >> 8;
- weight = simple_weight(cpi->Source);
-
-
- if (weight < 0.1)
- weight = 0.1;
-
- fps.ssim_weighted_pred_err = fps.coded_error * weight;
-
- fps.pcnt_inter = 0.0;
- fps.pcnt_motion = 0.0;
- fps.MVr = 0.0;
- fps.mvr_abs = 0.0;
- fps.MVc = 0.0;
- fps.mvc_abs = 0.0;
- fps.MVrv = 0.0;
- fps.MVcv = 0.0;
- fps.mv_in_out_count = 0.0;
- fps.new_mv_count = 0.0;
- fps.count = 1.0;
-
- fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs;
- fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs;
- fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs;
-
- if (mvcount > 0)
- {
- fps.MVr = (double)sum_mvr / (double)mvcount;
- fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount;
- fps.MVc = (double)sum_mvc / (double)mvcount;
- fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount;
- fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) / (double)mvcount;
- fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) / (double)mvcount;
- fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2);
- fps.new_mv_count = new_mv_count;
-
- fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs;
- }
-
- // TODO: handle the case when duration is set to 0, or something less
- // than the full time between subsequent cpi->source_time_stamp s .
- fps.duration = cpi->source->ts_end
- - cpi->source->ts_start;
-
- // don't want to do output stats with a stack variable!
- memcpy(cpi->twopass.this_frame_stats,
- &fps,
- sizeof(FIRSTPASS_STATS));
- output_stats(cpi, cpi->output_pkt_list, cpi->twopass.this_frame_stats);
- accumulate_stats(cpi->twopass.total_stats, &fps);
+ recon_yoffset += 16;
+ recon_uvoffset += 8;
}
- // Copy the previous Last Frame back into gf and and arf buffers if
- // the prediction is good enough... but also dont allow it to lag too far
- if ((cpi->twopass.sr_update_lag > 3) ||
- ((cm->current_video_frame > 0) &&
- (cpi->twopass.this_frame_stats->pcnt_inter > 0.20) &&
- ((cpi->twopass.this_frame_stats->intra_error /
- cpi->twopass.this_frame_stats->coded_error) > 2.0)))
- {
- vp8_yv12_copy_frame_ptr(lst_yv12, gld_yv12);
- cpi->twopass.sr_update_lag = 1;
+ // adjust to the next row of mbs
+ x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
+ x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
+ x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
+
+ // extend the recon for intra prediction
+ vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8);
+ vp8_clear_system_state(); // __asm emms;
+ }
+
+ vp8_clear_system_state(); // __asm emms;
+ {
+ double weight = 0.0;
+
+ FIRSTPASS_STATS fps;
+
+ fps.frame = cm->current_video_frame;
+ fps.intra_error = intra_error >> 8;
+ fps.coded_error = coded_error >> 8;
+ fps.sr_coded_error = sr_coded_error >> 8;
+ weight = simple_weight(cpi->Source);
+
+
+ if (weight < 0.1)
+ weight = 0.1;
+
+ fps.ssim_weighted_pred_err = fps.coded_error * weight;
+
+ fps.pcnt_inter = 0.0;
+ fps.pcnt_motion = 0.0;
+ fps.MVr = 0.0;
+ fps.mvr_abs = 0.0;
+ fps.MVc = 0.0;
+ fps.mvc_abs = 0.0;
+ fps.MVrv = 0.0;
+ fps.MVcv = 0.0;
+ fps.mv_in_out_count = 0.0;
+ fps.new_mv_count = 0.0;
+ fps.count = 1.0;
+
+ fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs;
+ fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs;
+ fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs;
+
+ if (mvcount > 0) {
+ fps.MVr = (double)sum_mvr / (double)mvcount;
+ fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount;
+ fps.MVc = (double)sum_mvc / (double)mvcount;
+ fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount;
+ fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) / (double)mvcount;
+ fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) / (double)mvcount;
+ fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2);
+ fps.new_mv_count = new_mv_count;
+
+ fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs;
}
- else
- cpi->twopass.sr_update_lag ++;
- // swap frame pointers so last frame refers to the frame we just compressed
- vp8_swap_yv12_buffer(lst_yv12, new_yv12);
- vp8_yv12_extend_frame_borders(lst_yv12);
+ // TODO: handle the case when duration is set to 0, or something less
+ // than the full time between subsequent cpi->source_time_stamp s .
+ fps.duration = cpi->source->ts_end
+ - cpi->source->ts_start;
+
+ // don't want to do output stats with a stack variable!
+ memcpy(cpi->twopass.this_frame_stats,
+ &fps,
+ sizeof(FIRSTPASS_STATS));
+ output_stats(cpi, cpi->output_pkt_list, cpi->twopass.this_frame_stats);
+ accumulate_stats(cpi->twopass.total_stats, &fps);
+ }
+
+ // Copy the previous Last Frame back into gf and and arf buffers if
+ // the prediction is good enough... but also dont allow it to lag too far
+ if ((cpi->twopass.sr_update_lag > 3) ||
+ ((cm->current_video_frame > 0) &&
+ (cpi->twopass.this_frame_stats->pcnt_inter > 0.20) &&
+ ((cpi->twopass.this_frame_stats->intra_error /
+ cpi->twopass.this_frame_stats->coded_error) > 2.0))) {
+ vp8_yv12_copy_frame_ptr(lst_yv12, gld_yv12);
+ cpi->twopass.sr_update_lag = 1;
+ } else
+ cpi->twopass.sr_update_lag++;
- // Special case for the first frame. Copy into the GF buffer as a second reference.
- if (cm->current_video_frame == 0)
- {
- vp8_yv12_copy_frame_ptr(lst_yv12, gld_yv12);
- }
+ // swap frame pointers so last frame refers to the frame we just compressed
+ vp8_swap_yv12_buffer(lst_yv12, new_yv12);
+ vp8_yv12_extend_frame_borders(lst_yv12);
+ // Special case for the first frame. Copy into the GF buffer as a second reference.
+ if (cm->current_video_frame == 0) {
+ vp8_yv12_copy_frame_ptr(lst_yv12, gld_yv12);
+ }
- // use this to see what the first pass reconstruction looks like
- if (0)
- {
- char filename[512];
- FILE *recon_file;
- sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame);
- if (cm->current_video_frame == 0)
- recon_file = fopen(filename, "wb");
- else
- recon_file = fopen(filename, "ab");
+ // use this to see what the first pass reconstruction looks like
+ if (0) {
+ char filename[512];
+ FILE *recon_file;
+ sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame);
- if(fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file));
- fclose(recon_file);
- }
+ if (cm->current_video_frame == 0)
+ recon_file = fopen(filename, "wb");
+ else
+ recon_file = fopen(filename, "ab");
+
+ if (fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file));
+ fclose(recon_file);
+ }
- cm->current_video_frame++;
+ cm->current_video_frame++;
}
@@ -858,1840 +806,1723 @@ void vp8_first_pass(VP8_COMP *cpi)
//
-double bitcost( double prob )
-{
- return -(log( prob ) / log( 2.0 ));
+double bitcost(double prob) {
+ return -(log(prob) / log(2.0));
}
static long long estimate_modemvcost(VP8_COMP *cpi,
- FIRSTPASS_STATS * fpstats)
-{
- int mv_cost;
- int mode_cost;
-
- double av_pct_inter = fpstats->pcnt_inter / fpstats->count;
- double av_pct_motion = fpstats->pcnt_motion / fpstats->count;
- double av_intra = (1.0 - av_pct_inter);
-
- double zz_cost;
- double motion_cost;
- double intra_cost;
-
- zz_cost = bitcost(av_pct_inter - av_pct_motion);
- motion_cost = bitcost(av_pct_motion);
- intra_cost = bitcost(av_intra);
-
- // Estimate of extra bits per mv overhead for mbs
- // << 9 is the normalization to the (bits * 512) used in vp8_bits_per_mb
- mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9;
-
- // Crude estimate of overhead cost from modes
- // << 9 is the normalization to (bits * 512) used in vp8_bits_per_mb
- mode_cost =
- (int)( ( ((av_pct_inter - av_pct_motion) * zz_cost) +
- (av_pct_motion * motion_cost) +
- (av_intra * intra_cost) ) * cpi->common.MBs ) << 9;
-
- //return mv_cost + mode_cost;
- // TODO PGW Fix overhead costs for extended Q range
- return 0;
+ FIRSTPASS_STATS *fpstats) {
+ int mv_cost;
+ int mode_cost;
+
+ double av_pct_inter = fpstats->pcnt_inter / fpstats->count;
+ double av_pct_motion = fpstats->pcnt_motion / fpstats->count;
+ double av_intra = (1.0 - av_pct_inter);
+
+ double zz_cost;
+ double motion_cost;
+ double intra_cost;
+
+ zz_cost = bitcost(av_pct_inter - av_pct_motion);
+ motion_cost = bitcost(av_pct_motion);
+ intra_cost = bitcost(av_intra);
+
+ // Estimate of extra bits per mv overhead for mbs
+ // << 9 is the normalization to the (bits * 512) used in vp8_bits_per_mb
+ mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9;
+
+ // Crude estimate of overhead cost from modes
+ // << 9 is the normalization to (bits * 512) used in vp8_bits_per_mb
+ mode_cost =
+ (int)((((av_pct_inter - av_pct_motion) * zz_cost) +
+ (av_pct_motion * motion_cost) +
+ (av_intra * intra_cost)) * cpi->common.MBs) << 9;
+
+ // return mv_cost + mode_cost;
+ // TODO PGW Fix overhead costs for extended Q range
+ return 0;
}
-static double calc_correction_factor( double err_per_mb,
- double err_divisor,
- double pt_low,
- double pt_high,
- int Q )
-{
- double power_term;
- double error_term = err_per_mb / err_divisor;
- double correction_factor;
+static double calc_correction_factor(double err_per_mb,
+ double err_divisor,
+ double pt_low,
+ double pt_high,
+ int Q) {
+ double power_term;
+ double error_term = err_per_mb / err_divisor;
+ double correction_factor;
- // Adjustment based on actual quantizer to power term.
- power_term = (vp8_convert_qindex_to_q(Q) * 0.01) + pt_low;
- power_term = (power_term > pt_high) ? pt_high : power_term;
+ // Adjustment based on actual quantizer to power term.
+ power_term = (vp8_convert_qindex_to_q(Q) * 0.01) + pt_low;
+ power_term = (power_term > pt_high) ? pt_high : power_term;
- // Adjustments to error term
- // TBD
+ // Adjustments to error term
+ // TBD
- // Calculate correction factor
- correction_factor = pow(error_term, power_term);
+ // Calculate correction factor
+ correction_factor = pow(error_term, power_term);
- // Clip range
- correction_factor =
- (correction_factor < 0.05)
- ? 0.05 : (correction_factor > 2.0) ? 2.0 : correction_factor;
+ // Clip range
+ correction_factor =
+ (correction_factor < 0.05)
+ ? 0.05 : (correction_factor > 2.0) ? 2.0 : correction_factor;
- return correction_factor;
+ return correction_factor;
}
// Given a current maxQ value sets a range for future values.
// PGW TODO..
// This code removes direct dependency on QIndex to determin the range
// (now uses the actual quantizer) but has not been tuned.
-static void adjust_maxq_qrange(VP8_COMP *cpi)
-{
- int i;
- double q;
-
- // Set the max corresponding to cpi->avg_q * 2.0
- q = cpi->avg_q * 2.0;
- cpi->twopass.maxq_max_limit = cpi->worst_quality;
- for ( i = cpi->best_quality; i <= cpi->worst_quality; i++ )
- {
- cpi->twopass.maxq_max_limit = i;
- if ( vp8_convert_qindex_to_q(i) >= q )
- break;
- }
-
- // Set the min corresponding to cpi->avg_q * 0.5
- q = cpi->avg_q * 0.5;
- cpi->twopass.maxq_min_limit = cpi->best_quality;
- for ( i = cpi->worst_quality; i >= cpi->best_quality; i-- )
- {
- cpi->twopass.maxq_min_limit = i;
- if ( vp8_convert_qindex_to_q(i) <= q )
- break;
- }
+static void adjust_maxq_qrange(VP8_COMP *cpi) {
+ int i;
+ double q;
+
+ // Set the max corresponding to cpi->avg_q * 2.0
+ q = cpi->avg_q * 2.0;
+ cpi->twopass.maxq_max_limit = cpi->worst_quality;
+ for (i = cpi->best_quality; i <= cpi->worst_quality; i++) {
+ cpi->twopass.maxq_max_limit = i;
+ if (vp8_convert_qindex_to_q(i) >= q)
+ break;
+ }
+
+ // Set the min corresponding to cpi->avg_q * 0.5
+ q = cpi->avg_q * 0.5;
+ cpi->twopass.maxq_min_limit = cpi->best_quality;
+ for (i = cpi->worst_quality; i >= cpi->best_quality; i--) {
+ cpi->twopass.maxq_min_limit = i;
+ if (vp8_convert_qindex_to_q(i) <= q)
+ break;
+ }
}
static int estimate_max_q(VP8_COMP *cpi,
- FIRSTPASS_STATS * fpstats,
+ FIRSTPASS_STATS *fpstats,
int section_target_bandwitdh,
- int overhead_bits )
-{
- int Q;
- int num_mbs = cpi->common.MBs;
- int target_norm_bits_per_mb;
-
- double section_err = (fpstats->coded_error / fpstats->count);
- double sr_err_diff;
- double sr_correction;
- double err_per_mb = section_err / num_mbs;
- double err_correction_factor;
- double speed_correction = 1.0;
- int overhead_bits_per_mb;
-
- if (section_target_bandwitdh <= 0)
- return cpi->twopass.maxq_max_limit; // Highest value allowed
-
- target_norm_bits_per_mb =
- (section_target_bandwitdh < (1 << 20))
- ? (512 * section_target_bandwitdh) / num_mbs
- : 512 * (section_target_bandwitdh / num_mbs);
-
- // Look at the drop in prediction quality between the last frame
- // and the GF buffer (which contained an older frame).
- sr_err_diff =
- (fpstats->sr_coded_error - fpstats->coded_error) /
- (fpstats->count * cpi->common.MBs);
- sr_correction = (sr_err_diff / 32.0);
- sr_correction = pow( sr_correction, 0.25 );
- if ( sr_correction < 0.75 )
- sr_correction = 0.75;
- else if ( sr_correction > 1.25 )
- sr_correction = 1.25;
-
- // Calculate a corrective factor based on a rolling ratio of bits spent
- // vs target bits
- if ((cpi->rolling_target_bits > 0) &&
- (cpi->active_worst_quality < cpi->worst_quality))
- {
- double rolling_ratio;
-
- rolling_ratio = (double)cpi->rolling_actual_bits /
- (double)cpi->rolling_target_bits;
-
- if (rolling_ratio < 0.95)
- cpi->twopass.est_max_qcorrection_factor -= 0.005;
- else if (rolling_ratio > 1.05)
- cpi->twopass.est_max_qcorrection_factor += 0.005;
-
- cpi->twopass.est_max_qcorrection_factor =
- (cpi->twopass.est_max_qcorrection_factor < 0.1)
- ? 0.1
- : (cpi->twopass.est_max_qcorrection_factor > 10.0)
- ? 10.0 : cpi->twopass.est_max_qcorrection_factor;
- }
-
- // Corrections for higher compression speed settings
- // (reduced compression expected)
- if (cpi->compressor_speed == 1)
- {
- if (cpi->oxcf.cpu_used <= 5)
- speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
- else
- speed_correction = 1.25;
- }
-
- // Estimate of overhead bits per mb
- // Correction to overhead bits for min allowed Q.
