1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
|
/*
* Copyright (c) 1985, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef lint
static char sccsid[] = "@(#)support.c 8.1 (Berkeley) 6/4/93";
#endif /* not lint */
/*
* Some IEEE standard 754 recommended functions and remainder and sqrt for
* supporting the C elementary functions.
******************************************************************************
* WARNING:
* These codes are developed (in double) to support the C elementary
* functions temporarily. They are not universal, and some of them are very
* slow (in particular, drem and sqrt is extremely inefficient). Each
* computer system should have its implementation of these functions using
* its own assembler.
******************************************************************************
*
* IEEE 754 required operations:
* drem(x,p)
* returns x REM y = x - [x/y]*y , where [x/y] is the integer
* nearest x/y; in half way case, choose the even one.
* sqrt(x)
* returns the square root of x correctly rounded according to
* the rounding mod.
*
* IEEE 754 recommended functions:
* (a) copysign(x,y)
* returns x with the sign of y.
* (b) scalb(x,N)
* returns x * (2**N), for integer values N.
* (c) logb(x)
* returns the unbiased exponent of x, a signed integer in
* double precision, except that logb(0) is -INF, logb(INF)
* is +INF, and logb(NAN) is that NAN.
* (d) finite(x)
* returns the value TRUE if -INF < x < +INF and returns
* FALSE otherwise.
*
*
* CODED IN C BY K.C. NG, 11/25/84;
* REVISED BY K.C. NG on 1/22/85, 2/13/85, 3/24/85.
*/
#include "mathimpl.h"
#if defined(vax)||defined(tahoe) /* VAX D format */
#include <errno.h>
static const unsigned short msign=0x7fff , mexp =0x7f80 ;
static const short prep1=57, gap=7, bias=129 ;
static const double novf=1.7E38, nunf=3.0E-39, zero=0.0 ;
#else /* defined(vax)||defined(tahoe) */
static const unsigned short msign=0x7fff, mexp =0x7ff0 ;
static const short prep1=54, gap=4, bias=1023 ;
static const double novf=1.7E308, nunf=3.0E-308,zero=0.0;
#endif /* defined(vax)||defined(tahoe) */
double scalb(x,N)
double x; int N;
{
int k;
#ifdef national
unsigned short *px=(unsigned short *) &x + 3;
#else /* national */
unsigned short *px=(unsigned short *) &x;
#endif /* national */
if( x == zero ) return(x);
#if defined(vax)||defined(tahoe)
if( (k= *px & mexp ) != ~msign ) {
if (N < -260)
return(nunf*nunf);
else if (N > 260) {
return(copysign(infnan(ERANGE),x));
}
#else /* defined(vax)||defined(tahoe) */
if( (k= *px & mexp ) != mexp ) {
if( N<-2100) return(nunf*nunf); else if(N>2100) return(novf+novf);
if( k == 0 ) {
x *= scalb(1.0,(int)prep1); N -= prep1; return(scalb(x,N));}
#endif /* defined(vax)||defined(tahoe) */
if((k = (k>>gap)+ N) > 0 )
if( k < (mexp>>gap) ) *px = (*px&~mexp) | (k<<gap);
else x=novf+novf; /* overflow */
else
if( k > -prep1 )
/* gradual underflow */
{*px=(*px&~mexp)|(short)(1<<gap); x *= scalb(1.0,k-1);}
else
return(nunf*nunf);
}
return(x);
}
double copysign(x,y)
double x,y;
{
#ifdef national
unsigned short *px=(unsigned short *) &x+3,
*py=(unsigned short *) &y+3;
#else /* national */
unsigned short *px=(unsigned short *) &x,
*py=(unsigned short *) &y;
#endif /* national */
#if defined(vax)||defined(tahoe)
if ( (*px & mexp) == 0 ) return(x);
#endif /* defined(vax)||defined(tahoe) */
*px = ( *px & msign ) | ( *py & ~msign );
return(x);
}
double logb(x)
double x;
{
#ifdef national
short *px=(short *) &x+3, k;
#else /* national */
short *px=(short *) &x, k;
#endif /* national */
#if defined(vax)||defined(tahoe)
return (int)(((*px&mexp)>>gap)-bias);
#else /* defined(vax)||defined(tahoe) */
if( (k= *px & mexp ) != mexp )
if ( k != 0 )
return ( (k>>gap) - bias );
else if( x != zero)
return ( -1022.0 );
else
return(-(1.0/zero));
else if(x != x)
return(x);
else
