aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/libm-ieee754/e_asin.c
blob: 65dc318db3203763f74afd1f0b37d819edc25a65 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/* @(#)e_asin.c 5.1 93/09/24 */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */
/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
   for performance improvement on pipelined processors.
*/

#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_asin.c,v 1.9 1995/05/12 04:57:22 jtc Exp $";
#endif

/* __ieee754_asin(x)
 * Method :
 *	Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
 *	we approximate asin(x) on [0,0.5] by
 *		asin(x) = x + x*x^2*R(x^2)
 *	where
 *		R(x^2) is a rational approximation of (asin(x)-x)/x^3
 *	and its remez error is bounded by
 *		|(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
 *
 *	For x in [0.5,1]
 *		asin(x) = pi/2-2*asin(sqrt((1-x)/2))
 *	Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
 *	then for x>0.98
 *		asin(x) = pi/2 - 2*(s+s*z*R(z))
 *			= pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
 *	For x<=0.98, let pio4_hi = pio2_hi/2, then
 *		f = hi part of s;
 *		c = sqrt(z) - f = (z-f*f)/(s+f) 	...f+c=sqrt(z)
 *	and
 *		asin(x) = pi/2 - 2*(s+s*z*R(z))
 *			= pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
 *			= pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
 *
 * Special cases:
 *	if x is NaN, return x itself;
 *	if |x|>1, return NaN with invalid signal.
 *
 */


#include "math.h"
#include "math_private.h"
#define one qS[0]
#ifdef __STDC__
static const double
#else
static double
#endif
huge =  1.000e+300,
pio2_hi =  1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
pio2_lo =  6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
pio4_hi =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
	/* coefficient for R(x^2) */
pS[] =  {1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
 -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
  2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
 -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
  7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
  3.47933107596021167570e-05}, /* 0x3F023DE1, 0x0DFDF709 */
qS[] = {1.0, -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
  2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
 -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
  7.70381505559019352791e-02}; /* 0x3FB3B8C5, 0xB12E9282 */

#ifdef __STDC__
	double __ieee754_asin(double x)
#else
	double __ieee754_asin(x)
	double x;
#endif
{
	double t,w,p,q,c,r,s,p1,p2,p3,q1,q2,q3,z2,z4,z6;
	int32_t hx,ix;
	GET_HIGH_WORD(hx,x);
	ix = hx&0x7fffffff;
	if(ix>= 0x3ff00000) {		/* |x|>= 1 */
	    u_int32_t lx;
	    GET_LOW_WORD(lx,x);
	    if(((ix-0x3ff00000)|lx)==0)
		    /* asin(1)=+-pi/2 with inexact */
		return x*pio2_hi+x*pio2_lo;
	    return (x-x)/(x-x);		/* asin(|x|>1) is NaN */
	} else if (ix<0x3fe00000) {	/* |x|<0.5 */
	    if(ix<0x3e400000) {		/* if |x| < 2**-27 */
		if(huge+x>one) return x;/* return x with inexact if x!=0*/
	    } else {
		t = x*x;
#ifdef DO_NOT_USE_THIS
		p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
		q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
#else
		p1 = t*pS[0]; z2=t*t;
		p2 = pS[1]+t*pS[2]; z4=z2*z2;
		p3 = pS[3]+t*pS[4]; z6=z4*z2;
		q1 = one+t*qS[1];
		q2 = qS[2]+t*qS[3];
		p = p1 + z2*p2 + z4*p3 + z6*pS[5];
		q = q1 + z2*q2 + z4*qS[4];
#endif
		w = p/q;
		return x+x*w;
	    }
	}
	/* 1> |x|>= 0.5 */
	w = one-fabs(x);
	t = w*0.5;
#ifdef DO_NOT_USE_THIS
	p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
	q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
#else
	p1 = t*pS[0]; z2=t*t;
	p2 = pS[1]+t*pS[2]; z4=z2*z2;
	p3 = pS[3]+t*pS[4]; z6=z4*z2;
	q1 = one+t*qS[1];
	q2 = qS[2]+t*qS[3];
	p = p1 + z2*p2 + z4*p3 + z6*pS[5];
	q = q1 + z2*q2 + z4*qS[4];
#endif
	s = __ieee754_sqrt(t);
	if(ix>=0x3FEF3333) { 	/* if |x| > 0.975 */
	    w = p/q;
	    t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
	} else {
	    w  = s;
	    SET_LOW_WORD(w,0);
	    c  = (t-w*w)/(s+w);
	    r  = p/q;
	    p  = 2.0*s*r-(pio2_lo-2.0*c);
	    q  = pio4_hi-2.0*w;
	    t  = pio4_hi-(p-q);
	}
	if(hx>0) return t; else return -t;
}