+ int overhead_bits) {
+ int Q;
+ int num_mbs = cpi->common.MBs;
+ int target_norm_bits_per_mb;
+
+ double section_err = (fpstats->coded_error / fpstats->count);
+ double sr_err_diff;
+ double sr_correction;
+ double err_per_mb = section_err / num_mbs;
+ double err_correction_factor;
+ double speed_correction = 1.0;
+ int overhead_bits_per_mb;
+
+ if (section_target_bandwitdh <= 0)
+ return cpi->twopass.maxq_max_limit; // Highest value allowed
+
+ target_norm_bits_per_mb =
+ (section_target_bandwitdh < (1 << 20))
+ ? (512 * section_target_bandwitdh) / num_mbs
+ : 512 * (section_target_bandwitdh / num_mbs);
+
+ // Look at the drop in prediction quality between the last frame
+ // and the GF buffer (which contained an older frame).
+ sr_err_diff =
+ (fpstats->sr_coded_error - fpstats->coded_error) /
+ (fpstats->count * cpi->common.MBs);
+ sr_correction = (sr_err_diff / 32.0);
+ sr_correction = pow(sr_correction, 0.25);
+ if (sr_correction < 0.75)
+ sr_correction = 0.75;
+ else if (sr_correction > 1.25)
+ sr_correction = 1.25;
+
+ // Calculate a corrective factor based on a rolling ratio of bits spent
+ // vs target bits
+ if ((cpi->rolling_target_bits > 0) &&
+ (cpi->active_worst_quality < cpi->worst_quality)) {
+ double rolling_ratio;
+
+ rolling_ratio = (double)cpi->rolling_actual_bits /
+ (double)cpi->rolling_target_bits;
+
+ if (rolling_ratio < 0.95)
+ cpi->twopass.est_max_qcorrection_factor -= 0.005;
+ else if (rolling_ratio > 1.05)
+ cpi->twopass.est_max_qcorrection_factor += 0.005;
+
+ cpi->twopass.est_max_qcorrection_factor =
+ (cpi->twopass.est_max_qcorrection_factor < 0.1)
+ ? 0.1
+ : (cpi->twopass.est_max_qcorrection_factor > 10.0)
+ ? 10.0 : cpi->twopass.est_max_qcorrection_factor;
+ }
+
+ // Corrections for higher compression speed settings
+ // (reduced compression expected)
+ if (cpi->compressor_speed == 1) {
+ if (cpi->oxcf.cpu_used <= 5)
+ speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
+ else
+ speed_correction = 1.25;
+ }
+
+ // Estimate of overhead bits per mb
+ // Correction to overhead bits for min allowed Q.
+ // PGW TODO.. This code is broken for the extended Q range
+ // for now overhead set to 0.
+ overhead_bits_per_mb = overhead_bits / num_mbs;
+ overhead_bits_per_mb *= pow(0.98, (double)cpi->twopass.maxq_min_limit);
+
+ // Try and pick a max Q that will be high enough to encode the
+ // content at the given rate.
+ for (Q = cpi->twopass.maxq_min_limit; Q < cpi->twopass.maxq_max_limit; Q++) {
+ int bits_per_mb_at_this_q;
+
+ err_correction_factor =
+ calc_correction_factor(err_per_mb, ERR_DIVISOR, 0.4, 0.90, Q) *
+ sr_correction * speed_correction *
+ cpi->twopass.est_max_qcorrection_factor;
+
+ if (err_correction_factor < 0.05)
+ err_correction_factor = 0.05;
+ else if (err_correction_factor > 5.0)
+ err_correction_factor = 5.0;
+
+ bits_per_mb_at_this_q =
+ vp8_bits_per_mb(INTER_FRAME, Q) + overhead_bits_per_mb;
+
+ bits_per_mb_at_this_q = (int)(.5 + err_correction_factor *
+ (double)bits_per_mb_at_this_q);
+
+ // Mode and motion overhead
+ // As Q rises in real encode loop rd code will force overhead down
+ // We make a crude adjustment for this here as *.98 per Q step.
// PGW TODO.. This code is broken for the extended Q range
// for now overhead set to 0.
- overhead_bits_per_mb = overhead_bits / num_mbs;
- overhead_bits_per_mb *= pow( 0.98, (double)cpi->twopass.maxq_min_limit );
-
- // Try and pick a max Q that will be high enough to encode the
- // content at the given rate.
- for (Q = cpi->twopass.maxq_min_limit; Q < cpi->twopass.maxq_max_limit; Q++)
- {
- int bits_per_mb_at_this_q;
-
- err_correction_factor =
- calc_correction_factor(err_per_mb, ERR_DIVISOR, 0.4, 0.90, Q) *
- sr_correction * speed_correction *
- cpi->twopass.est_max_qcorrection_factor;
-
- if ( err_correction_factor < 0.05 )
- err_correction_factor = 0.05;
- else if ( err_correction_factor > 5.0 )
- err_correction_factor = 5.0;
-
- bits_per_mb_at_this_q =
- vp8_bits_per_mb(INTER_FRAME, Q) + overhead_bits_per_mb;
-
- bits_per_mb_at_this_q = (int)(.5 + err_correction_factor *
- (double)bits_per_mb_at_this_q);
-
- // Mode and motion overhead
- // As Q rises in real encode loop rd code will force overhead down
- // We make a crude adjustment for this here as *.98 per Q step.
- // PGW TODO.. This code is broken for the extended Q range
- // for now overhead set to 0.
- //overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98);
-
- if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
- break;
- }
-
- // Restriction on active max q for constrained quality mode.
- if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
- (Q < cpi->cq_target_quality) )
- {
- Q = cpi->cq_target_quality;
- }
-
- // Adjust maxq_min_limit and maxq_max_limit limits based on
- // averaga q observed in clip for non kf/gf/arf frames
- // Give average a chance to settle though.
- // PGW TODO.. This code is broken for the extended Q range
- if ( (cpi->ni_frames >
- ((unsigned int)cpi->twopass.total_stats->count >> 8)) &&
- (cpi->ni_frames > 150) )
- {
- adjust_maxq_qrange( cpi );
- }
-
- return Q;
+ // overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98);
+
+ if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
+ break;
+ }
+
+ // Restriction on active max q for constrained quality mode.
+ if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
+ (Q < cpi->cq_target_quality)) {
+ Q = cpi->cq_target_quality;
+ }
+
+ // Adjust maxq_min_limit and maxq_max_limit limits based on
+ // averaga q observed in clip for non kf/gf/arf frames
+ // Give average a chance to settle though.
+ // PGW TODO.. This code is broken for the extended Q range
+ if ((cpi->ni_frames >
+ ((unsigned int)cpi->twopass.total_stats->count >> 8)) &&
+ (cpi->ni_frames > 150)) {
+ adjust_maxq_qrange(cpi);
+ }
+
+ return Q;
}
// For cq mode estimate a cq level that matches the observed
// complexity and data rate.
-static int estimate_cq( VP8_COMP *cpi,
- FIRSTPASS_STATS * fpstats,
- int section_target_bandwitdh,
- int overhead_bits )
-{
- int Q;
- int num_mbs = cpi->common.MBs;
- int target_norm_bits_per_mb;
-
- double section_err = (fpstats->coded_error / fpstats->count);
- double err_per_mb = section_err / num_mbs;
- double err_correction_factor;
- double sr_err_diff;
- double sr_correction;
- double speed_correction = 1.0;
- double clip_iiratio;
- double clip_iifactor;
- int overhead_bits_per_mb;
-
-
- target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20))
- ? (512 * section_target_bandwitdh) / num_mbs
- : 512 * (section_target_bandwitdh / num_mbs);
-
- // Estimate of overhead bits per mb
- overhead_bits_per_mb = overhead_bits / num_mbs;
-
- // Corrections for higher compression speed settings
- // (reduced compression expected)
- if (cpi->compressor_speed == 1)
- {
- if (cpi->oxcf.cpu_used <= 5)
- speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
- else
- speed_correction = 1.25;
- }
+static int estimate_cq(VP8_COMP *cpi,
+ FIRSTPASS_STATS *fpstats,
+ int section_target_bandwitdh,
+ int overhead_bits) {
+ int Q;
+ int num_mbs = cpi->common.MBs;
+ int target_norm_bits_per_mb;
+
+ double section_err = (fpstats->coded_error / fpstats->count);
+ double err_per_mb = section_err / num_mbs;
+ double err_correction_factor;
+ double sr_err_diff;
+ double sr_correction;
+ double speed_correction = 1.0;
+ double clip_iiratio;
+ double clip_iifactor;
+ int overhead_bits_per_mb;
+
+
+ target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20))
+ ? (512 * section_target_bandwitdh) / num_mbs
+ : 512 * (section_target_bandwitdh / num_mbs);
+
+ // Estimate of overhead bits per mb
+ overhead_bits_per_mb = overhead_bits / num_mbs;
+
+ // Corrections for higher compression speed settings
+ // (reduced compression expected)
+ if (cpi->compressor_speed == 1) {
+ if (cpi->oxcf.cpu_used <= 5)
+ speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
+ else
+ speed_correction = 1.25;
+ }
+
+ // Look at the drop in prediction quality between the last frame
+ // and the GF buffer (which contained an older frame).
+ sr_err_diff =
+ (fpstats->sr_coded_error - fpstats->coded_error) /
+ (fpstats->count * cpi->common.MBs);
+ sr_correction = (sr_err_diff / 32.0);
+ sr_correction = pow(sr_correction, 0.25);
+ if (sr_correction < 0.75)
+ sr_correction = 0.75;
+ else if (sr_correction > 1.25)
+ sr_correction = 1.25;
+
+ // II ratio correction factor for clip as a whole
+ clip_iiratio = cpi->twopass.total_stats->intra_error /
+ DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats->coded_error);
+ clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025);
+ if (clip_iifactor < 0.80)
+ clip_iifactor = 0.80;
+
+ // Try and pick a Q that can encode the content at the given rate.
+ for (Q = 0; Q < MAXQ; Q++) {
+ int bits_per_mb_at_this_q;
+
+ // Error per MB based correction factor
+ err_correction_factor =
+ calc_correction_factor(err_per_mb, 100.0, 0.4, 0.90, Q) *
+ sr_correction * speed_correction * clip_iifactor;
+
+ if (err_correction_factor < 0.05)
+ err_correction_factor = 0.05;
+ else if (err_correction_factor > 5.0)
+ err_correction_factor = 5.0;
+
+ bits_per_mb_at_this_q =
+ vp8_bits_per_mb(INTER_FRAME, Q) + overhead_bits_per_mb;
+
+ bits_per_mb_at_this_q = (int)(.5 + err_correction_factor *
+ (double)bits_per_mb_at_this_q);
+
+ // Mode and motion overhead
+ // As Q rises in real encode loop rd code will force overhead down
+ // We make a crude adjustment for this here as *.98 per Q step.
+ // PGW TODO.. This code is broken for the extended Q range
+ // for now overhead set to 0.
+ overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98);
- // Look at the drop in prediction quality between the last frame
- // and the GF buffer (which contained an older frame).
- sr_err_diff =
- (fpstats->sr_coded_error - fpstats->coded_error) /
- (fpstats->count * cpi->common.MBs);
- sr_correction = (sr_err_diff / 32.0);
- sr_correction = pow( sr_correction, 0.25 );
- if ( sr_correction < 0.75 )
- sr_correction = 0.75;
- else if ( sr_correction > 1.25 )
- sr_correction = 1.25;
-
- // II ratio correction factor for clip as a whole
- clip_iiratio = cpi->twopass.total_stats->intra_error /
- DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats->coded_error);
- clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025);
- if (clip_iifactor < 0.80)
- clip_iifactor = 0.80;
-
- // Try and pick a Q that can encode the content at the given rate.
- for (Q = 0; Q < MAXQ; Q++)
- {
- int bits_per_mb_at_this_q;
-
- // Error per MB based correction factor
- err_correction_factor =
- calc_correction_factor(err_per_mb, 100.0, 0.4, 0.90, Q) *
- sr_correction * speed_correction * clip_iifactor;
-
- if ( err_correction_factor < 0.05 )
- err_correction_factor = 0.05;
- else if ( err_correction_factor > 5.0 )
- err_correction_factor = 5.0;
-
- bits_per_mb_at_this_q =
- vp8_bits_per_mb(INTER_FRAME, Q) + overhead_bits_per_mb;
-
- bits_per_mb_at_this_q = (int)(.5 + err_correction_factor *
- (double)bits_per_mb_at_this_q);
-
- // Mode and motion overhead
- // As Q rises in real encode loop rd code will force overhead down
- // We make a crude adjustment for this here as *.98 per Q step.
- // PGW TODO.. This code is broken for the extended Q range
- // for now overhead set to 0.
- overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98);
-
- if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
- break;
- }
+ if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
+ break;
+ }
- // Clip value to range "best allowed to (worst allowed - 1)"
- Q = select_cq_level( Q );
- if ( Q >= cpi->worst_quality )
- Q = cpi->worst_quality - 1;
- if ( Q < cpi->best_quality )
- Q = cpi->best_quality;
+ // Clip value to range "best allowed to (worst allowed - 1)"
+ Q = select_cq_level(Q);
+ if (Q >= cpi->worst_quality)
+ Q = cpi->worst_quality - 1;
+ if (Q < cpi->best_quality)
+ Q = cpi->best_quality;
- return Q;
+ return Q;
}
extern void vp8_new_frame_rate(VP8_COMP *cpi, double framerate);
-void vp8_init_second_pass(VP8_COMP *cpi)
-{
- FIRSTPASS_STATS this_frame;
- FIRSTPASS_STATS *start_pos;
+void vp8_init_second_pass(VP8_COMP *cpi) {
+ FIRSTPASS_STATS this_frame;
+ FIRSTPASS_STATS *start_pos;
- double lower_bounds_min_rate = FRAME_OVERHEAD_BITS*cpi->oxcf.frame_rate;
- double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth
- * cpi->oxcf.two_pass_vbrmin_section / 100);
+ double lower_bounds_min_rate = FRAME_OVERHEAD_BITS * cpi->oxcf.frame_rate;
+ double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth
+ * cpi->oxcf.two_pass_vbrmin_section / 100);
- if (two_pass_min_rate < lower_bounds_min_rate)
- two_pass_min_rate = lower_bounds_min_rate;
+ if (two_pass_min_rate < lower_bounds_min_rate)
+ two_pass_min_rate = lower_bounds_min_rate;
- zero_stats(cpi->twopass.total_stats);
- zero_stats(cpi->twopass.total_left_stats);
+ zero_stats(cpi->twopass.total_stats);
+ zero_stats(cpi->twopass.total_left_stats);
- if (!cpi->twopass.stats_in_end)
- return;
+ if (!cpi->twopass.stats_in_end)
+ return;
- *cpi->twopass.total_stats = *cpi->twopass.stats_in_end;
- *cpi->twopass.total_left_stats = *cpi->twopass.total_stats;
+ *cpi->twopass.total_stats = *cpi->twopass.stats_in_end;
+ *cpi->twopass.total_left_stats = *cpi->twopass.total_stats;
- // each frame can have a different duration, as the frame rate in the source
- // isn't guaranteed to be constant. The frame rate prior to the first frame
- // encoded in the second pass is a guess. However the sum duration is not.
- // Its calculated based on the actual durations of all frames from the first
- // pass.
- vp8_new_frame_rate(cpi, 10000000.0 * cpi->twopass.total_stats->count / cpi->twopass.total_stats->duration);
+ // each frame can have a different duration, as the frame rate in the source
+ // isn't guaranteed to be constant. The frame rate prior to the first frame
+ // encoded in the second pass is a guess. However the sum duration is not.
+ // Its calculated based on the actual durations of all frames from the first
+ // pass.