{*px &= msign; return(x);}
#endif /* defined(vax)||defined(tahoe) */
}
finite(x)
double x;
{
#if defined(vax)||defined(tahoe)
return(1);
#else /* defined(vax)||defined(tahoe) */
#ifdef national
return( (*((short *) &x+3 ) & mexp ) != mexp );
#else /* national */
return( (*((short *) &x ) & mexp ) != mexp );
#endif /* national */
#endif /* defined(vax)||defined(tahoe) */
}
double drem(x,p)
double x,p;
{
short sign;
double hp,dp,tmp;
unsigned short k;
#ifdef national
unsigned short
*px=(unsigned short *) &x +3,
*pp=(unsigned short *) &p +3,
*pd=(unsigned short *) &dp +3,
*pt=(unsigned short *) &tmp+3;
#else /* national */
unsigned short
*px=(unsigned short *) &x ,
*pp=(unsigned short *) &p ,
*pd=(unsigned short *) &dp ,
*pt=(unsigned short *) &tmp;
#endif /* national */
*pp &= msign ;
#if defined(vax)||defined(tahoe)
if( ( *px & mexp ) == ~msign ) /* is x a reserved operand? */
#else /* defined(vax)||defined(tahoe) */
if( ( *px & mexp ) == mexp )
#endif /* defined(vax)||defined(tahoe) */
return (x-p)-(x-p); /* create nan if x is inf */
if (p == zero) {
#if defined(vax)||defined(tahoe)
return(infnan(EDOM));
#else /* defined(vax)||defined(tahoe) */
return zero/zero;
#endif /* defined(vax)||defined(tahoe) */
}
#if defined(vax)||defined(tahoe)
if( ( *pp & mexp ) == ~msign ) /* is p a reserved operand? */
#else /* defined(vax)||defined(tahoe) */
if( ( *pp & mexp ) == mexp )
#endif /* defined(vax)||defined(tahoe) */
{ if (p != p) return p; else return x;}
else if ( ((*pp & mexp)>>gap) <= 1 )
/* subnormal p, or almost subnormal p */
{ double b; b=scalb(1.0,(int)prep1);
p *= b; x = drem(x,p); x *= b; return(drem(x,p)/b);}
else if ( p >= novf/2)
{ p /= 2 ; x /= 2; return(drem(x,p)*2);}
else
{
dp=p+p; hp=p/2;
sign= *px & ~msign ;
*px &= msign ;
while ( x > dp )
{
k=(*px & mexp) - (*pd & mexp) ;
tmp = dp ;
*pt += k ;
#if defined(vax)||defined(tahoe)
if( x < tmp ) *pt -= 128 ;
#else /* defined(vax)||defined(tahoe) */
if( x < tmp ) *pt -= 16 ;
#endif /* defined(vax)||defined(tahoe) */
x -= tmp ;
}
if ( x > hp )
{ x -= p ; if ( x >= hp ) x -= p ; }
#if defined(vax)||defined(tahoe)
if (x)
#endif /* defined(vax)||defined(tahoe) */
*px ^= sign;
return( x);
}
}
double sqrt(x)
double x;
{
double q,s,b,r;
double t;
double const zero=0.0;
int m,n,i;
#if defined(vax)||defined(tahoe)
int k=54;
#else /* defined(vax)||defined(tahoe) */
int k=51;
#endif /* defined(vax)||defined(tahoe) */
/* sqrt(NaN) is NaN, sqrt(+-0) = +-0 */
if(x!=x||x==zero) return(x);
/* sqrt(negative) is invalid */
if(x<zero) {
#if defined(vax)||defined(tahoe)
return (infnan(EDOM)); /* NaN */
#else /* defined(vax)||defined(tahoe) */
return(zero/zero);
#endif /* defined(vax)||defined(tahoe) */
}
/* sqrt(INF) is INF */
if(!finite(x)) return(x);
/* scale x to [1,4) */
n=logb(x);
x=scalb(x,-n);
if((m=logb(x))!=0) x=scalb(x,-m); /* subnormal number */
m += n;
n = m/2;
if((n+n)!=m) {x *= 2; m -=1; n=m/2;}
/* generate sqrt(x) bit by bit (accumulating in q) */
q=1.0; s=4.0; x -= 1.0; r=1;
for(i=1;i<=k;i++) {
t=s+1; x *= 4; r /= 2;
if(t<=x) {
s=t+t+2, x -= t; q += r;}
else
s *= 2;
}
/* generate the last bit and determine the final rounding */
r/=2; x *= 4;
if(x==zero) goto end; 100+r; /* trigger inexact flag */
if(s<x) {
q+=r; x -=s; s += 2; s *= 2; x *= 4;
t = (x-s)-5;
b=1.0+3*r/4; if(b==1.0) goto end; /* b==1 : Round-to-zero */
b=1.0+r/4; if(b>1.0) t=1; /* b>1 : Round-to-(+INF) */
if(t>=0) q+=r; } /* else: Round-to-nearest */
else {
s *= 2; x *= 4;
t = (x-s)-1;
b=1.0+3*r/4; if(b==1.0) goto end;
b=1.0+r/4; if(b>1.0) t=1;
if(t>=0) q+=r; }
end: return(scalb(q,n));
}
#if 0
/* DREM(X,Y)
* RETURN X REM Y =X-N*Y, N=[X/Y] ROUNDED (ROUNDED TO EVEN IN THE HALF WAY CASE)
* DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
* INTENDED FOR ASSEMBLY LANGUAGE
* CODED IN C BY K.C. NG, 3/23/85, 4/8/85.
