1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
|
/* Definitions of libc internal inline math functions implemented
by the m68881/2.
Copyright (C) 1991-2021 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library. If not, see
<https://www.gnu.org/licenses/>. */
#ifndef _MATHIMPL_H
#define _MATHIMPL_H
/* This file contains the definitions of the inline math functions that
are only used internally inside libm, not visible to the user. */
#define __MATH_INLINE __extern_inline
/* This is used when defining the functions themselves. Define them with
__ names, and with `static inline' instead of `extern inline' so the
bodies will always be used, never an external function call.
Note: GCC 6 objects to __attribute__ ((__leaf__)) on static functions. */
#define __m81_u(x) __CONCAT(__,x)
#define __m81_inline static __inline
#define __m81_nth(fn) __NTH (fn)
/* Define a math function. */
#define __m81_defun(rettype, func, args, attrs) \
__m81_inline rettype attrs \
__m81_nth (__m81_u(func) args)
/* Define the three variants of a math function that has a direct
implementation in the m68k fpu. FUNC is the name for C (which will be
suffixed with f and l for the float and long double version, resp). OP
is the name of the fpu operation (without leading f). */
# define __inline_mathop(func, op, attrs) \
__inline_mathop1(double, func, op, attrs) \
__inline_mathop1(float, __CONCAT(func,f), op, attrs) \
__inline_mathop1(long double, __CONCAT(func,l), op, attrs)
#define __inline_mathop1(float_type,func, op, attrs) \
__m81_defun (float_type, func, (float_type __mathop_x), attrs) \
{ \
float_type __result; \
__asm __volatile__ ("f" __STRING(op) "%.x %1, %0" \
: "=f" (__result) : "f" (__mathop_x)); \
return __result; \
}
__inline_mathop(__atan, atan,)
__inline_mathop(__cos, cos,)
__inline_mathop(__sin, sin,)
__inline_mathop(__tan, tan,)
__inline_mathop(__tanh, tanh,)
__inline_mathop(__fabs, abs, __attribute__ ((__const__)))
__inline_mathop(__rint, int,)
__inline_mathop(__expm1, etoxm1,)
__inline_mathop(__log1p, lognp1,)
__inline_mathop(__significand, getman,)
__inline_mathop(__trunc, intrz, __attribute__ ((__const__)))
/* This macro contains the definition for the rest of the inline
functions, using FLOAT_TYPE as the domain type and M as a macro
that adds the suffix for the function names. */
#define __inline_functions(float_type, m) \
__m81_defun (float_type, m(__floor), (float_type __x), \
__attribute__ ((__const__))) \
{ \
float_type __result; \
unsigned long int __ctrl_reg; \
__asm __volatile__ ("fmove%.l %!, %0" : "=dm" (__ctrl_reg)); \
/* Set rounding towards negative infinity. */ \
__asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ \
: "dmi" ((__ctrl_reg & ~0x10) | 0x20)); \
/* Convert X to an integer, using -Inf rounding. */ \
__asm __volatile__ ("fint%.x %1, %0" : "=f" (__result) : "f" (__x)); \
/* Restore the previous rounding mode. */ \
__asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ \
: "dmi" (__ctrl_reg)); \
return __result; \
} \
\
__m81_defun (float_type, m(__ceil), (float_type __x), \
__attribute__ ((__const__))) \
{ \
float_type __result; \
unsigned long int __ctrl_reg; \
__asm __volatile__ ("fmove%.l %!, %0" : "=dm" (__ctrl_reg)); \
/* Set rounding towards positive infinity. */ \
__asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ \
: "dmi" (__ctrl_reg | 0x30)); \
/* Convert X to an integer, using +Inf rounding. */ \
__asm __volatile__ ("fint%.x %1, %0" : "=f" (__result) : "f" (__x)); \
/* Restore the previous rounding mode. */ \
__asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ \
: "dmi" (__ctrl_reg)); \
return __result; \
}
#define __CONCAT_d(arg) arg
#define __CONCAT_f(arg) arg ## f
#define __CONCAT_l(arg) arg ## l
__inline_functions(double, __CONCAT_d)
__inline_functions(float, __CONCAT_f)
__inline_functions(long double, __CONCAT_l)
#undef __inline_functions
# define __inline_functions(float_type, m) \
__m81_defun (int, m(__isinf), (float_type __value), \
__attribute__ ((__const__))) \
{ \
/* There is no branch-condition for infinity, \
so we must extract and examine the condition codes manually. */ \
unsigned long int __fpsr; \
__asm ("ftst%.x %1\n" \
"fmove%.l %/fpsr, %0" : "=dm" (__fpsr) : "f" (__value)); \
return (__fpsr & (2 << 24)) ? (__fpsr & (8 << 24) ? -1 : 1) : 0; \
} \
\
__m81_defun (int, m(__finite), (float_type __value), \
__attribute__ ((__const__))) \
{ \
/* There is no branch-condition for infinity, so we must extract and \
examine the condition codes manually. */ \
unsigned long int __fpsr; \
__asm ("ftst%.x %1\n" \
"fmove%.l %/fpsr, %0" : "=dm" (__fpsr) : "f" (__value)); \
return (__fpsr & (3 << 24)) == 0; \
} \
\
__m81_defun (float_type, m(__scalbn), \
(float_type __x, int __n),) \
{ \
float_type __result; \
__asm __volatile__ ("fscale%.l %1, %0" : "=f" (__result) \
: "dmi" (__n), "0" (__x)); \