+ vp8_new_frame_rate(cpi, 10000000.0 * cpi->twopass.total_stats->count / cpi->twopass.total_stats->duration);
- cpi->output_frame_rate = cpi->oxcf.frame_rate;
- cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats->duration * cpi->oxcf.target_bandwidth / 10000000.0) ;
- cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats->duration * two_pass_min_rate / 10000000.0);
-
- // Calculate a minimum intra value to be used in determining the IIratio
- // scores used in the second pass. We have this minimum to make sure
- // that clips that are static but "low complexity" in the intra domain
- // are still boosted appropriately for KF/GF/ARF
- cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs;
- cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs;
-
- // This variable monitors how far behind the second ref update is lagging
- cpi->twopass.sr_update_lag = 1;
+ cpi->output_frame_rate = cpi->oxcf.frame_rate;
+ cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats->duration * cpi->oxcf.target_bandwidth / 10000000.0);
+ cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats->duration * two_pass_min_rate / 10000000.0);
- // Scan the first pass file and calculate an average Intra / Inter error score ratio for the sequence
- {
- double sum_iiratio = 0.0;
- double IIRatio;
+ // Calculate a minimum intra value to be used in determining the IIratio
+ // scores used in the second pass. We have this minimum to make sure
+ // that clips that are static but "low complexity" in the intra domain
+ // are still boosted appropriately for KF/GF/ARF
+ cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs;
+ cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs;
- start_pos = cpi->twopass.stats_in; // Note starting "file" position
+ // This variable monitors how far behind the second ref update is lagging
+ cpi->twopass.sr_update_lag = 1;
- while (input_stats(cpi, &this_frame) != EOF)
- {
- IIRatio = this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error);
- IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio;
- sum_iiratio += IIRatio;
- }
+ // Scan the first pass file and calculate an average Intra / Inter error score ratio for the sequence
+ {
+ double sum_iiratio = 0.0;
+ double IIRatio;
- cpi->twopass.avg_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats->count);
+ start_pos = cpi->twopass.stats_in; // Note starting "file" position
- // Reset file position
- reset_fpf_position(cpi, start_pos);
+ while (input_stats(cpi, &this_frame) != EOF) {
+ IIRatio = this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error);
+ IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio;
+ sum_iiratio += IIRatio;
}
- // Scan the first pass file and calculate a modified total error based upon the bias/power function
- // used to allocate bits
- {
- start_pos = cpi->twopass.stats_in; // Note starting "file" position
+ cpi->twopass.avg_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats->count);
- cpi->twopass.modified_error_total = 0.0;
- cpi->twopass.modified_error_used = 0.0;
+ // Reset file position
+ reset_fpf_position(cpi, start_pos);
+ }
- while (input_stats(cpi, &this_frame) != EOF)
- {
- cpi->twopass.modified_error_total += calculate_modified_err(cpi, &this_frame);
- }
- cpi->twopass.modified_error_left = cpi->twopass.modified_error_total;
+ // Scan the first pass file and calculate a modified total error based upon the bias/power function
+ // used to allocate bits
+ {
+ start_pos = cpi->twopass.stats_in; // Note starting "file" position
- reset_fpf_position(cpi, start_pos); // Reset file position
+ cpi->twopass.modified_error_total = 0.0;
+ cpi->twopass.modified_error_used = 0.0;
+ while (input_stats(cpi, &this_frame) != EOF) {
+ cpi->twopass.modified_error_total += calculate_modified_err(cpi, &this_frame);
}
+ cpi->twopass.modified_error_left = cpi->twopass.modified_error_total;
+
+ reset_fpf_position(cpi, start_pos); // Reset file position
+
+ }
}
-void vp8_end_second_pass(VP8_COMP *cpi)
-{
+void vp8_end_second_pass(VP8_COMP *cpi) {
}
// This function gives and estimate of how badly we believe
// the prediction quality is decaying from frame to frame.
-static double get_prediction_decay_rate( VP8_COMP *cpi,
- FIRSTPASS_STATS *next_frame)
-{
- double prediction_decay_rate;
- double second_ref_decay;
- double mb_sr_err_diff;
-
- // Initial basis is the % mbs inter coded
- prediction_decay_rate = next_frame->pcnt_inter;
-
- // Look at the observed drop in prediction quality between the last frame
- // and the GF buffer (which contains an older frame).
- mb_sr_err_diff =
- (next_frame->sr_coded_error - next_frame->coded_error) /
- (cpi->common.MBs);
- second_ref_decay = 1.0 - (mb_sr_err_diff / 512.0);
- second_ref_decay = pow( second_ref_decay, 0.5 );
- if ( second_ref_decay < 0.85 )
- second_ref_decay = 0.85;
- else if ( second_ref_decay > 1.0 )
- second_ref_decay = 1.0;
-
- if ( second_ref_decay < prediction_decay_rate )
- prediction_decay_rate = second_ref_decay;
-
- return prediction_decay_rate;
+static double get_prediction_decay_rate(VP8_COMP *cpi,
+ FIRSTPASS_STATS *next_frame) {
+ double prediction_decay_rate;
+ double second_ref_decay;
+ double mb_sr_err_diff;
+
+ // Initial basis is the % mbs inter coded
+ prediction_decay_rate = next_frame->pcnt_inter;
+
+ // Look at the observed drop in prediction quality between the last frame
+ // and the GF buffer (which contains an older frame).
+ mb_sr_err_diff =
+ (next_frame->sr_coded_error - next_frame->coded_error) /
+ (cpi->common.MBs);
+ second_ref_decay = 1.0 - (mb_sr_err_diff / 512.0);
+ second_ref_decay = pow(second_ref_decay, 0.5);
+ if (second_ref_decay < 0.85)
+ second_ref_decay = 0.85;
+ else if (second_ref_decay > 1.0)
+ second_ref_decay = 1.0;
+
+ if (second_ref_decay < prediction_decay_rate)
+ prediction_decay_rate = second_ref_decay;
+
+ return prediction_decay_rate;
}
// Function to test for a condition where a complex transition is followed
// by a static section. For example in slide shows where there is a fade
// between slides. This is to help with more optimal kf and gf positioning.
static int detect_transition_to_still(
- VP8_COMP *cpi,
- int frame_interval,
- int still_interval,
- double loop_decay_rate,
- double last_decay_rate )
-{
- BOOL trans_to_still = FALSE;
-
- // Break clause to detect very still sections after motion
- // For example a static image after a fade or other transition
- // instead of a clean scene cut.
- if ( (frame_interval > MIN_GF_INTERVAL) &&
- (loop_decay_rate >= 0.999) &&
- (last_decay_rate < 0.9) )
- {
- int j;
- FIRSTPASS_STATS * position = cpi->twopass.stats_in;
- FIRSTPASS_STATS tmp_next_frame;
- double zz_inter;
-
- // Look ahead a few frames to see if static condition
- // persists...
- for ( j = 0; j < still_interval; j++ )
- {
- if (EOF == input_stats(cpi, &tmp_next_frame))
- break;
-
- zz_inter =
- (tmp_next_frame.pcnt_inter - tmp_next_frame.pcnt_motion);
- if ( zz_inter < 0.999 )
- break;
- }
- // Reset file position
- reset_fpf_position(cpi, position);
+ VP8_COMP *cpi,
+ int frame_interval,
+ int still_interval,
+ double loop_decay_rate,
+ double last_decay_rate) {
+ BOOL trans_to_still = FALSE;
+
+ // Break clause to detect very still sections after motion
+ // For example a static image after a fade or other transition
+ // instead of a clean scene cut.
+ if ((frame_interval > MIN_GF_INTERVAL) &&
+ (loop_decay_rate >= 0.999) &&
+ (last_decay_rate < 0.9)) {
+ int j;
+ FIRSTPASS_STATS *position = cpi->twopass.stats_in;
+ FIRSTPASS_STATS tmp_next_frame;
+ double zz_inter;
+
+ // Look ahead a few frames to see if static condition
+ // persists...
+ for (j = 0; j < still_interval; j++) {
+ if (EOF == input_stats(cpi, &tmp_next_frame))
+ break;
- // Only if it does do we signal a transition to still
- if ( j == still_interval )
- trans_to_still = TRUE;
+ zz_inter =
+ (tmp_next_frame.pcnt_inter - tmp_next_frame.pcnt_motion);
+ if (zz_inter < 0.999)
+ break;
}
+ // Reset file position
+ reset_fpf_position(cpi, position);
- return trans_to_still;
+ // Only if it does do we signal a transition to still
+ if (j == still_interval)
+ trans_to_still = TRUE;
+ }
+
+ return trans_to_still;
}
// This function detects a flash through the high relative pcnt_second_ref
// score in the frame following a flash frame. The offset passed in should
// reflect this
-static BOOL detect_flash( VP8_COMP *cpi, int offset )
-{
- FIRSTPASS_STATS next_frame;
-
- BOOL flash_detected = FALSE;
-
- // Read the frame data.
- // The return is FALSE (no flash detected) if not a valid frame
- if ( read_frame_stats(cpi, &next_frame, offset) != EOF )
- {
- // What we are looking for here is a situation where there is a
- // brief break in prediction (such as a flash) but subsequent frames
- // are reasonably well predicted by an earlier (pre flash) frame.
- // The recovery after a flash is indicated by a high pcnt_second_ref
- // comapred to pcnt_inter.
- if ( (next_frame.pcnt_second_ref > next_frame.pcnt_inter) &&
- (next_frame.pcnt_second_ref >= 0.5 ) )
- {
- flash_detected = TRUE;
- }
+static BOOL detect_flash(VP8_COMP *cpi, int offset) {
+ FIRSTPASS_STATS next_frame;
+
+ BOOL flash_detected = FALSE;
+
+ // Read the frame data.
+ // The return is FALSE (no flash detected) if not a valid frame
+ if (read_frame_stats(cpi, &next_frame, offset) != EOF) {
+ // What we are looking for here is a situation where there is a
+ // brief break in prediction (such as a flash) but subsequent frames
+ // are reasonably well predicted by an earlier (pre flash) frame.
+ // The recovery after a flash is indicated by a high pcnt_second_ref
+ // comapred to pcnt_inter.
+ if ((next_frame.pcnt_second_ref > next_frame.pcnt_inter) &&
+ (next_frame.pcnt_second_ref >= 0.5)) {
+ flash_detected = TRUE;
}
+ }
- return flash_detected;
+ return flash_detected;
}
// Update the motion related elements to the GF arf boost calculation
static void accumulate_frame_motion_stats(
- VP8_COMP *cpi,
- FIRSTPASS_STATS * this_frame,
- double * this_frame_mv_in_out,
- double * mv_in_out_accumulator,
- double * abs_mv_in_out_accumulator,
- double * mv_ratio_accumulator )
-{
- //double this_frame_mv_in_out;
- double this_frame_mvr_ratio;
- double this_frame_mvc_ratio;
- double motion_pct;
-
- // Accumulate motion stats.
- motion_pct = this_frame->pcnt_motion;
-
- // Accumulate Motion In/Out of frame stats
- *this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct;
- *mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct;
- *abs_mv_in_out_accumulator +=
- fabs(this_frame->mv_in_out_count * motion_pct);
-
- // Accumulate a measure of how uniform (or conversely how random)
- // the motion field is. (A ratio of absmv / mv)
- if (motion_pct > 0.05)
- {
- this_frame_mvr_ratio = fabs(this_frame->mvr_abs) /
- DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr));
-
- this_frame_mvc_ratio = fabs(this_frame->mvc_abs) /
- DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc));
-
- *mv_ratio_accumulator +=
- (this_frame_mvr_ratio < this_frame->mvr_abs)
- ? (this_frame_mvr_ratio * motion_pct)
- : this_frame->mvr_abs * motion_pct;
-
- *mv_ratio_accumulator +=
- (this_frame_mvc_ratio < this_frame->mvc_abs)
- ? (this_frame_mvc_ratio * motion_pct)
- : this_frame->mvc_abs * motion_pct;
-
- }
+ VP8_COMP *cpi,
+ FIRSTPASS_STATS *this_frame,
+ double *this_frame_mv_in_out,
+ double *mv_in_out_accumulator,
+ double *abs_mv_in_out_accumulator,
+ double *mv_ratio_accumulator) {
+ // double this_frame_mv_in_out;
+ double this_frame_mvr_ratio;
+ double this_frame_mvc_ratio;
+ double motion_pct;
+
+ // Accumulate motion stats.
+ motion_pct = this_frame->pcnt_motion;
+
+ // Accumulate Motion In/Out of frame stats
+ *this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct;
+ *mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct;
+ *abs_mv_in_out_accumulator +=
+ fabs(this_frame->mv_in_out_count * motion_pct);
+
+ // Accumulate a measure of how uniform (or conversely how random)
+ // the motion field is. (A ratio of absmv / mv)
+ if (motion_pct > 0.05) {
+ this_frame_mvr_ratio = fabs(this_frame->mvr_abs) /
+ DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr));
+
+ this_frame_mvc_ratio = fabs(this_frame->mvc_abs) /
+ DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc));
+
+ *mv_ratio_accumulator +=
+ (this_frame_mvr_ratio < this_frame->mvr_abs)
+ ? (this_frame_mvr_ratio * motion_pct)
+ : this_frame->mvr_abs * motion_pct;
+
+ *mv_ratio_accumulator +=
+ (this_frame_mvc_ratio < this_frame->mvc_abs)
+ ? (this_frame_mvc_ratio * motion_pct)
+ : this_frame->mvc_abs * motion_pct;
+
+ }
}
// Calculate a baseline boost number for the current frame.
static double calc_frame_boost(
- VP8_COMP *cpi,
- FIRSTPASS_STATS * this_frame,
- double this_frame_mv_in_out )
-{
- double frame_boost;
-
- // Underlying boost factor is based on inter intra error ratio
- if (this_frame->intra_error > cpi->twopass.gf_intra_err_min)
- frame_boost = (IIFACTOR * this_frame->intra_error /
- DOUBLE_DIVIDE_CHECK(this_frame->coded_error));
- else
- frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min /
- DOUBLE_DIVIDE_CHECK(this_frame->coded_error));
-
- // Increase boost for frames where new data coming into frame
- // (eg zoom out). Slightly reduce boost if there is a net balance
- // of motion out of the frame (zoom in).
- // The range for this_frame_mv_in_out is -1.0 to +1.0
- if (this_frame_mv_in_out > 0.0)
- frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
- // In extreme case boost is halved
- else
- frame_boost += frame_boost * (this_frame_mv_in_out / 2.0);
-
- // Clip to maximum
- if (frame_boost > GF_RMAX)
- frame_boost = GF_RMAX;
-
- return frame_boost;
+ VP8_COMP *cpi,
+ FIRSTPASS_STATS *this_frame,
+ double this_frame_mv_in_out) {
+ double frame_boost;
+
+ // Underlying boost factor is based on inter intra error ratio
+ if (this_frame->intra_error > cpi->twopass.gf_intra_err_min)
+ frame_boost = (IIFACTOR * this_frame->intra_error /
+ DOUBLE_DIVIDE_CHECK(this_frame->coded_error));
+ else
+ frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min /
+ DOUBLE_DIVIDE_CHECK(this_frame->coded_error));
+
+ // Increase boost for frames where new data coming into frame
+ // (eg zoom out). Slightly reduce boost if there is a net balance
+ // of motion out of the frame (zoom in).