*
* Warning: this code should not get compiled in unless ALL of
* the following machine-dependent routines are supplied.
*
* Required machine dependent functions (not on a VAX):
* swapINX(i): save inexact flag and reset it to "i"
* swapENI(e): save inexact enable and reset it to "e"
*/
double drem(x,y)
double x,y;
{
#ifdef national /* order of words in floating point number */
static const n0=3,n1=2,n2=1,n3=0;
#else /* VAX, SUN, ZILOG, TAHOE */
static const n0=0,n1=1,n2=2,n3=3;
#endif
static const unsigned short mexp =0x7ff0, m25 =0x0190, m57 =0x0390;
static const double zero=0.0;
double hy,y1,t,t1;
short k;
long n;
int i,e;
unsigned short xexp,yexp, *px =(unsigned short *) &x ,
nx,nf, *py =(unsigned short *) &y ,
sign, *pt =(unsigned short *) &t ,
*pt1 =(unsigned short *) &t1 ;
xexp = px[n0] & mexp ; /* exponent of x */
yexp = py[n0] & mexp ; /* exponent of y */
sign = px[n0] &0x8000; /* sign of x */
/* return NaN if x is NaN, or y is NaN, or x is INF, or y is zero */
if(x!=x) return(x); if(y!=y) return(y); /* x or y is NaN */
if( xexp == mexp ) return(zero/zero); /* x is INF */
if(y==zero) return(y/y);
/* save the inexact flag and inexact enable in i and e respectively
* and reset them to zero
*/
i=swapINX(0); e=swapENI(0);
/* subnormal number */
nx=0;
if(yexp==0) {t=1.0,pt[n0]+=m57; y*=t; nx=m57;}
/* if y is tiny (biased exponent <= 57), scale up y to y*2**57 */
if( yexp <= m57 ) {py[n0]+=m57; nx+=m57; yexp+=m57;}
nf=nx;
py[n0] &= 0x7fff;
px[n0] &= 0x7fff;
/* mask off the least significant 27 bits of y */
t=y; pt[n3]=0; pt[n2]&=0xf800; y1=t;
/* LOOP: argument reduction on x whenever x > y */
loop:
while ( x > y )
{
t=y;
t1=y1;
xexp=px[n0]&mexp; /* exponent of x */
k=xexp-yexp-m25;
if(k>0) /* if x/y >= 2**26, scale up y so that x/y < 2**26 */
{pt[n0]+=k;pt1[n0]+=k;}
n=x/t; x=(x-n*t1)-n*(t-t1);
}
/* end while (x > y) */
if(nx!=0) {t=1.0; pt[n0]+=nx; x*=t; nx=0; goto loop;}
/* final adjustment */
hy=y/2.0;
if(x>hy||((x==hy)&&n%2==1)) x-=y;
px[n0] ^= sign;
if(nf!=0) { t=1.0; pt[n0]-=nf; x*=t;}
/* restore inexact flag and inexact enable */
swapINX(i); swapENI(e);
return(x);
}
#endif
#if 0
/* SQRT
* RETURN CORRECTLY ROUNDED (ACCORDING TO THE ROUNDING MODE) SQRT
* FOR IEEE DOUBLE PRECISION ONLY, INTENDED FOR ASSEMBLY LANGUAGE
* CODED IN C BY K.C. NG, 3/22/85.
