1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
/* Assembler macros for CRIS.
Copyright (C) 1999, 2001, 2003 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
#include <asm/unistd.h>
#include <sysdeps/cris/sysdep.h>
#include <sys/syscall.h>
#include "config.h"
#undef SYS_ify
#define SYS_ify(syscall_name) (__NR_##syscall_name)
#ifdef __ASSEMBLER__
/* For Linux we can use the system call table in the header file
/usr/include/asm/unistd.h
of the kernel. But these symbols do not follow the SYS_* syntax
so we have to redefine the `SYS_ify' macro here. */
#undef SYS_ify
#define SYS_ify(syscall_name) __NR_##syscall_name
/* ELF-like local names start with `.L'. */
#undef L
#define L(name) .L##name
/* Linux uses a negative return value to indicate syscall errors,
unlike most Unices, which use the condition codes' carry flag.
Since version 2.1 the return value of a system call might be
negative even if the call succeeded. E.g., the `lseek' system call
might return a large offset. Therefore we must not anymore test
for < 0, but test for a real error by making sure the value in %eax
is a real error number. Linus said he will make sure the no syscall
returns a value in -1 .. -4095 as a valid result so we can safely
test with -4095. */
/* Syscall wrappers consist of
#include <sysdep.h>
PSEUDO (...)
ret
PSEUDO_END (...)
which expand to the following. */
/* Linux takes system call arguments in registers:
syscall number R9
arg 1 R10
arg 2 R11
arg 3 R12
arg 4 R13
arg 5 MOF
arg 6 SRP
The compiler calls us by the C convention:
syscall number in the DO_CALL macro
arg 1 R10
arg 2 R11
arg 3 R12
arg 4 R13
arg 5 [SP]
arg 6 [SP + 4]
*/
/* Note that we use "bhs", since we want to match
(unsigned) -4096 .. 0xffffffff. Using "ble" would match
-4096 .. -2**31. */
#define PSEUDO(name, syscall_name, args) \
ENTRY (name) @ \
DOARGS_##args @ \
movu.w SYS_ify (syscall_name),$r9 @ \
break 13 @ \
cmps.w -4096,$r10 @ \
bhs 0f @ \
nop @ \
UNDOARGS_return_##args
/* Ouch! We have to remember not to use "ret" in assembly-code.
("Luckily", mnemonics are case-insensitive.)
Note that we assume usage is exactly:
PSEUDO (...)
ret
PSEUDO_END (...)
so we can put all payload into PSEUDO (except for error handling). */
#define ret
#define PSEUDO_END(name) \
0: @ \
SETUP_PIC @ \
PLTJUMP (syscall_error) @ \
END (name)
#define PSEUDO_NOERRNO(name, syscall_name, args) \
ENTRY (name) @ \
DOARGS_##args @ \
movu.w SYS_ify (syscall_name),$r9 @ \
break 13 @ \
UNDOARGS_return_##args
#define ret_NOERRNO
#define PSEUDO_END_NOERRNO(name) \
END (name)
#define DOARGS_0
#define DOARGS_1
#define DOARGS_2
#define DOARGS_3
#define DOARGS_4
#define DOARGS_5 \
move [$sp],$mof
/* To avoid allocating stack-space, we re-use the arg 5 (MOF) entry by
storing SRP into it. If called with too-few arguments, we will crash,
but that will happen in the general case too. */
#define DOARGS_6 \
DOARGS_5 @ \
move $srp,[$sp] @ \