+ // The range for this_frame_mv_in_out is -1.0 to +1.0
+ if (this_frame_mv_in_out > 0.0)
+ frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
+ // In extreme case boost is halved
+ else
+ frame_boost += frame_boost * (this_frame_mv_in_out / 2.0);
+
+ // Clip to maximum
+ if (frame_boost > GF_RMAX)
+ frame_boost = GF_RMAX;
+
+ return frame_boost;
}
static int calc_arf_boost(
- VP8_COMP *cpi,
- int offset,
- int f_frames,
- int b_frames,
- int *f_boost,
- int *b_boost )
-{
- FIRSTPASS_STATS this_frame;
-
- int i;
- double boost_score = 0.0;
- double mv_ratio_accumulator = 0.0;
- double decay_accumulator = 1.0;
- double this_frame_mv_in_out = 0.0;
- double mv_in_out_accumulator = 0.0;
- double abs_mv_in_out_accumulator = 0.0;
- int arf_boost;
- BOOL flash_detected = FALSE;
-
- // Search forward from the proposed arf/next gf position
- for ( i = 0; i < f_frames; i++ )
- {
- if ( read_frame_stats(cpi, &this_frame, (i+offset)) == EOF )
- break;
-
- // Update the motion related elements to the boost calculation
- accumulate_frame_motion_stats( cpi, &this_frame,
- &this_frame_mv_in_out, &mv_in_out_accumulator,
- &abs_mv_in_out_accumulator, &mv_ratio_accumulator );
-
- // We want to discount the the flash frame itself and the recovery
- // frame that follows as both will have poor scores.
- flash_detected = detect_flash(cpi, (i+offset)) ||
- detect_flash(cpi, (i+offset+1));
-
- // Cumulative effect of prediction quality decay
- if ( !flash_detected )
- {
- decay_accumulator =
- decay_accumulator *
- get_prediction_decay_rate(cpi, &this_frame);
- decay_accumulator =
- decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
- }
-
- boost_score += (decay_accumulator *
- calc_frame_boost( cpi, &this_frame, this_frame_mv_in_out ));
+ VP8_COMP *cpi,
+ int offset,
+ int f_frames,
+ int b_frames,
+ int *f_boost,
+ int *b_boost) {
+ FIRSTPASS_STATS this_frame;
+
+ int i;
+ double boost_score = 0.0;
+ double mv_ratio_accumulator = 0.0;
+ double decay_accumulator = 1.0;
+ double this_frame_mv_in_out = 0.0;
+ double mv_in_out_accumulator = 0.0;
+ double abs_mv_in_out_accumulator = 0.0;
+ int arf_boost;
+ BOOL flash_detected = FALSE;
+
+ // Search forward from the proposed arf/next gf position
+ for (i = 0; i < f_frames; i++) {
+ if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF)
+ break;
+
+ // Update the motion related elements to the boost calculation
+ accumulate_frame_motion_stats(cpi, &this_frame,
+ &this_frame_mv_in_out, &mv_in_out_accumulator,
+ &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
+
+ // We want to discount the the flash frame itself and the recovery
+ // frame that follows as both will have poor scores.
+ flash_detected = detect_flash(cpi, (i + offset)) ||
+ detect_flash(cpi, (i + offset + 1));
+
+ // Cumulative effect of prediction quality decay
+ if (!flash_detected) {
+ decay_accumulator =
+ decay_accumulator *
+ get_prediction_decay_rate(cpi, &this_frame);
+ decay_accumulator =
+ decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
}
- *f_boost = boost_score;
-
- // Reset for backward looking loop
- boost_score = 0.0;
- mv_ratio_accumulator = 0.0;
- decay_accumulator = 1.0;
- this_frame_mv_in_out = 0.0;
- mv_in_out_accumulator = 0.0;
- abs_mv_in_out_accumulator = 0.0;
-
- // Search backward towards last gf position
- for ( i = -1; i >= -b_frames; i-- )
- {
- if ( read_frame_stats(cpi, &this_frame, (i+offset)) == EOF )
- break;
-
- // Update the motion related elements to the boost calculation
- accumulate_frame_motion_stats( cpi, &this_frame,
- &this_frame_mv_in_out, &mv_in_out_accumulator,
- &abs_mv_in_out_accumulator, &mv_ratio_accumulator );
-
- // We want to discount the the flash frame itself and the recovery
- // frame that follows as both will have poor scores.
- flash_detected = detect_flash(cpi, (i+offset)) ||
- detect_flash(cpi, (i+offset+1));
-
- // Cumulative effect of prediction quality decay
- if ( !flash_detected )
- {
- decay_accumulator =
- decay_accumulator *
- get_prediction_decay_rate(cpi, &this_frame);
- decay_accumulator =
- decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
- }
+ boost_score += (decay_accumulator *
+ calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out));
+ }
+
+ *f_boost = boost_score;
+
+ // Reset for backward looking loop
+ boost_score = 0.0;
+ mv_ratio_accumulator = 0.0;
+ decay_accumulator = 1.0;
+ this_frame_mv_in_out = 0.0;
+ mv_in_out_accumulator = 0.0;
+ abs_mv_in_out_accumulator = 0.0;
+
+ // Search backward towards last gf position
+ for (i = -1; i >= -b_frames; i--) {
+ if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF)
+ break;
+
+ // Update the motion related elements to the boost calculation
+ accumulate_frame_motion_stats(cpi, &this_frame,
+ &this_frame_mv_in_out, &mv_in_out_accumulator,
+ &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
+
+ // We want to discount the the flash frame itself and the recovery
+ // frame that follows as both will have poor scores.
+ flash_detected = detect_flash(cpi, (i + offset)) ||
+ detect_flash(cpi, (i + offset + 1));
+
+ // Cumulative effect of prediction quality decay
+ if (!flash_detected) {
+ decay_accumulator =
+ decay_accumulator *
+ get_prediction_decay_rate(cpi, &this_frame);
+ decay_accumulator =
+ decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
+ }
- boost_score += (decay_accumulator *
- calc_frame_boost( cpi, &this_frame, this_frame_mv_in_out ));
+ boost_score += (decay_accumulator *
+ calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out));
- }
- *b_boost = boost_score;
+ }
+ *b_boost = boost_score;
- arf_boost = (*f_boost + *b_boost);
- if ( arf_boost < ((b_frames + f_frames) * 20) )
- arf_boost = ((b_frames + f_frames) * 20);
+ arf_boost = (*f_boost + *b_boost);
+ if (arf_boost < ((b_frames + f_frames) * 20))
+ arf_boost = ((b_frames + f_frames) * 20);
- return arf_boost;
+ return arf_boost;
}
-static void configure_arnr_filter( VP8_COMP *cpi, FIRSTPASS_STATS *this_frame )
-{
- int half_gf_int;
- int frames_after_arf;
- int frames_bwd = cpi->oxcf.arnr_max_frames - 1;
- int frames_fwd = cpi->oxcf.arnr_max_frames - 1;
-
- // Define the arnr filter width for this group of frames:
- // We only filter frames that lie within a distance of half
- // the GF interval from the ARF frame. We also have to trap
- // cases where the filter extends beyond the end of clip.
- // Note: this_frame->frame has been updated in the loop
- // so it now points at the ARF frame.
- half_gf_int = cpi->baseline_gf_interval >> 1;
- frames_after_arf = cpi->twopass.total_stats->count -
- this_frame->frame - 1;
-
- switch (cpi->oxcf.arnr_type)
- {
+static void configure_arnr_filter(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) {
+ int half_gf_int;
+ int frames_after_arf;
+ int frames_bwd = cpi->oxcf.arnr_max_frames - 1;
+ int frames_fwd = cpi->oxcf.arnr_max_frames - 1;
+
+ // Define the arnr filter width for this group of frames:
+ // We only filter frames that lie within a distance of half
+ // the GF interval from the ARF frame. We also have to trap
+ // cases where the filter extends beyond the end of clip.
+ // Note: this_frame->frame has been updated in the loop
+ // so it now points at the ARF frame.
+ half_gf_int = cpi->baseline_gf_interval >> 1;
+ frames_after_arf = cpi->twopass.total_stats->count -
+ this_frame->frame - 1;
+
+ switch (cpi->oxcf.arnr_type) {
case 1: // Backward filter
- frames_fwd = 0;
- if (frames_bwd > half_gf_int)
- frames_bwd = half_gf_int;
- break;
+ frames_fwd = 0;
+ if (frames_bwd > half_gf_int)
+ frames_bwd = half_gf_int;
+ break;
case 2: // Forward filter
- if (frames_fwd > half_gf_int)
- frames_fwd = half_gf_int;
- if (frames_fwd > frames_after_arf)
- frames_fwd = frames_after_arf;
- frames_bwd = 0;
- break;
+ if (frames_fwd > half_gf_int)
+ frames_fwd = half_gf_int;
+ if (frames_fwd > frames_after_arf)
+ frames_fwd = frames_after_arf;
+ frames_bwd = 0;
+ break;
case 3: // Centered filter
default:
- frames_fwd >>= 1;
- if (frames_fwd > frames_after_arf)
- frames_fwd = frames_after_arf;
- if (frames_fwd > half_gf_int)
- frames_fwd = half_gf_int;
-
- frames_bwd = frames_fwd;
-
- // For even length filter there is one more frame backward
- // than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff.
- if (frames_bwd < half_gf_int)
- frames_bwd += (cpi->oxcf.arnr_max_frames+1) & 0x1;
- break;
- }
-
- cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd;
+ frames_fwd >>= 1;
+ if (frames_fwd > frames_after_arf)
+ frames_fwd = frames_after_arf;
+ if (frames_fwd > half_gf_int)
+ frames_fwd = half_gf_int;
+
+ frames_bwd = frames_fwd;
+
+ // For even length filter there is one more frame backward
+ // than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff.
+ if (frames_bwd < half_gf_int)
+ frames_bwd += (cpi->oxcf.arnr_max_frames + 1) & 0x1;
+ break;
+ }
+
+ cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd;
}
// Analyse and define a gf/arf group .
-static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
-{
- FIRSTPASS_STATS next_frame;
- FIRSTPASS_STATS *start_pos;
- int i;
- double boost_score = 0.0;
- double old_boost_score = 0.0;
- double gf_group_err = 0.0;
- double gf_first_frame_err = 0.0;
- double mod_frame_err = 0.0;
+static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) {
+ FIRSTPASS_STATS next_frame;
+ FIRSTPASS_STATS *start_pos;
+ int i;
+ double boost_score = 0.0;
+ double old_boost_score = 0.0;
+ double gf_group_err = 0.0;
+ double gf_first_frame_err = 0.0;
+ double mod_frame_err = 0.0;
- double mv_ratio_accumulator = 0.0;
- double decay_accumulator = 1.0;
- double zero_motion_accumulator = 1.0;
+ double mv_ratio_accumulator = 0.0;
+ double decay_accumulator = 1.0;
+ double zero_motion_accumulator = 1.0;
- double loop_decay_rate = 1.00; // Starting decay rate
- double last_loop_decay_rate = 1.00;
+ double loop_decay_rate = 1.00; // Starting decay rate
+ double last_loop_decay_rate = 1.00;
- double this_frame_mv_in_out = 0.0;
- double mv_in_out_accumulator = 0.0;
- double abs_mv_in_out_accumulator = 0.0;
+ double this_frame_mv_in_out = 0.0;
+ double mv_in_out_accumulator = 0.0;
+ double abs_mv_in_out_accumulator = 0.0;
- int max_bits = frame_max_bits(cpi); // Max for a single frame
+ int max_bits = frame_max_bits(cpi); // Max for a single frame
- unsigned int allow_alt_ref =
- cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames;
+ unsigned int allow_alt_ref =
+ cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames;
- int f_boost = 0;
- int b_boost = 0;
- BOOL flash_detected;
+ int f_boost = 0;
+ int b_boost = 0;
+ BOOL flash_detected;
- cpi->twopass.gf_group_bits = 0;
+ cpi->twopass.gf_group_bits = 0;
- vp8_clear_system_state(); //__asm emms;
+ vp8_clear_system_state(); // __asm emms;
- start_pos = cpi->twopass.stats_in;
-
- vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean
+ start_pos = cpi->twopass.stats_in;
- // Load stats for the current frame.
- mod_frame_err = calculate_modified_err(cpi, this_frame);
+ vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean
- // Note the error of the frame at the start of the group (this will be
- // the GF frame error if we code a normal gf
- gf_first_frame_err = mod_frame_err;
+ // Load stats for the current frame.
+ mod_frame_err = calculate_modified_err(cpi, this_frame);
- // Special treatment if the current frame is a key frame (which is also
- // a gf). If it is then its error score (and hence bit allocation) need
- // to be subtracted out from the calculation for the GF group
- if (cpi->common.frame_type == KEY_FRAME)
- gf_group_err -= gf_first_frame_err;
+ // Note the error of the frame at the start of the group (this will be
+ // the GF frame error if we code a normal gf
+ gf_first_frame_err = mod_frame_err;
- // Scan forward to try and work out how many frames the next gf group
- // should contain and what level of boost is appropriate for the GF
- // or ARF that will be coded with the group
- i = 0;
+ // Special treatment if the current frame is a key frame (which is also
+ // a gf). If it is then its error score (and hence bit allocation) need
+ // to be subtracted out from the calculation for the GF group
+ if (cpi->common.frame_type == KEY_FRAME)
+ gf_group_err -= gf_first_frame_err;
- while (((i < cpi->twopass.static_scene_max_gf_interval) ||
- ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) &&
- (i < cpi->twopass.frames_to_key))
- {
- i++; // Increment the loop counter
+ // Scan forward to try and work out how many frames the next gf group
+ // should contain and what level of boost is appropriate for the GF
+ // or ARF that will be coded with the group
+ i = 0;
- // Accumulate error score of frames in this gf group
- mod_frame_err = calculate_modified_err(cpi, this_frame);
- gf_group_err += mod_frame_err;
-
- if (EOF == input_stats(cpi, &next_frame))
- break;
-
- // Test for the case where there is a brief flash but the prediction
- // quality back to an earlier frame is then restored.
- flash_detected = detect_flash(cpi, 0);
-
- // Update the motion related elements to the boost calculation
- accumulate_frame_motion_stats( cpi, &next_frame,
- &this_frame_mv_in_out, &mv_in_out_accumulator,
- &abs_mv_in_out_accumulator, &mv_ratio_accumulator );
-
- // Cumulative effect of prediction quality decay
- if ( !flash_detected )
- {
- last_loop_decay_rate = loop_decay_rate;
- loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
- decay_accumulator = decay_accumulator * loop_decay_rate;
-
- // Monitor for static sections.
- if ( (next_frame.pcnt_inter - next_frame.pcnt_motion) <
- zero_motion_accumulator )
- {
- zero_motion_accumulator =
- (next_frame.pcnt_inter - next_frame.pcnt_motion);
- }
+ while (((i < cpi->twopass.static_scene_max_gf_interval) ||
+ ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) &&
+ (i < cpi->twopass.frames_to_key)) {
+ i++; // Increment the loop counter
- // Break clause to detect very still sections after motion
- // (for example a staic image after a fade or other transition).
- if ( detect_transition_to_still( cpi, i, 5, loop_decay_rate,
- last_loop_decay_rate ) )
- {
- allow_alt_ref = FALSE;
- break;
- }
- }
+ // Accumulate error score of frames in this gf group
+ mod_frame_err = calculate_modified_err(cpi, this_frame);
+ gf_group_err += mod_frame_err;
+
+ if (EOF == input_stats(cpi, &next_frame))
+ break;
+
+ // Test for the case where there is a brief flash but the prediction
+ // quality back to an earlier frame is then restored.
+ flash_detected = detect_flash(cpi, 0);
+
+ // Update the motion related elements to the boost calculation
+ accumulate_frame_motion_stats(cpi, &next_frame,
+ &this_frame_mv_in_out, &mv_in_out_accumulator,
+ &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
+
+ // Cumulative effect of prediction quality decay
+ if (!flash_detected) {
+ last_loop_decay_rate = loop_decay_rate;
+ loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
+ decay_accumulator = decay_accumulator * loop_decay_rate;
+
+ // Monitor for static sections.
+ if ((next_frame.pcnt_inter - next_frame.pcnt_motion) <
+ zero_motion_accumulator) {
+ zero_motion_accumulator =
+ (next_frame.pcnt_inter - next_frame.pcnt_motion);
+ }
+
+ // Break clause to detect very still sections after motion
+ // (for example a staic image after a fade or other transition).