*
* Warning: this code should not get compiled in unless ALL of
* the following machine-dependent routines are supplied.
*
* Required machine dependent functions:
* swapINX(i) ...return the status of INEXACT flag and reset it to "i"
* swapRM(r) ...return the current Rounding Mode and reset it to "r"
* swapENI(e) ...return the status of inexact enable and reset it to "e"
* addc(t) ...perform t=t+1 regarding t as a 64 bit unsigned integer
* subc(t) ...perform t=t-1 regarding t as a 64 bit unsigned integer
*/
static const unsigned long table[] = {
0, 1204, 3062, 5746, 9193, 13348, 18162, 23592, 29598, 36145, 43202, 50740,
58733, 67158, 75992, 85215, 83599, 71378, 60428, 50647, 41945, 34246, 27478,
21581, 16499, 12183, 8588, 5674, 3403, 1742, 661, 130, };
double newsqrt(x)
double x;
{
double y,z,t,addc(),subc()
double const b54=134217728.*134217728.; /* b54=2**54 */
long mx,scalx;
long const mexp=0x7ff00000;
int i,j,r,e,swapINX(),swapRM(),swapENI();
unsigned long *py=(unsigned long *) &y ,
*pt=(unsigned long *) &t ,
*px=(unsigned long *) &x ;
#ifdef national /* ordering of word in a floating point number */
const int n0=1, n1=0;
#else
const int n0=0, n1=1;
#endif
/* Rounding Mode: RN ...round-to-nearest
* RZ ...round-towards 0
* RP ...round-towards +INF
* RM ...round-towards -INF
*/
const int RN=0,RZ=1,RP=2,RM=3;
/* machine dependent: work on a Zilog Z8070
* and a National 32081 & 16081
*/
/* exceptions */
if(x!=x||x==0.0) return(x); /* sqrt(NaN) is NaN, sqrt(+-0) = +-0 */
if(x<0) return((x-x)/(x-x)); /* sqrt(negative) is invalid */
if((mx=px[n0]&mexp)==mexp) return(x); /* sqrt(+INF) is +INF */
/* save, reset, initialize */
e=swapENI(0); /* ...save and reset the inexact enable */
i=swapINX(0); /* ...save INEXACT flag */
r=swapRM(RN); /* ...save and reset the Rounding Mode to RN */
scalx=0;
/* subnormal number, scale up x to x*2**54 */
if(mx==0) {x *= b54 ; scalx-=0x01b00000;}
/* scale x to avoid intermediate over/underflow:
* if (x > 2**512) x=x/2**512; if (x < 2**-512) x=x*2**512 */
if(mx>0x5ff00000) {px[n0] -= 0x20000000; scalx+= 0x10000000;}
if(mx<0x1ff00000) {px[n0] += 0x20000000; scalx-= 0x10000000;}
/* magic initial approximation to almost 8 sig. bits */
py[n0]=(px[n0]>>1)+0x1ff80000;
py[n0]=py[n0]-table[(py[n0]>>15)&31];
/* Heron's rule once with correction to improve y to almost 18 sig. bits */
t=x/y; y=y+t; py[n0]=py[n0]-0x00100006; py[n1]=0;
/* triple to almost 56 sig. bits; now y approx. sqrt(x) to within 1 ulp */
t=y*y; z=t; pt[n0]+=0x00100000; t+=z; z=(x-z)*y;
t=z/(t+x) ; pt[n0]+=0x00100000; y+=t;
/* twiddle last bit to force y correctly rounded */
swapRM(RZ); /* ...set Rounding Mode to round-toward-zero */
swapINX(0); /* ...clear INEXACT flag */
swapENI(e); /* ...restore inexact enable status */
t=x/y; /* ...chopped quotient, possibly inexact */
j=swapINX(i); /* ...read and restore inexact flag */
if(j==0) { if(t==y) goto end; else t=subc(t); } /* ...t=t-ulp */
b54+0.1; /* ..trigger inexact flag, sqrt(x) is inexact */
if(r==RN) t=addc(t); /* ...t=t+ulp */
else if(r==RP) { t=addc(t);y=addc(y);}/* ...t=t+ulp;y=y+ulp; */
y=y+t; /* ...chopped sum */
py[n0]=py[n0]-0x00100000; /* ...correctly rounded sqrt(x) */
end: py[n0]=py[n0]+scalx; /* ...scale back y */
swapRM(r); /* ...restore Rounding Mode */
return(y);
}
#endif
|