move [$sp+4],$srp
#define UNDOARGS_return_0 \
Ret @ \
nop
#define UNDOARGS_return_1 UNDOARGS_return_0
#define UNDOARGS_return_2 UNDOARGS_return_0
#define UNDOARGS_return_3 UNDOARGS_return_0
#define UNDOARGS_return_4 UNDOARGS_return_0
#define UNDOARGS_return_5 UNDOARGS_return_0
/* We assume the following code will be "ret" and "PSEUDO_END". */
#define UNDOARGS_return_return_6 \
jump [$sp]
#else /* not __ASSEMBLER__ */
#undef INLINE_SYSCALL
#define INLINE_SYSCALL(name, nr, args...) \
({ \
unsigned long __sys_res; \
register unsigned long __res asm ("r10"); \
LOAD_ARGS_c_##nr (args) \
register unsigned long __callno asm ("r9") \
= SYS_ify (name); \
asm volatile (LOAD_ARGS_asm_##nr (args) \
"break 13" \
: "=r" (__res) \
: ASM_ARGS_##nr (args) \
: ASM_CLOBBER_##nr); \
__sys_res = __res; \
\
if (__sys_res >= (unsigned long) -4096) \
{ \
__set_errno (- __sys_res); \
__sys_res = (unsigned long) -1; \
} \
__sys_res; \
})
#define LOAD_ARGS_c_0()
#define LOAD_ARGS_asm_0()
#define ASM_CLOBBER_0 "memory"
#define ASM_ARGS_0() "r" (__callno)
#define LOAD_ARGS_c_1(r10) \
LOAD_ARGS_c_0() \
register unsigned long __r10 __asm__ ("r10") = (unsigned long) (r10);
#define LOAD_ARGS_asm_1(r10) LOAD_ARGS_asm_0 ()
#define ASM_CLOBBER_1 ASM_CLOBBER_0
#define ASM_ARGS_1(r10) ASM_ARGS_0 (), "0" (__r10)
#define LOAD_ARGS_c_2(r10, r11) \
LOAD_ARGS_c_1(r10) \
register unsigned long __r11 __asm__ ("r11") = (unsigned long) (r11);
#define LOAD_ARGS_asm_2(r10, r11) LOAD_ARGS_asm_1 (r10)
#define ASM_CLOBBER_2 ASM_CLOBBER_1
#define ASM_ARGS_2(r10, r11) ASM_ARGS_1 (r10), "r" (__r11)
#define LOAD_ARGS_c_3(r10, r11, r12) \
LOAD_ARGS_c_2(r10, r11) \
register unsigned long __r12 __asm__ ("r12") = (unsigned long) (r12);
#define LOAD_ARGS_asm_3(r10, r11, r12) LOAD_ARGS_asm_2 (r10, r11)
#define ASM_CLOBBER_3 ASM_CLOBBER_2
#define ASM_ARGS_3(r10, r11, r12) ASM_ARGS_2 (r10, r11), "r" (__r12)
#define LOAD_ARGS_c_4(r10, r11, r12, r13) \
LOAD_ARGS_c_3(r10, r11, r12) \
register unsigned long __r13 __asm__ ("r13") = (unsigned long) (r13);
#define LOAD_ARGS_asm_4(r10, r11, r12, r13) LOAD_ARGS_asm_3 (r10, r11, r12)
#define ASM_CLOBBER_4 ASM_CLOBBER_3
#define ASM_ARGS_4(r10, r11, r12, r13) ASM_ARGS_3 (r10, r11, r12), "r" (__r13)
#define LOAD_ARGS_c_5(r10, r11, r12, r13, mof) \
LOAD_ARGS_c_4(r10, r11, r12, r13)
#define LOAD_ARGS_asm_5(r10, r11, r12, r13, mof) \
LOAD_ARGS_asm_4 (r10, r11, r12, r13) "move %6,$mof\n\t"
#define ASM_CLOBBER_5 ASM_CLOBBER_4
#define ASM_ARGS_5(r10, r11, r12, r13, mof) \
ASM_ARGS_4 (r10, r11, r12, r13), "g" (mof)
#define LOAD_ARGS_c_6(r10, r11, r12, r13, mof, srp) \
LOAD_ARGS_c_5(r10, r11, r12, r13, mof)
#define LOAD_ARGS_asm_6(r10, r11, r12, r13, mof, srp) \
LOAD_ARGS_asm_5(r10, r11, r12, r13, mof) \
"move %7,$srp\n\t"
#define ASM_CLOBBER_6 ASM_CLOBBER_5, "srp"
#define ASM_ARGS_6(r10, r11, r12, r13, mof, srp) \
ASM_ARGS_5 (r10, r11, r12, r13, mof), "g" (srp)
#endif /* not __ASSEMBLER__ */
|