+ if (detect_transition_to_still(cpi, i, 5, loop_decay_rate,
+ last_loop_decay_rate)) {
+ allow_alt_ref = FALSE;
+ break;
+ }
+ }
- // Calculate a boost number for this frame
- boost_score +=
- ( decay_accumulator *
- calc_frame_boost( cpi, &next_frame, this_frame_mv_in_out ) );
-
- // Break out conditions.
- if (
- // Break at cpi->max_gf_interval unless almost totally static
- (i >= cpi->max_gf_interval && (zero_motion_accumulator < 0.995)) ||
- (
- // Dont break out with a very short interval
- (i > MIN_GF_INTERVAL) &&
- // Dont break out very close to a key frame
- ((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) &&
- ((boost_score > 125.0) || (next_frame.pcnt_inter < 0.75)) &&
- (!flash_detected) &&
- ((mv_ratio_accumulator > 100.0) ||
- (abs_mv_in_out_accumulator > 3.0) ||
- (mv_in_out_accumulator < -2.0) ||
- ((boost_score - old_boost_score) < 12.5))
- ) )
- {
- boost_score = old_boost_score;
- break;
- }
+ // Calculate a boost number for this frame
+ boost_score +=
+ (decay_accumulator *
+ calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out));
+
+ // Break out conditions.
+ if (
+ // Break at cpi->max_gf_interval unless almost totally static
+ (i >= cpi->max_gf_interval && (zero_motion_accumulator < 0.995)) ||
+ (
+ // Dont break out with a very short interval
+ (i > MIN_GF_INTERVAL) &&
+ // Dont break out very close to a key frame
+ ((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) &&
+ ((boost_score > 125.0) || (next_frame.pcnt_inter < 0.75)) &&
+ (!flash_detected) &&
+ ((mv_ratio_accumulator > 100.0) ||
+ (abs_mv_in_out_accumulator > 3.0) ||
+ (mv_in_out_accumulator < -2.0) ||
+ ((boost_score - old_boost_score) < 12.5))
+ )) {
+ boost_score = old_boost_score;
+ break;
+ }
- vpx_memcpy(this_frame, &next_frame, sizeof(*this_frame));
+ vpx_memcpy(this_frame, &next_frame, sizeof(*this_frame));
- old_boost_score = boost_score;
- }
+ old_boost_score = boost_score;
+ }
- // Dont allow a gf too near the next kf
- if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)
- {
- while (i < cpi->twopass.frames_to_key)
- {
- i++;
+ // Dont allow a gf too near the next kf
+ if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL) {
+ while (i < cpi->twopass.frames_to_key) {
+ i++;
- if (EOF == input_stats(cpi, this_frame))
- break;
+ if (EOF == input_stats(cpi, this_frame))
+ break;
- if (i < cpi->twopass.frames_to_key)
- {
- mod_frame_err = calculate_modified_err(cpi, this_frame);
- gf_group_err += mod_frame_err;
- }
- }
+ if (i < cpi->twopass.frames_to_key) {
+ mod_frame_err = calculate_modified_err(cpi, this_frame);
+ gf_group_err += mod_frame_err;
+ }
}
+ }
+
+ // Set the interval till the next gf or arf.
+ cpi->baseline_gf_interval = i;
+
+ // Should we use the alternate refernce frame
+ if (allow_alt_ref &&
+ (i < cpi->oxcf.lag_in_frames) &&
+ (i >= MIN_GF_INTERVAL) &&
+ // dont use ARF very near next kf
+ (i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) &&
+ ((next_frame.pcnt_inter > 0.75) ||
+ (next_frame.pcnt_second_ref > 0.5)) &&
+ ((mv_in_out_accumulator / (double)i > -0.2) ||
+ (mv_in_out_accumulator > -2.0)) &&
+ (boost_score > 100)) {
+ // Alterrnative boost calculation for alt ref
+ cpi->gfu_boost = calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost, &b_boost);
+ cpi->source_alt_ref_pending = TRUE;
+
+ configure_arnr_filter(cpi, this_frame);
+ } else {
+ cpi->gfu_boost = (int)boost_score;
+ cpi->source_alt_ref_pending = FALSE;
+ }
+
+ // Now decide how many bits should be allocated to the GF group as a
+ // proportion of those remaining in the kf group.
+ // The final key frame group in the clip is treated as a special case
+ // where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left.
+ // This is also important for short clips where there may only be one
+ // key frame.
+ if (cpi->twopass.frames_to_key >= (int)(cpi->twopass.total_stats->count -
+ cpi->common.current_video_frame)) {
+ cpi->twopass.kf_group_bits =
+ (cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0;
+ }
+
+ // Calculate the bits to be allocated to the group as a whole
+ if ((cpi->twopass.kf_group_bits > 0) &&
+ (cpi->twopass.kf_group_error_left > 0)) {
+ cpi->twopass.gf_group_bits =
+ (int)((double)cpi->twopass.kf_group_bits *
+ (gf_group_err / (double)cpi->twopass.kf_group_error_left));
+ } else
+ cpi->twopass.gf_group_bits = 0;
- // Set the interval till the next gf or arf.
- cpi->baseline_gf_interval = i;
-
- // Should we use the alternate refernce frame
- if (allow_alt_ref &&
- (i < cpi->oxcf.lag_in_frames ) &&
- (i >= MIN_GF_INTERVAL) &&
- // dont use ARF very near next kf
- (i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) &&
- ((next_frame.pcnt_inter > 0.75) ||
- (next_frame.pcnt_second_ref > 0.5)) &&
- ((mv_in_out_accumulator / (double)i > -0.2) ||
- (mv_in_out_accumulator > -2.0)) &&
- (boost_score > 100))
- {
- // Alterrnative boost calculation for alt ref
- cpi->gfu_boost = calc_arf_boost( cpi, 0, (i-1), (i-1), &f_boost, &b_boost );
- cpi->source_alt_ref_pending = TRUE;
-
- configure_arnr_filter( cpi, this_frame );
- }
+ cpi->twopass.gf_group_bits =
+ (cpi->twopass.gf_group_bits < 0)
+ ? 0
+ : (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits)
+ ? cpi->twopass.kf_group_bits : cpi->twopass.gf_group_bits;
+
+ // Clip cpi->twopass.gf_group_bits based on user supplied data rate
+ // variability limit (cpi->oxcf.two_pass_vbrmax_section)
+ if (cpi->twopass.gf_group_bits > max_bits * cpi->baseline_gf_interval)
+ cpi->twopass.gf_group_bits = max_bits * cpi->baseline_gf_interval;
+
+ // Reset the file position
+ reset_fpf_position(cpi, start_pos);
+
+ // Update the record of error used so far (only done once per gf group)
+ cpi->twopass.modified_error_used += gf_group_err;
+
+ // Assign bits to the arf or gf.
+ for (i = 0; i <= (cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME); i++) {
+ int boost;
+ int allocation_chunks;
+ int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
+ int gf_bits;
+
+ boost = (cpi->gfu_boost * vp8_gfboost_qadjust(Q)) / 100;
+
+ // Set max and minimum boost and hence minimum allocation
+ if (boost > ((cpi->baseline_gf_interval + 1) * 200))
+ boost = ((cpi->baseline_gf_interval + 1) * 200);
+ else if (boost < 125)
+ boost = 125;
+
+ if (cpi->source_alt_ref_pending && i == 0)
+ allocation_chunks =
+ ((cpi->baseline_gf_interval + 1) * 100) + boost;
else
- {
- cpi->gfu_boost = (int)boost_score;
- cpi->source_alt_ref_pending = FALSE;
+ allocation_chunks =
+ (cpi->baseline_gf_interval * 100) + (boost - 100);
+
+ // Prevent overflow
+ if (boost > 1028) {
+ int divisor = boost >> 10;
+ boost /= divisor;
+ allocation_chunks /= divisor;
}
- // Now decide how many bits should be allocated to the GF group as a
- // proportion of those remaining in the kf group.
- // The final key frame group in the clip is treated as a special case
- // where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left.
- // This is also important for short clips where there may only be one
- // key frame.
- if (cpi->twopass.frames_to_key >= (int)(cpi->twopass.total_stats->count -
- cpi->common.current_video_frame))
- {
- cpi->twopass.kf_group_bits =
- (cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0;
+ // Calculate the number of bits to be spent on the gf or arf based on
+ // the boost number
+ gf_bits = (int)((double)boost *
+ (cpi->twopass.gf_group_bits /
+ (double)allocation_chunks));
+
+ // If the frame that is to be boosted is simpler than the average for
+ // the gf/arf group then use an alternative calculation
+ // based on the error score of the frame itself
+ if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval) {
+ double alt_gf_grp_bits;
+ int alt_gf_bits;
+
+ alt_gf_grp_bits =
+ (double)cpi->twopass.kf_group_bits *
+ (mod_frame_err * (double)cpi->baseline_gf_interval) /
+ DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left);
+
+ alt_gf_bits = (int)((double)boost * (alt_gf_grp_bits /
+ (double)allocation_chunks));
+
+ if (gf_bits > alt_gf_bits) {
+ gf_bits = alt_gf_bits;
+ }
}
-
- // Calculate the bits to be allocated to the group as a whole
- if ((cpi->twopass.kf_group_bits > 0) &&
- (cpi->twopass.kf_group_error_left > 0))
- {
- cpi->twopass.gf_group_bits =
- (int)((double)cpi->twopass.kf_group_bits *
- (gf_group_err / (double)cpi->twopass.kf_group_error_left));
+ // Else if it is harder than other frames in the group make sure it at
+ // least receives an allocation in keeping with its relative error
+ // score, otherwise it may be worse off than an "un-boosted" frame
+ else {
+ int alt_gf_bits =
+ (int)((double)cpi->twopass.kf_group_bits *
+ mod_frame_err /
+ DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left));
+
+ if (alt_gf_bits > gf_bits) {
+ gf_bits = alt_gf_bits;
+ }
}
- else
- cpi->twopass.gf_group_bits = 0;
-
- cpi->twopass.gf_group_bits =
- (cpi->twopass.gf_group_bits < 0)
- ? 0
- : (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits)
- ? cpi->twopass.kf_group_bits : cpi->twopass.gf_group_bits;
-
- // Clip cpi->twopass.gf_group_bits based on user supplied data rate
- // variability limit (cpi->oxcf.two_pass_vbrmax_section)
- if (cpi->twopass.gf_group_bits > max_bits * cpi->baseline_gf_interval)
- cpi->twopass.gf_group_bits = max_bits * cpi->baseline_gf_interval;
-
- // Reset the file position
- reset_fpf_position(cpi, start_pos);
-
- // Update the record of error used so far (only done once per gf group)
- cpi->twopass.modified_error_used += gf_group_err;
-
- // Assign bits to the arf or gf.
- for (i = 0; i <= (cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME); i++)
- {
- int boost;
- int allocation_chunks;
- int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
- int gf_bits;
-
- boost = (cpi->gfu_boost * vp8_gfboost_qadjust(Q)) / 100;
-
- // Set max and minimum boost and hence minimum allocation
- if (boost > ((cpi->baseline_gf_interval + 1) * 200))
- boost = ((cpi->baseline_gf_interval + 1) * 200);
- else if (boost < 125)
- boost = 125;
-
- if ( cpi->source_alt_ref_pending && i == 0 )
- allocation_chunks =
- ((cpi->baseline_gf_interval + 1) * 100) + boost;
- else
- allocation_chunks =
- (cpi->baseline_gf_interval * 100) + (boost - 100);
-
- // Prevent overflow
- if ( boost > 1028 )
- {
- int divisor = boost >> 10;
- boost/= divisor;
- allocation_chunks /= divisor;
- }
-
- // Calculate the number of bits to be spent on the gf or arf based on
- // the boost number
- gf_bits = (int)((double)boost *
- (cpi->twopass.gf_group_bits /
- (double)allocation_chunks));
-
- // If the frame that is to be boosted is simpler than the average for
- // the gf/arf group then use an alternative calculation
- // based on the error score of the frame itself
- if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval)
- {
- double alt_gf_grp_bits;
- int alt_gf_bits;
-
- alt_gf_grp_bits =
- (double)cpi->twopass.kf_group_bits *
- (mod_frame_err * (double)cpi->baseline_gf_interval) /
- DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left);
-
- alt_gf_bits = (int)((double)boost * (alt_gf_grp_bits /
- (double)allocation_chunks));
-
- if (gf_bits > alt_gf_bits)
- {
- gf_bits = alt_gf_bits;
- }
- }
- // Else if it is harder than other frames in the group make sure it at
- // least receives an allocation in keeping with its relative error
- // score, otherwise it may be worse off than an "un-boosted" frame
- else
- {
- int alt_gf_bits =
- (int)((double)cpi->twopass.kf_group_bits *
- mod_frame_err /
- DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left));
-
- if (alt_gf_bits > gf_bits)
- {
- gf_bits = alt_gf_bits;
- }
- }
- // Dont allow a negative value for gf_bits
- if (gf_bits < 0)
- gf_bits = 0;
+ // Dont allow a negative value for gf_bits
+ if (gf_bits < 0)
+ gf_bits = 0;
- gf_bits += cpi->min_frame_bandwidth; // Add in minimum for a frame
+ gf_bits += cpi->min_frame_bandwidth; // Add in minimum for a frame
- if (i == 0)
- {
- cpi->twopass.gf_bits = gf_bits;
- }
- if (i == 1 || (!cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)))
- {
- cpi->per_frame_bandwidth = gf_bits; // Per frame bit target for this frame
- }
+ if (i == 0) {
+ cpi->twopass.gf_bits = gf_bits;
}
-
- {
- // Adjust KF group bits and error remainin
- cpi->twopass.kf_group_error_left -= gf_group_err;
- cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits;
-
- if (cpi->twopass.kf_group_bits < 0)
- cpi->twopass.kf_group_bits = 0;
-
- // Note the error score left in the remaining frames of the group.
- // For normal GFs we want to remove the error score for the first frame
- // of the group (except in Key frame case where this has already
- // happened)
- if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME)
- cpi->twopass.gf_group_error_left = gf_group_err - gf_first_frame_err;
- else
- cpi->twopass.gf_group_error_left = gf_group_err;
-
- cpi->twopass.gf_group_bits -= cpi->twopass.gf_bits - cpi->min_frame_bandwidth;
-
- if (cpi->twopass.gf_group_bits < 0)
- cpi->twopass.gf_group_bits = 0;
-
- // This condition could fail if there are two kfs very close together
- // despite (MIN_GF_INTERVAL) and would cause a devide by 0 in the
- // calculation of cpi->twopass.alt_extra_bits.
- if ( cpi->baseline_gf_interval >= 3 )
- {
- int boost = (cpi->source_alt_ref_pending)
- ? b_boost : cpi->gfu_boost;
-
- if ( boost >= 150 )
- {
- int pct_extra;
-
- pct_extra = (boost - 100) / 50;
- pct_extra = (pct_extra > 20) ? 20 : pct_extra;
-
- cpi->twopass.alt_extra_bits =
- (cpi->twopass.gf_group_bits * pct_extra) / 100;
- cpi->twopass.gf_group_bits -= cpi->twopass.alt_extra_bits;
- cpi->twopass.alt_extra_bits /=
- ((cpi->baseline_gf_interval-1)>>1);
- }
- else
- cpi->twopass.alt_extra_bits = 0;
- }
- else
- cpi->twopass.alt_extra_bits = 0;
+ if (i == 1 || (!cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME))) {
+ cpi->per_frame_bandwidth = gf_bits; // Per frame bit target for this frame
}
+ }
+
+ {
+ // Adjust KF group bits and error remainin
+ cpi->twopass.kf_group_error_left -= gf_group_err;
+ cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits;
+
+ if (cpi->twopass.kf_group_bits < 0)
+ cpi->twopass.kf_group_bits = 0;
+
+ // Note the error score left in the remaining frames of the group.
