aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/m88k/m88100/mul_1.S
blob: 503897b2982f37e9425c3ab6fa99d2ad7181ab07 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
; mc88100 __mpn_mul_1 -- Multiply a limb vector with a single limb and
; store the product in a second limb vector.

; Copyright (C) 1992, 1994 Free Software Foundation, Inc.

; This file is part of the GNU MP Library.

; The GNU MP Library is free software; you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation; either version 2, or (at your option)
; any later version.

; The GNU MP Library is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
; GNU General Public License for more details.

; You should have received a copy of the GNU General Public License
; along with the GNU MP Library; see the file COPYING.  If not, write to
; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.


; INPUT PARAMETERS
; res_ptr	r2
; s1_ptr	r3
; size		r4
; s2_limb	r5

; Common overhead is about 11 cycles/invocation.

; The speed for S2_LIMB >= 0x10000 is approximately 21 cycles/limb.  (The
; pipeline stalls 2 cycles due to WB contention.)

; The speed for S2_LIMB < 0x10000 is approximately 16 cycles/limb.  (The
; pipeline stalls 2 cycles due to WB contention and 1 cycle due to latency.)

; To enhance speed:
; 1. Unroll main loop 4-8 times.
; 2. Schedule code to avoid WB contention.  It might be tempting to move the
;    ld instruction in the loops down to save 2 cycles (less WB contention),
;    but that looses because the ultimate value will be read from outside
;    the allocated space.  But if we handle the ultimate multiplication in
;    the tail, we can do this.
; 3. Make the multiplication with less instructions.  I think the code for
;    (S2_LIMB >= 0x10000) is not minimal.
; With these techniques the (S2_LIMB >= 0x10000) case would run in 17 or
; less cycles/limb; the (S2_LIMB < 0x10000) case would run in 11
; cycles/limb.  (Assuming infinite unrolling.)

#include "sysdep.h"

ENTRY (__mpn_mul_1)

	; Make S1_PTR and RES_PTR point at the end of their blocks
	; and negate SIZE.
	lda	 r3,r3[r4]
	lda	 r6,r2[r4]		; RES_PTR in r6 since r2 is retval
	subu	 r4,r0,r4

	addu.co	 r2,r0,r0		; r2 = cy = 0
	ld	 r9,r3[r4]
	mask	 r7,r5,0xffff		; r7 = lo(S2_LIMB)
	extu	 r8,r5,16		; r8 = hi(S2_LIMB)
	bcnd.n	 eq0,r8,Lsmall		; jump if (hi(S2_LIMB) == 0)
	 subu	 r6,r6,4

; General code for any value of S2_LIMB.

	; Make a stack frame and save r25 and r26
	subu	 r31,r31,16
	st.d	 r25,r31,8

	; Enter the loop in the middle
	br.n	L1
	addu	 r4,r4,1

Loop:
	ld	 r9,r3[r4]
	st	 r26,r6[r4]
; bcnd	ne0,r0,0			; bubble
	addu	 r4,r4,1
L1:	mul	 r26,r9,r5		; low word of product	mul_1	WB ld
	mask	 r12,r9,0xffff		; r12 = lo(s1_limb)	mask_1
	mul	 r11,r12,r7		; r11 =  prod_0		mul_2	WB mask_1
	mul	 r10,r12,r8		; r10 = prod_1a		mul_3
	extu	 r13,r9,16		; r13 = hi(s1_limb)	extu_1	WB mul_1
	mul	 r12,r13,r7		; r12 = prod_1b		mul_4	WB extu_1
	mul	 r25,r13,r8		; r25  = prod_2		mul_5	WB mul_2
	extu	 r11,r11,16		; r11 = hi(prod_0)	extu_2	WB mul_3
	addu	 r10,r10,r11		;			addu_1	WB extu_2
; bcnd	ne0,r0,0			; bubble			WB addu_1
	addu.co	 r10,r10,r12		;				WB mul_4
	mask.u	 r10,r10,0xffff		; move the 16 most significant bits...
	addu.ci	 r10,r10,r0		; ...to the low half of the word...
	rot	 r10,r10,16		; ...and put carry in pos 16.
	addu.co	 r26,r26,r2		; add old carry limb
	bcnd.n	 ne0,r4,Loop
	 addu.ci r2,r25,r10		; compute new carry limb

	st	 r26,r6[r4]
	ld.d	 r25,r31,8
	jmp.n	 r1
	 addu	 r31,r31,16

; Fast code for S2_LIMB < 0x10000
Lsmall:
	; Enter the loop in the middle
	br.n	SL1
	addu	 r4,r4,1

SLoop:
	ld	 r9,r3[r4]		;
	st	 r8,r6[r4]		;
	addu	 r4,r4,1		;
SL1:	mul	 r8,r9,r5		; low word of product
	mask	 r12,r9,0xffff		; r12 = lo(s1_limb)
	extu	 r13,r9,16		; r13 = hi(s1_limb)
	mul	 r11,r12,r7		; r11 =  prod_0
	mul	 r12,r13,r7		; r12 = prod_1b
	addu.cio r8,r8,r2		; add old carry limb
	extu	 r10,r11,16		; r11 = hi(prod_0)
	addu	 r10,r10,r12		;
	bcnd.n	 ne0,r4,SLoop
	extu	 r2,r10,16		; r2 = new carry limb

	jmp.n	 r1
	st	 r8,r6[r4]