return __result; \
}
__inline_functions(double, __CONCAT_d)
__inline_functions(float, __CONCAT_f)
__inline_functions(long double, __CONCAT_l)
#undef __inline_functions
# define __inline_functions(float_type, m) \
__m81_defun (int, m(__isnan), (float_type __value), \
__attribute__ ((__const__))) \
{ \
char __result; \
__asm ("ftst%.x %1\n" \
"fsun %0" : "=dm" (__result) : "f" (__value)); \
return __result; \
}
__inline_functions(double, __CONCAT_d)
__inline_functions(float, __CONCAT_f)
__inline_functions(long double, __CONCAT_l)
#undef __inline_functions
# define __inline_functions(float_type, m) \
__m81_defun (float_type, m(__scalbln), \
(float_type __x, long int __n),) \
{ \
return m(__scalbn) (__x, __n); \
} \
\
__m81_defun (float_type, m(__nearbyint), (float_type __x),) \
{ \
float_type __result; \
unsigned long int __ctrl_reg; \
__asm __volatile__ ("fmove%.l %!, %0" : "=dm" (__ctrl_reg)); \
/* Temporarily disable the inexact exception. */ \
__asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ \
: "dmi" (__ctrl_reg & ~0x200)); \
__asm __volatile__ ("fint%.x %1, %0" : "=f" (__result) : "f" (__x)); \
__asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ \
: "dmi" (__ctrl_reg)); \
return __result; \
} \
\
__m81_defun (long int, m(__lrint), (float_type __x),) \
{ \
long int __result; \
__asm __volatile__ ("fmove%.l %1, %0" : "=dm" (__result) : "f" (__x)); \
return __result; \
}
__inline_functions (double, __CONCAT_d)
__inline_functions (float, __CONCAT_f)
__inline_functions (long double, __CONCAT_l)
#undef __inline_functions
#define __inline_functions(float_type, m) \
__m81_inline void \
__m81_nth (__m81_u(m(__sincos)) \
(float_type __x, float_type *__sinx, float_type *__cosx)) \
{ \
__asm __volatile__ ("fsincos%.x %2,%1:%0" \
: "=f" (*__sinx), "=f" (*__cosx) : "f" (__x)); \
}
__inline_functions (double, __CONCAT_d)
__inline_functions (float, __CONCAT_f)
__inline_functions (long double, __CONCAT_l)
#undef __inline_functions
#undef __CONCAT_d
#undef __CONCAT_f
#undef __CONCAT_l
/* Define the three variants of a math function that has a direct
implementation in the m68k fpu. FUNC is the name for C (which will be
suffixed with f and l for the float and long double version, resp). OP
is the name of the fpu operation (without leading f). */
#define __inline_mathop(func, op, attrs) \
__inline_mathop1(double, func, op, attrs) \
__inline_mathop1(float, __CONCAT(func,f), op, attrs) \
__inline_mathop1(long double, __CONCAT(func,l), op, attrs)
#define __inline_mathop1(float_type,func, op, attrs) \
__m81_defun (float_type, func, (float_type __mathop_x), attrs) \
{ \
float_type __result; \
__asm __volatile__ ("f" __STRING(op) "%.x %1, %0" \
: "=f" (__result) : "f" (__mathop_x)); \
return __result; \
}
__inline_mathop (__ieee754_acos, acos,)
__inline_mathop (__ieee754_asin, asin,)
__inline_mathop (__ieee754_cosh, cosh,)
__inline_mathop (__ieee754_sinh, sinh,)
__inline_mathop (__ieee754_exp, etox,)
__inline_mathop (__ieee754_exp2, twotox,)
__inline_mathop (__ieee754_exp10, tentox,)
__inline_mathop (__ieee754_log10, log10,)
__inline_mathop (__ieee754_log2, log2,)
__inline_mathop (__ieee754_log, logn,)
__inline_mathop (__ieee754_sqrt, sqrt,)
__inline_mathop (__ieee754_atanh, atanh,)
__m81_defun (double, __ieee754_remainder, (double __x, double __y),)
{
double __result;
__asm ("frem%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x));
return __result;
}
__m81_defun (float, __ieee754_remainderf, (float __x, float __y),)
{
float __result;
__asm ("frem%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x));
return __result;
}
__m81_defun (long double,
__ieee754_remainderl, (long double __x, long double __y),)
{
long double __result;
__asm ("frem%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x));
return __result;
}
__m81_defun (double, __ieee754_fmod, (double __x, double __y),)
{
double __result;
__asm ("fmod%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x));
return __result;
}
__m81_defun (float, __ieee754_fmodf, (float __x, float __y),)
{
float __result;
__asm ("fmod%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x));
return __result;
}
__m81_defun (long double,
__ieee754_fmodl, (long double __x, long double __y),)
{
long double __result;
__asm ("fmod%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x));
return __result;
}
/* Get the m68881 condition codes, to quickly check multiple conditions. */
static __inline__ unsigned long
__m81_test (long double __val)
{
unsigned long __fpsr;
__asm ("ftst%.x %1; fmove%.l %/fpsr,%0" : "=dm" (__fpsr) : "f" (__val));
return __fpsr;
}
/* Bit values returned by __m81_test. */
#define __M81_COND_NAN (1 << 24)
#define __M81_COND_INF (2 << 24)
#define __M81_COND_ZERO (4 << 24)
#define __M81_COND_NEG (8 << 24)
#endif /* _MATHIMPL_H */
|