+ // For normal GFs we want to remove the error score for the first frame
+ // of the group (except in Key frame case where this has already
+ // happened)
+ if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME)
+ cpi->twopass.gf_group_error_left = gf_group_err - gf_first_frame_err;
+ else
+ cpi->twopass.gf_group_error_left = gf_group_err;
- if (cpi->common.frame_type != KEY_FRAME)
- {
- FIRSTPASS_STATS sectionstats;
+ cpi->twopass.gf_group_bits -= cpi->twopass.gf_bits - cpi->min_frame_bandwidth;
- zero_stats(&sectionstats);
- reset_fpf_position(cpi, start_pos);
+ if (cpi->twopass.gf_group_bits < 0)
+ cpi->twopass.gf_group_bits = 0;
+
+ // This condition could fail if there are two kfs very close together
+ // despite (MIN_GF_INTERVAL) and would cause a devide by 0 in the
+ // calculation of cpi->twopass.alt_extra_bits.
+ if (cpi->baseline_gf_interval >= 3) {
+ int boost = (cpi->source_alt_ref_pending)
+ ? b_boost : cpi->gfu_boost;
+
+ if (boost >= 150) {
+ int pct_extra;
+
+ pct_extra = (boost - 100) / 50;
+ pct_extra = (pct_extra > 20) ? 20 : pct_extra;
+
+ cpi->twopass.alt_extra_bits =
+ (cpi->twopass.gf_group_bits * pct_extra) / 100;
+ cpi->twopass.gf_group_bits -= cpi->twopass.alt_extra_bits;
+ cpi->twopass.alt_extra_bits /=
+ ((cpi->baseline_gf_interval - 1) >> 1);
+ } else
+ cpi->twopass.alt_extra_bits = 0;
+ } else
+ cpi->twopass.alt_extra_bits = 0;
+ }
+
+ if (cpi->common.frame_type != KEY_FRAME) {
+ FIRSTPASS_STATS sectionstats;
+
+ zero_stats(&sectionstats);
+ reset_fpf_position(cpi, start_pos);
- for (i = 0 ; i < cpi->baseline_gf_interval ; i++)
- {
- input_stats(cpi, &next_frame);
- accumulate_stats(&sectionstats, &next_frame);
- }
+ for (i = 0; i < cpi->baseline_gf_interval; i++) {
+ input_stats(cpi, &next_frame);
+ accumulate_stats(&sectionstats, &next_frame);
+ }
- avg_stats(&sectionstats);
+ avg_stats(&sectionstats);
- cpi->twopass.section_intra_rating =
- sectionstats.intra_error /
- DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
+ cpi->twopass.section_intra_rating =
+ sectionstats.intra_error /
+ DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
- reset_fpf_position(cpi, start_pos);
- }
+ reset_fpf_position(cpi, start_pos);
+ }
}
// Allocate bits to a normal frame that is neither a gf an arf or a key frame.
-static void assign_std_frame_bits(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
-{
- int target_frame_size; // gf_group_error_left
+static void assign_std_frame_bits(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) {
+ int target_frame_size; // gf_group_error_left
- double modified_err;
- double err_fraction; // What portion of the remaining GF group error is used by this frame
+ double modified_err;
+ double err_fraction; // What portion of the remaining GF group error is used by this frame
- int max_bits = frame_max_bits(cpi); // Max for a single frame
+ int max_bits = frame_max_bits(cpi); // Max for a single frame
- // Calculate modified prediction error used in bit allocation
- modified_err = calculate_modified_err(cpi, this_frame);
+ // Calculate modified prediction error used in bit allocation
+ modified_err = calculate_modified_err(cpi, this_frame);
- if (cpi->twopass.gf_group_error_left > 0)
- err_fraction = modified_err / cpi->twopass.gf_group_error_left; // What portion of the remaining GF group error is used by this frame
- else
- err_fraction = 0.0;
+ if (cpi->twopass.gf_group_error_left > 0)
+ err_fraction = modified_err / cpi->twopass.gf_group_error_left; // What portion of the remaining GF group error is used by this frame
+ else
+ err_fraction = 0.0;
- target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction); // How many of those bits available for allocation should we give it?
+ target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction); // How many of those bits available for allocation should we give it?
- // Clip to target size to 0 - max_bits (or cpi->twopass.gf_group_bits) at the top end.
- if (target_frame_size < 0)
- target_frame_size = 0;
- else
- {
- if (target_frame_size > max_bits)
- target_frame_size = max_bits;
+ // Clip to target size to 0 - max_bits (or cpi->twopass.gf_group_bits) at the top end.
+ if (target_frame_size < 0)
+ target_frame_size = 0;
+ else {
+ if (target_frame_size > max_bits)
+ target_frame_size = max_bits;
- if (target_frame_size > cpi->twopass.gf_group_bits)
- target_frame_size = cpi->twopass.gf_group_bits;
- }
+ if (target_frame_size > cpi->twopass.gf_group_bits)
+ target_frame_size = cpi->twopass.gf_group_bits;
+ }
- cpi->twopass.gf_group_error_left -= modified_err; // Adjust error remaining
- cpi->twopass.gf_group_bits -= target_frame_size; // Adjust bits remaining
+ cpi->twopass.gf_group_error_left -= modified_err; // Adjust error remaining
+ cpi->twopass.gf_group_bits -= target_frame_size; // Adjust bits remaining
- if (cpi->twopass.gf_group_bits < 0)
- cpi->twopass.gf_group_bits = 0;
+ if (cpi->twopass.gf_group_bits < 0)
+ cpi->twopass.gf_group_bits = 0;
- target_frame_size += cpi->min_frame_bandwidth; // Add in the minimum number of bits that is set aside for every frame.
+ target_frame_size += cpi->min_frame_bandwidth; // Add in the minimum number of bits that is set aside for every frame.
- cpi->per_frame_bandwidth = target_frame_size; // Per frame bit target for this frame
+ cpi->per_frame_bandwidth = target_frame_size; // Per frame bit target for this frame
}
// Make a damped adjustment to the active max q.
-int adjust_active_maxq( int old_maxqi, int new_maxqi )
-{
- int i;
- int ret_val = new_maxqi;
- double old_q;
- double new_q;
- double target_q;
-
- old_q = vp8_convert_qindex_to_q( old_maxqi );
- new_q = vp8_convert_qindex_to_q( new_maxqi );
-
- target_q = ((old_q * 7.0) + new_q) / 8.0;
-
- if ( target_q > old_q )
- {
- for ( i = old_maxqi; i <= new_maxqi; i++ )
- {
- if ( vp8_convert_qindex_to_q( i ) >= target_q )
- {
- ret_val = i;
- break;
- }
- }
+int adjust_active_maxq(int old_maxqi, int new_maxqi) {
+ int i;
+ int ret_val = new_maxqi;
+ double old_q;
+ double new_q;
+ double target_q;
+
+ old_q = vp8_convert_qindex_to_q(old_maxqi);
+ new_q = vp8_convert_qindex_to_q(new_maxqi);
+
+ target_q = ((old_q * 7.0) + new_q) / 8.0;
+
+ if (target_q > old_q) {
+ for (i = old_maxqi; i <= new_maxqi; i++) {
+ if (vp8_convert_qindex_to_q(i) >= target_q) {
+ ret_val = i;
+ break;
+ }
}
- else
- {
- for ( i = old_maxqi; i >= new_maxqi; i-- )
- {
- if ( vp8_convert_qindex_to_q( i ) <= target_q )
- {
- ret_val = i;
- break;
- }
- }
+ } else {
+ for (i = old_maxqi; i >= new_maxqi; i--) {
+ if (vp8_convert_qindex_to_q(i) <= target_q) {
+ ret_val = i;
+ break;
+ }
}
+ }
- return ret_val;
+ return ret_val;
}
-void vp8_second_pass(VP8_COMP *cpi)
-{
- int tmp_q;
- int frames_left = (int)(cpi->twopass.total_stats->count - cpi->common.current_video_frame);
+void vp8_second_pass(VP8_COMP *cpi) {
+ int tmp_q;
+ int frames_left = (int)(cpi->twopass.total_stats->count - cpi->common.current_video_frame);
- FIRSTPASS_STATS this_frame;
- FIRSTPASS_STATS this_frame_copy;
+ FIRSTPASS_STATS this_frame;
+ FIRSTPASS_STATS this_frame_copy;
- double this_frame_error;
- double this_frame_intra_error;
- double this_frame_coded_error;
+ double this_frame_error;
+ double this_frame_intra_error;
+ double this_frame_coded_error;
- FIRSTPASS_STATS *start_pos;
+ FIRSTPASS_STATS *start_pos;
- int overhead_bits;
+ int overhead_bits;
- if (!cpi->twopass.stats_in)
- {
- return ;
- }
+ if (!cpi->twopass.stats_in) {
+ return;
+ }
- vp8_clear_system_state();
+ vp8_clear_system_state();
- if (EOF == input_stats(cpi, &this_frame))
- return;
+ if (EOF == input_stats(cpi, &this_frame))
+ return;
- this_frame_error = this_frame.ssim_weighted_pred_err;
- this_frame_intra_error = this_frame.intra_error;
- this_frame_coded_error = this_frame.coded_error;
+ this_frame_error = this_frame.ssim_weighted_pred_err;
+ this_frame_intra_error = this_frame.intra_error;
+ this_frame_coded_error = this_frame.coded_error;
- start_pos = cpi->twopass.stats_in;
+ start_pos = cpi->twopass.stats_in;
- // keyframe and section processing !
- if (cpi->twopass.frames_to_key == 0)
- {
- // Define next KF group and assign bits to it
- vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
- find_next_key_frame(cpi, &this_frame_copy);
- }
+ // keyframe and section processing !
+ if (cpi->twopass.frames_to_key == 0) {
+ // Define next KF group and assign bits to it
+ vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
+ find_next_key_frame(cpi, &this_frame_copy);
+ }
- // Is this a GF / ARF (Note that a KF is always also a GF)
- if (cpi->frames_till_gf_update_due == 0)
- {
- // Define next gf group and assign bits to it
- vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
- define_gf_group(cpi, &this_frame_copy);
-
- // If we are going to code an altref frame at the end of the group and the current frame is not a key frame....
- // If the previous group used an arf this frame has already benefited from that arf boost and it should not be given extra bits
- // If the previous group was NOT coded using arf we may want to apply some boost to this GF as well
- if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME))
- {
- // Assign a standard frames worth of bits from those allocated to the GF group
- int bak = cpi->per_frame_bandwidth;
- vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
- assign_std_frame_bits(cpi, &this_frame_copy);
- cpi->per_frame_bandwidth = bak;
- }
- }
+ // Is this a GF / ARF (Note that a KF is always also a GF)
+ if (cpi->frames_till_gf_update_due == 0) {
+ // Define next gf group and assign bits to it
+ vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
+ define_gf_group(cpi, &this_frame_copy);
- // Otherwise this is an ordinary frame
- else
- {
- // Assign bits from those allocated to the GF group
- vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
- assign_std_frame_bits(cpi, &this_frame_copy);
+ // If we are going to code an altref frame at the end of the group and the current frame is not a key frame....
+ // If the previous group used an arf this frame has already benefited from that arf boost and it should not be given extra bits
+ // If the previous group was NOT coded using arf we may want to apply some boost to this GF as well
+ if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) {
+ // Assign a standard frames worth of bits from those allocated to the GF group
+ int bak = cpi->per_frame_bandwidth;
+ vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
+ assign_std_frame_bits(cpi, &this_frame_copy);
+ cpi->per_frame_bandwidth = bak;
}
-
- // Keep a globally available copy of this and the next frame's iiratio.
- cpi->twopass.this_iiratio = this_frame_intra_error /
- DOUBLE_DIVIDE_CHECK(this_frame_coded_error);
- {
- FIRSTPASS_STATS next_frame;
- if ( lookup_next_frame_stats(cpi, &next_frame) != EOF )
- {
- cpi->twopass.next_iiratio = next_frame.intra_error /
- DOUBLE_DIVIDE_CHECK(next_frame.coded_error);
- }
+ }
+
+ // Otherwise this is an ordinary frame
+ else {
+ // Assign bits from those allocated to the GF group
+ vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
+ assign_std_frame_bits(cpi, &this_frame_copy);
+ }
+
+ // Keep a globally available copy of this and the next frame's iiratio.
+ cpi->twopass.this_iiratio = this_frame_intra_error /
+ DOUBLE_DIVIDE_CHECK(this_frame_coded_error);
+ {
+ FIRSTPASS_STATS next_frame;
+ if (lookup_next_frame_stats(cpi, &next_frame) != EOF) {
+ cpi->twopass.next_iiratio = next_frame.intra_error /
+ DOUBLE_DIVIDE_CHECK(next_frame.coded_error);
}
+ }
- // Set nominal per second bandwidth for this frame
- cpi->target_bandwidth = cpi->per_frame_bandwidth * cpi->output_frame_rate;
- if (cpi->target_bandwidth < 0)
- cpi->target_bandwidth = 0;
-
+ // Set nominal per second bandwidth for this frame
+ cpi->target_bandwidth = cpi->per_frame_bandwidth * cpi->output_frame_rate;
+ if (cpi->target_bandwidth < 0)
+ cpi->target_bandwidth = 0;
- // Account for mv, mode and other overheads.
- overhead_bits = estimate_modemvcost(
- cpi, cpi->twopass.total_left_stats );
- // Special case code for first frame.
- if (cpi->common.current_video_frame == 0)
- {
- cpi->twopass.est_max_qcorrection_factor = 1.0;
+ // Account for mv, mode and other overheads.
+ overhead_bits = estimate_modemvcost(
+ cpi, cpi->twopass.total_left_stats);
- // Set a cq_level in constrained quality mode.
- if ( cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY )
- {
- int est_cq;
+ // Special case code for first frame.
+ if (cpi->common.current_video_frame == 0) {
+ cpi->twopass.est_max_qcorrection_factor = 1.0;
- est_cq =
- estimate_cq( cpi,
- cpi->twopass.total_left_stats,
- (int)(cpi->twopass.bits_left / frames_left),
- overhead_bits );
-
- cpi->cq_target_quality = cpi->oxcf.cq_level;
- if ( est_cq > cpi->cq_target_quality )
- cpi->cq_target_quality = est_cq;
- }
+ // Set a cq_level in constrained quality mode.
+ if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
+ int est_cq;
- // guess at maxq needed in 2nd pass
- cpi->twopass.maxq_max_limit = cpi->worst_quality;
- cpi->twopass.maxq_min_limit = cpi->best_quality;
-
- tmp_q = estimate_max_q(
- cpi,
+ est_cq =
+ estimate_cq(cpi,
cpi->twopass.total_left_stats,
(int)(cpi->twopass.bits_left / frames_left),
- overhead_bits );
-
- cpi->active_worst_quality = tmp_q;
- cpi->ni_av_qi = tmp_q;
- cpi->avg_q = vp8_convert_qindex_to_q( tmp_q );
-
- // Limit the maxq value returned subsequently.
- // This increases the risk of overspend or underspend if the initial
- // estimate for the clip is bad, but helps prevent excessive
- // variation in Q, especially near the end of a clip
- // where for example a small overspend may cause Q to crash
- adjust_maxq_qrange(cpi);
- }
+ overhead_bits);
- // The last few frames of a clip almost always have to few or too many
- // bits and for the sake of over exact rate control we dont want to make
- // radical adjustments to the allowed quantizer range just to use up a
- // few surplus bits or get beneath the target rate.
- else if ( (cpi->common.current_video_frame <
- (((unsigned int)cpi->twopass.total_stats->count * 255)>>8)) &&
- ((cpi->common.current_video_frame + cpi->baseline_gf_interval) <
- (unsigned int)cpi->twopass.total_stats->count) )
- {
- if (frames_left < 1)
- frames_left = 1;
-
- tmp_q = estimate_max_q(
- cpi,
- cpi->twopass.total_left_stats,
- (int)(cpi->twopass.bits_left / frames_left),
- overhead_bits );
-
- // Make a damped adjustment to active max Q
- cpi->active_worst_quality =
- adjust_active_maxq( cpi->active_worst_quality, tmp_q );
+ cpi->cq_target_quality = cpi->oxcf.cq_level;
+ if (est_cq > cpi->cq_target_quality)
+ cpi->cq_target_quality = est_cq;
}
- cpi->twopass.frames_to_key --;
+ // guess at maxq needed in 2nd pass
+ cpi->twopass.maxq_max_limit = cpi->worst_quality;
+ cpi->twopass.maxq_min_limit = cpi->best_quality;
- // Update the total stats remaining sturcture
- subtract_stats(cpi->twopass.total_left_stats, &this_frame );
+ tmp_q = estimate_max_q(
+ cpi,
+ cpi->twopass.total_left_stats,
+ (int)(cpi->twopass.bits_left / frames_left),
+ overhead_bits);
+
+ cpi->active_worst_quality = tmp_q;
+ cpi->ni_av_qi = tmp_q;
+ cpi->avg_q = vp8_convert_qindex_to_q(tmp_q);
+
+ // Limit the maxq value returned subsequently.
+ // This increases the risk of overspend or underspend if the initial
+ // estimate for the clip is bad, but helps prevent excessive
+ // variation in Q, especially near the end of a clip
+ // where for example a small overspend may cause Q to crash
+ adjust_maxq_qrange(cpi);
+ }
+
+ // The last few frames of a clip almost always have to few or too many
+ // bits and for the sake of over exact rate control we dont want to make
+ // radical adjustments to the allowed quantizer range just to use up a
+ // few surplus bits or get beneath the target rate.
+ else if ((cpi->common.current_video_frame <
+ (((unsigned int)cpi->twopass.total_stats->count * 255) >> 8)) &&
+ ((cpi->common.current_video_frame + cpi->baseline_gf_interval) <
+ (unsigned int)cpi->twopass.total_stats->count)) {
+ if (frames_left < 1)
+ frames_left = 1;
+
+ tmp_q = estimate_max_q(
+ cpi,
+ cpi->twopass.total_left_stats,
+ (int)(cpi->twopass.bits_left / frames_left),
+ overhead_bits);
+
+ // Make a damped adjustment to active max Q
+ cpi->active_worst_quality =
+ adjust_active_maxq(cpi->active_worst_quality, tmp_q);
+ }
+
+ cpi->twopass.frames_to_key--;
+
+ // Update the total stats remaining sturcture
+ subtract_stats(cpi->twopass.total_left_stats, &this_frame);
}
-static BOOL test_candidate_kf(VP8_COMP *cpi, FIRSTPASS_STATS *last_frame, FIRSTPASS_STATS *this_frame, FIRSTPASS_STATS *next_frame)
-{
- BOOL is_viable_kf = FALSE;
-
- // Does the frame satisfy the primary criteria of a key frame
- // If so, then examine how well it predicts subsequent frames
- if ((this_frame->pcnt_second_ref < 0.10) &&
- (next_frame->pcnt_second_ref < 0.10) &&
- ((this_frame->pcnt_inter < 0.05) ||
- (
- ((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .35) &&
- ((this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) &&
- ((fabs(last_frame->coded_error - this_frame->coded_error) / DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > .40) ||
- (fabs(last_frame->intra_error - this_frame->intra_error) / DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > .40) ||
- ((next_frame->intra_error / DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5)
- )
+static BOOL test_candidate_kf(VP8_COMP *cpi, FIRSTPASS_STATS *last_frame, FIRSTPASS_STATS *this_frame, FIRSTPASS_STATS *next_frame) {
+ BOOL is_viable_kf = FALSE;
+
+ // Does the frame satisfy the primary criteria of a key frame
+ // If so, then examine how well it predicts subsequent frames
+ if ((this_frame->pcnt_second_ref < 0.10) &&
+ (next_frame->pcnt_second_ref < 0.10) &&
+ ((this_frame->pcnt_inter < 0.05) ||
+ (
+ ((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .35) &&
+ ((this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) &&
+ ((fabs(last_frame->coded_error - this_frame->coded_error) / DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > .40) ||
+ (fabs(last_frame->intra_error - this_frame->intra_error) / DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > .40) ||
+ ((next_frame->intra_error / DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5)
)
- )
)
- {
- int i;
- FIRSTPASS_STATS *start_pos;
-
- FIRSTPASS_STATS local_next_frame;
-
- double boost_score = 0.0;
- double old_boost_score = 0.0;
- double decay_accumulator = 1.0;
- double next_iiratio;
-
- vpx_memcpy(&local_next_frame, next_frame, sizeof(*next_frame));
-
- // Note the starting file position so we can reset to it
- start_pos = cpi->twopass.stats_in;
-
- // Examine how well the key frame predicts subsequent frames
- for (i = 0 ; i < 16; i++)
- {
- next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)) ;
-
- if (next_iiratio > RMAX)
- next_iiratio = RMAX;
-
- // Cumulative effect of decay in prediction quality
- if (local_next_frame.pcnt_inter > 0.85)
- decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter;
- else
- decay_accumulator = decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0);
-
- //decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter;
-
- // Keep a running total
- boost_score += (decay_accumulator * next_iiratio);
-
- // Test various breakout clauses
- if ((local_next_frame.pcnt_inter < 0.05) ||
- (next_iiratio < 1.5) ||
- (((local_next_frame.pcnt_inter -
- local_next_frame.pcnt_neutral) < 0.20) &&
- (next_iiratio < 3.0)) ||
- ((boost_score - old_boost_score) < 3.0) ||
- (local_next_frame.intra_error < 200)
- )
- {
- break;
- }
+ )
+ ) {
+ int i;
+ FIRSTPASS_STATS *start_pos;
- old_boost_score = boost_score;
+ FIRSTPASS_STATS local_next_frame;
- // Get the next frame details
- if (EOF == input_stats(cpi, &local_next_frame))
- break;
- }
+ double boost_score = 0.0;
+ double old_boost_score = 0.0;
+ double decay_accumulator = 1.0;
+ double next_iiratio;
- // If there is tolerable prediction for at least the next 3 frames then break out else discard this pottential key frame and move on
- if (boost_score > 30.0 && (i > 3))
- is_viable_kf = TRUE;
- else
- {
- // Reset the file position
- reset_fpf_position(cpi, start_pos);
+ vpx_memcpy(&local_next_frame, next_frame, sizeof(*next_frame));
- is_viable_kf = FALSE;
- }
- }
+ // Note the starting file position so we can reset to it
+ start_pos = cpi->twopass.stats_in;
- return is_viable_kf;
-}
-static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
-{
- int i,j;
- FIRSTPASS_STATS last_frame;
- FIRSTPASS_STATS first_frame;
- FIRSTPASS_STATS next_frame;
- FIRSTPASS_STATS *start_position;
+ // Examine how well the key frame predicts subsequent frames
+ for (i = 0; i < 16; i++) {
+ next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error));
+
+ if (next_iiratio > RMAX)
+ next_iiratio = RMAX;
+
+ // Cumulative effect of decay in prediction quality
+ if (local_next_frame.pcnt_inter > 0.85)
+ decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter;
+ else
+ decay_accumulator = decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0);
+
+ // decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter;
+
+ // Keep a running total
+ boost_score += (decay_accumulator * next_iiratio);
+
+ // Test various breakout clauses
+ if ((local_next_frame.pcnt_inter < 0.05) ||
+ (next_iiratio < 1.5) ||
+ (((local_next_frame.pcnt_inter -
+ local_next_frame.pcnt_neutral) < 0.20) &&
+ (next_iiratio < 3.0)) ||
+ ((boost_score - old_boost_score) < 3.0) ||
+ (local_next_frame.intra_error < 200)
+ ) {
+ break;
+ }
- double decay_accumulator = 1.0;
- double zero_motion_accumulator = 1.0;
- double boost_score = 0;
- double old_boost_score = 0.0;
- double loop_decay_rate;
+ old_boost_score = boost_score;
- double kf_mod_err = 0.0;
- double kf_group_err = 0.0;
- double kf_group_intra_err = 0.0;
- double kf_group_coded_err = 0.0;
- double recent_loop_decay[8] = {1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0};
+ // Get the next frame details
+ if (EOF == input_stats(cpi, &local_next_frame))
+ break;
+ }
- vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean
+ // If there is tolerable prediction for at least the next 3 frames then break out else discard this pottential key frame and move on
+ if (boost_score > 30.0 && (i > 3))
+ is_viable_kf = TRUE;
+ else {
+ // Reset the file position
+ reset_fpf_position(cpi, start_pos);
- vp8_clear_system_state(); //__asm emms;
- start_position = cpi->twopass.stats_in;
+ is_viable_kf = FALSE;
+ }
+ }
- cpi->common.frame_type = KEY_FRAME;
+ return is_viable_kf;
+}
+static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) {
+ int i, j;
+ FIRSTPASS_STATS last_frame;
+ FIRSTPASS_STATS first_frame;
+ FIRSTPASS_STATS next_frame;
+ FIRSTPASS_STATS *start_position;
- // is this a forced key frame by interval
- cpi->this_key_frame_forced = cpi->next_key_frame_forced;
+ double decay_accumulator = 1.0;
+ double zero_motion_accumulator = 1.0;
+ double boost_score = 0;
+ double old_boost_score = 0.0;
+ double loop_decay_rate;
- // Clear the alt ref active flag as this can never be active on a key frame
- cpi->source_alt_ref_active = FALSE;
+ double kf_mod_err = 0.0;
+ double kf_group_err = 0.0;
+ double kf_group_intra_err = 0.0;
+ double kf_group_coded_err = 0.0;
+ double recent_loop_decay[8] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
- // Kf is always a gf so clear frames till next gf counter
- cpi->frames_till_gf_update_due = 0;
+ vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean
- cpi->twopass.frames_to_key = 1;
+ vp8_clear_system_state(); // __asm emms;
+ start_position = cpi->twopass.stats_in;
- // Take a copy of the initial frame details
- vpx_memcpy(&first_frame, this_frame, sizeof(*this_frame));
+ cpi->common.frame_type = KEY_FRAME;
- cpi->twopass.kf_group_bits = 0; // Total bits avaialable to kf group
- cpi->twopass.kf_group_error_left = 0; // Group modified error score.
+ // is this a forced key frame by interval
+ cpi->this_key_frame_forced = cpi->next_key_frame_forced;
- kf_mod_err = calculate_modified_err(cpi, this_frame);
+ // Clear the alt ref active flag as this can never be active on a key frame
+ cpi->source_alt_ref_active = FALSE;
- // find the next keyframe
- i = 0;
- while (cpi->twopass.stats_in < cpi->twopass.stats_in_end)
- {
- // Accumulate kf group error
- kf_group_err += calculate_modified_err(cpi, this_frame);
+ // Kf is always a gf so clear frames till next gf counter
+ cpi->frames_till_gf_update_due = 0;
- // These figures keep intra and coded error counts for all frames including key frames in the group.
- // The effect of the key frame itself can be subtracted out using the first_frame data collected above
- kf_group_intra_err += this_frame->intra_error;
- kf_group_coded_err += this_frame->coded_error;
+ cpi->twopass.frames_to_key = 1;
- // load a the next frame's stats
- vpx_memcpy(&last_frame, this_frame, sizeof(*this_frame));
- input_stats(cpi, this_frame);
+ // Take a copy of the initial frame details
+ vpx_memcpy(&first_frame, this_frame, sizeof(*this_frame));
- // Provided that we are not at the end of the file...
- if (cpi->oxcf.auto_key
- && lookup_next_frame_stats(cpi, &next_frame) != EOF)
- {
- // Normal scene cut check
- if ( test_candidate_kf(cpi, &last_frame, this_frame, &next_frame) )
- {
- break;
- }
+ cpi->twopass.kf_group_bits = 0; // Total bits avaialable to kf group
+ cpi->twopass.kf_group_error_left = 0; // Group modified error score.
- // How fast is prediction quality decaying
- loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
-
- // We want to know something about the recent past... rather than
- // as used elsewhere where we are concened with decay in prediction
- // quality since the last GF or KF.
- recent_loop_decay[i%8] = loop_decay_rate;
- decay_accumulator = 1.0;
- for (j = 0; j < 8; j++)
- {
- decay_accumulator = decay_accumulator * recent_loop_decay[j];
- }
+ kf_mod_err = calculate_modified_err(cpi, this_frame);
- // Special check for transition or high motion followed by a
- // to a static scene.
- if ( detect_transition_to_still( cpi, i,
- (cpi->key_frame_frequency-i),
- loop_decay_rate,
- decay_accumulator ) )
- {
- break;
- }
+ // find the next keyframe
+ i = 0;
+ while (cpi->twopass.stats_in < cpi->twopass.stats_in_end) {
+ // Accumulate kf group error
+ kf_group_err += calculate_modified_err(cpi, this_frame);
+ // These figures keep intra and coded error counts for all frames including key frames in the group.
+ // The effect of the key frame itself can be subtracted out using the first_frame data collected above
+ kf_group_intra_err += this_frame->intra_error;
+ kf_group_coded_err += this_frame->coded_error;
- // Step on to the next frame
- cpi->twopass.frames_to_key ++;
+ // load a the next frame's stats
+ vpx_memcpy(&last_frame, this_frame, sizeof(*this_frame));
+ input_stats(cpi, this_frame);
- // If we don't have a real key frame within the next two
- // forcekeyframeevery intervals then break out of the loop.
- if (cpi->twopass.frames_to_key >= 2 *(int)cpi->key_frame_frequency)
- break;
- } else
- cpi->twopass.frames_to_key ++;
+ // Provided that we are not at the end of the file...
+ if (cpi->oxcf.auto_key
+ && lookup_next_frame_stats(cpi, &next_frame) != EOF) {
+ // Normal scene cut check
+ if (test_candidate_kf(cpi, &last_frame, this_frame, &next_frame)) {
+ break;
+ }
+
+ // How fast is prediction quality decaying
+ loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
+
+ // We want to know something about the recent past... rather than
+ // as used elsewhere where we are concened with decay in prediction
+ // quality since the last GF or KF.
+ recent_loop_decay[i % 8] = loop_decay_rate;
+ decay_accumulator = 1.0;
+ for (j = 0; j < 8; j++) {
+ decay_accumulator = decay_accumulator * recent_loop_decay[j];
+ }
+
+ // Special check for transition or high motion followed by a
+ // to a static scene.
+ if (detect_transition_to_still(cpi, i,
+ (cpi->key_frame_frequency - i),
+ loop_decay_rate,
+ decay_accumulator)) {
+ break;
+ }
- i++;
- }
- // If there is a max kf interval set by the user we must obey it.
- // We already breakout of the loop above at 2x max.
- // This code centers the extra kf if the actual natural
- // interval is between 1x and 2x
- if (cpi->oxcf.auto_key
- && cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency )
- {
- FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in;
- FIRSTPASS_STATS tmp_frame;
+ // Step on to the next frame
+ cpi->twopass.frames_to_key++;
- cpi->twopass.frames_to_key /= 2;
+ // If we don't have a real key frame within the next two
+ // forcekeyframeevery intervals then break out of the loop.
+ if (cpi->twopass.frames_to_key >= 2 * (int)cpi->key_frame_frequency)
+ break;
+ } else
+ cpi->twopass.frames_to_key++;
- // Copy first frame details
- vpx_memcpy(&tmp_frame, &first_frame, sizeof(first_frame));
+ i++;
+ }
- // Reset to the start of the group
- reset_fpf_position(cpi, start_position);
+ // If there is a max kf interval set by the user we must obey it.
+ // We already breakout of the loop above at 2x max.
+ // This code centers the extra kf if the actual natural
+ // interval is between 1x and 2x
+ if (cpi->oxcf.auto_key
+ && cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency) {
+ FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in;
+ FIRSTPASS_STATS tmp_frame;
- kf_group_err = 0;
- kf_group_intra_err = 0;
- kf_group_coded_err = 0;
+ cpi->twopass.frames_to_key /= 2;
- // Rescan to get the correct error data for the forced kf group
- for( i = 0; i < cpi->twopass.frames_to_key; i++ )
- {
- // Accumulate kf group errors
- kf_group_err += calculate_modified_err(cpi, &tmp_frame);
- kf_group_intra_err += tmp_frame.intra_error;
- kf_group_coded_err += tmp_frame.coded_error;
+ // Copy first frame details
+ vpx_memcpy(&tmp_frame, &first_frame, sizeof(first_frame));
- // Load a the next frame's stats
- input_stats(cpi, &tmp_frame);
- }
+ // Reset to the start of the group
+ reset_fpf_position(cpi, start_position);
+
+ kf_group_err = 0;
+ kf_group_intra_err = 0;
+ kf_group_coded_err = 0;
- // Reset to the start of the group
- reset_fpf_position(cpi, current_pos);
+ // Rescan to get the correct error data for the forced kf group
+ for (i = 0; i < cpi->twopass.frames_to_key; i++) {
+ // Accumulate kf group errors
+ kf_group_err += calculate_modified_err(cpi, &tmp_frame);
+ kf_group_intra_err += tmp_frame.intra_error;
+ kf_group_coded_err += tmp_frame.coded_error;
- cpi->next_key_frame_forced = TRUE;
+ // Load a the next frame's stats
+ input_stats(cpi, &tmp_frame);
}
+
+ // Reset to the start of the group
+ reset_fpf_position(cpi, current_pos);
+
+ cpi->next_key_frame_forced = TRUE;
+ } else
+ cpi->next_key_frame_forced = FALSE;
+
+ // Special case for the last frame of the file
+ if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) {
+ // Accumulate kf group error
+ kf_group_err += calculate_modified_err(cpi, this_frame);
+
+ // These figures keep intra and coded error counts for all frames including key frames in the group.
+ // The effect of the key frame itself can be subtracted out using the first_frame data collected above
+ kf_group_intra_err += this_frame->intra_error;
+ kf_group_coded_err += this_frame->coded_error;
+ }
+
+ // Calculate the number of bits that should be assigned to the kf group.
+ if ((cpi->twopass.bits_left > 0) && (cpi->twopass.modified_error_left > 0.0)) {
+ // Max for a single normal frame (not key frame)
+ int max_bits = frame_max_bits(cpi);
+
+ // Maximum bits for the kf group
+ int64_t max_grp_bits;
+
+ // Default allocation based on bits left and relative
+ // complexity of the section
+ cpi->twopass.kf_group_bits = (int64_t)(cpi->twopass.bits_left *
+ (kf_group_err /
+ cpi->twopass.modified_error_left));
+
+ // Clip based on maximum per frame rate defined by the user.
+ max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key;
+ if (cpi->twopass.kf_group_bits > max_grp_bits)
+ cpi->twopass.kf_group_bits = max_grp_bits;
+ } else
+ cpi->twopass.kf_group_bits = 0;
+
+ // Reset the first pass file position
+ reset_fpf_position(cpi, start_position);
+
+ // determine how big to make this keyframe based on how well the subsequent frames use inter blocks
+ decay_accumulator = 1.0;
+ boost_score = 0.0;
+ loop_decay_rate = 1.00; // Starting decay rate
+
+ for (i = 0; i < cpi->twopass.frames_to_key; i++) {
+ double r;
+
+ if (EOF == input_stats(cpi, &next_frame))
+ break;
+
+ if (next_frame.intra_error > cpi->twopass.kf_intra_err_min)
+ r = (IIKFACTOR2 * next_frame.intra_error /
+ DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
else
- cpi->next_key_frame_forced = FALSE;
-
- // Special case for the last frame of the file
- if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end)
- {
- // Accumulate kf group error
- kf_group_err += calculate_modified_err(cpi, this_frame);
-
- // These figures keep intra and coded error counts for all frames including key frames in the group.
- // The effect of the key frame itself can be subtracted out using the first_frame data collected above
- kf_group_intra_err += this_frame->intra_error;
- kf_group_coded_err += this_frame->coded_error;
+ r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min /
+ DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
+
+ if (r > RMAX)
+ r = RMAX;
+
+ // Monitor for static sections.
+ if ((next_frame.pcnt_inter - next_frame.pcnt_motion) <
+ zero_motion_accumulator) {
+ zero_motion_accumulator =
+ (next_frame.pcnt_inter - next_frame.pcnt_motion);
}
- // Calculate the number of bits that should be assigned to the kf group.
- if ((cpi->twopass.bits_left > 0) && (cpi->twopass.modified_error_left > 0.0))
- {
- // Max for a single normal frame (not key frame)
- int max_bits = frame_max_bits(cpi);
-
- // Maximum bits for the kf group
- int64_t max_grp_bits;
-
- // Default allocation based on bits left and relative
- // complexity of the section
- cpi->twopass.kf_group_bits = (int64_t)( cpi->twopass.bits_left *
- ( kf_group_err /
- cpi->twopass.modified_error_left ));
-
- // Clip based on maximum per frame rate defined by the user.
- max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key;
- if (cpi->twopass.kf_group_bits > max_grp_bits)
- cpi->twopass.kf_group_bits = max_grp_bits;
+ // How fast is prediction quality decaying
+ if (!detect_flash(cpi, 0)) {
+ loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
+ decay_accumulator = decay_accumulator * loop_decay_rate;
+ decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
}
- else
- cpi->twopass.kf_group_bits = 0;
- // Reset the first pass file position
- reset_fpf_position(cpi, start_position);
+ boost_score += (decay_accumulator * r);
- // determine how big to make this keyframe based on how well the subsequent frames use inter blocks
- decay_accumulator = 1.0;
- boost_score = 0.0;
- loop_decay_rate = 1.00; // Starting decay rate
-
- for (i = 0 ; i < cpi->twopass.frames_to_key ; i++)
- {
- double r;
-
- if (EOF == input_stats(cpi, &next_frame))
- break;
-
- if (next_frame.intra_error > cpi->twopass.kf_intra_err_min)
- r = (IIKFACTOR2 * next_frame.intra_error /
- DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
- else
- r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min /
- DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
-
- if (r > RMAX)
- r = RMAX;
-
- // Monitor for static sections.
- if ( (next_frame.pcnt_inter - next_frame.pcnt_motion) <
- zero_motion_accumulator )
- {
- zero_motion_accumulator =
- (next_frame.pcnt_inter - next_frame.pcnt_motion);
- }
+ if ((i > MIN_GF_INTERVAL) &&
+ ((boost_score - old_boost_score) < 6.25)) {
+ break;
+ }
- // How fast is prediction quality decaying
- if ( !detect_flash(cpi, 0) )
- {
- loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
- decay_accumulator = decay_accumulator * loop_decay_rate;
- decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
- }
+ old_boost_score = boost_score;
+ }
- boost_score += (decay_accumulator * r);
+ {
+ FIRSTPASS_STATS sectionstats;
- if ((i > MIN_GF_INTERVAL) &&
- ((boost_score - old_boost_score) < 6.25))
- {
- break;
- }
+ zero_stats(&sectionstats);
+ reset_fpf_position(cpi, start_position);
- old_boost_score = boost_score;
+ for (i = 0; i < cpi->twopass.frames_to_key; i++) {
+ input_stats(cpi, &next_frame);
+ accumulate_stats(&sectionstats, &next_frame);
}
- {
- FIRSTPASS_STATS sectionstats;
+ avg_stats(&sectionstats);
- zero_stats(&sectionstats);
- reset_fpf_position(cpi, start_position);
+ cpi->twopass.section_intra_rating =
+ sectionstats.intra_error
+ / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
+ }
- for (i = 0 ; i < cpi->twopass.frames_to_key ; i++)
- {
- input_stats(cpi, &next_frame);
- accumulate_stats(&sectionstats, &next_frame);
- }
+ // Reset the first pass file position
+ reset_fpf_position(cpi, start_position);
- avg_stats(&sectionstats);
+ // Work out how many bits to allocate for the key frame itself
+ if (1) {
+ int kf_boost = boost_score;
+ int allocation_chunks;
+ int alt_kf_bits;
- cpi->twopass.section_intra_rating =
- sectionstats.intra_error
- / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
+ if (kf_boost < 300) {
+ kf_boost += (cpi->twopass.frames_to_key * 3);
+ if (kf_boost > 300)
+ kf_boost = 300;
}
- // Reset the first pass file position
- reset_fpf_position(cpi, start_position);
-
- // Work out how many bits to allocate for the key frame itself
- if (1)
- {
- int kf_boost = boost_score;
- int allocation_chunks;
- int alt_kf_bits;
-
- if ( kf_boost < 300 )
- {
- kf_boost += (cpi->twopass.frames_to_key * 3);
- if ( kf_boost > 300 )
- kf_boost = 300;
- }
-
- if (kf_boost < 250) // Min KF boost
- kf_boost = 250;
-
- // Make a note of baseline boost and the zero motion
- // accumulator value for use elsewhere.
- cpi->kf_boost = kf_boost;
- cpi->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0);
-
- // We do three calculations for kf size.
- // The first is based on the error score for the whole kf group.
- // The second (optionaly) on the key frames own error if this is
- // smaller than the average for the group.
- // The final one insures that the frame receives at least the
- // allocation it would have received based on its own error score vs
- // the error score remaining
- // Special case if the sequence appears almost totaly static
- // In this case we want to spend almost all of the bits on the
- // key frame.
- // cpi->twopass.frames_to_key-1 because key frame itself is taken
- // care of by kf_boost.
- if ( zero_motion_accumulator >= 0.99 )
- {
- allocation_chunks =
- ((cpi->twopass.frames_to_key - 1) * 10) + kf_boost;
- }
- else
- {
- allocation_chunks =
- ((cpi->twopass.frames_to_key - 1) * 100) + kf_boost;
- }
+ if (kf_boost < 250) // Min KF boost
+ kf_boost = 250;
+
+ // Make a note of baseline boost and the zero motion
+ // accumulator value for use elsewhere.
+ cpi->kf_boost = kf_boost;
+ cpi->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0);
+
+ // We do three calculations for kf size.
+ // The first is based on the error score for the whole kf group.
+ // The second (optionaly) on the key frames own error if this is
+ // smaller than the average for the group.
+ // The final one insures that the frame receives at least the
+ // allocation it would have received based on its own error score vs
+ // the error score remaining
+ // Special case if the sequence appears almost totaly static
+ // In this case we want to spend almost all of the bits on the
+ // key frame.
+ // cpi->twopass.frames_to_key-1 because key frame itself is taken
+ // care of by kf_boost.
+ if (zero_motion_accumulator >= 0.99) {
+ allocation_chunks =
+ ((cpi->twopass.frames_to_key - 1) * 10) + kf_boost;
+ } else {
+ allocation_chunks =
+ ((cpi->twopass.frames_to_key - 1) * 100) + kf_boost;
+ }
- // Prevent overflow
- if ( kf_boost > 1028 )
- {
- int divisor = kf_boost >> 10;
- kf_boost /= divisor;
- allocation_chunks /= divisor;
- }
+ // Prevent overflow
+ if (kf_boost > 1028) {
+ int divisor = kf_boost >> 10;
+ kf_boost /= divisor;
+ allocation_chunks /= divisor;
+ }
- cpi->twopass.kf_group_bits = (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits;
+ cpi->twopass.kf_group_bits = (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits;
- // Calculate the number of bits to be spent on the key frame
- cpi->twopass.kf_bits = (int)((double)kf_boost * ((double)cpi->twopass.kf_group_bits / (double)allocation_chunks));
+ // Calculate the number of bits to be spent on the key frame
+ cpi->twopass.kf_bits = (int)((double)kf_boost * ((double)cpi->twopass.kf_group_bits / (double)allocation_chunks));
- // If the key frame is actually easier than the average for the
- // kf group (which does sometimes happen... eg a blank intro frame)
- // Then use an alternate calculation based on the kf error score
- // which should give a smaller key frame.
- if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key)
- {
- double alt_kf_grp_bits =
- ((double)cpi->twopass.bits_left *
- (kf_mod_err * (double)cpi->twopass.frames_to_key) /
- DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left));
+ // If the key frame is actually easier than the average for the
+ // kf group (which does sometimes happen... eg a blank intro frame)
+ // Then use an alternate calculation based on the kf error score
+ // which should give a smaller key frame.
+ if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key) {
+ double alt_kf_grp_bits =
+ ((double)cpi->twopass.bits_left *
+ (kf_mod_err * (double)cpi->twopass.frames_to_key) /
+ DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left));
- alt_kf_bits = (int)((double)kf_boost *
- (alt_kf_grp_bits / (double)allocation_chunks));
+ alt_kf_bits = (int)((double)kf_boost *
+ (alt_kf_grp_bits / (double)allocation_chunks));
- if (cpi->twopass.kf_bits > alt_kf_bits)
- {
- cpi->twopass.kf_bits = alt_kf_bits;
- }
- }
- // Else if it is much harder than other frames in the group make sure
- // it at least receives an allocation in keeping with its relative
- // error score
- else
- {
- alt_kf_bits =
- (int)((double)cpi->twopass.bits_left *
- (kf_mod_err /
- DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left)));
-
- if (alt_kf_bits > cpi->twopass.kf_bits)
- {
- cpi->twopass.kf_bits = alt_kf_bits;
- }
- }
+ if (cpi->twopass.kf_bits > alt_kf_bits) {
+ cpi->twopass.kf_bits = alt_kf_bits;
+ }
+ }
+ // Else if it is much harder than other frames in the group make sure
+ // it at least receives an allocation in keeping with its relative
+ // error score
+ else {
+ alt_kf_bits =
+ (int)((double)cpi->twopass.bits_left *
+ (kf_mod_err /
+ DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left)));
+
+ if (alt_kf_bits > cpi->twopass.kf_bits) {
+ cpi->twopass.kf_bits = alt_kf_bits;
+ }
+ }
- cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits;
- cpi->twopass.kf_bits += cpi->min_frame_bandwidth; // Add in the minimum frame allowance
+ cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits;
+ cpi->twopass.kf_bits += cpi->min_frame_bandwidth; // Add in the minimum frame allowance
- cpi->per_frame_bandwidth = cpi->twopass.kf_bits; // Peer frame bit target for this frame
- cpi->target_bandwidth = cpi->twopass.kf_bits * cpi->output_frame_rate; // Convert to a per second bitrate
- }
+ cpi->per_frame_bandwidth = cpi->twopass.kf_bits; // Peer frame bit target for this frame
+ cpi->target_bandwidth = cpi->twopass.kf_bits * cpi->output_frame_rate; // Convert to a per second bitrate
+ }
- // Note the total error score of the kf group minus the key frame itself
- cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err);
+ // Note the total error score of the kf group minus the key frame itself
+ cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err);
- // Adjust the count of total modified error left.
- // The count of bits left is adjusted elsewhere based on real coded frame sizes
- cpi->twopass.modified_error_left -= kf_group_err;
+ // Adjust the count of total modified error left.
+ // The count of bits left is adjusted elsewhere based on real coded frame sizes
+ cpi->twopass.modified_error_left -= kf_group_err;
}