1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
|
/* expm1l.c
*
* Exponential function, minus 1
* 128-bit long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, expm1l();
*
* y = expm1l( x );
*
*
*
* DESCRIPTION:
*
* Returns e (2.71828...) raised to the x power, minus one.
*
* Range reduction is accomplished by separating the argument
* into an integer k and fraction f such that
*
* x k f
* e = 2 e.
*
* An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
* in the basic range [-0.5 ln 2, 0.5 ln 2].
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE -79,+MAXLOG 100,000 1.7e-34 4.5e-35
*
*/
/* Copyright 2001 by Stephen L. Moshier */
#include "math.h"
#include "math_private.h"
/* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
-.5 ln 2 < x < .5 ln 2
Theoretical peak relative error = 8.1e-36 */
static const long double
P0 = 2.943520915569954073888921213330863757240E8L,
P1 = -5.722847283900608941516165725053359168840E7L,
P2 = 8.944630806357575461578107295909719817253E6L,
P3 = -7.212432713558031519943281748462837065308E5L,
P4 = 4.578962475841642634225390068461943438441E4L,
P5 = -1.716772506388927649032068540558788106762E3L,
P6 = 4.401308817383362136048032038528753151144E1L,
P7 = -4.888737542888633647784737721812546636240E-1L,
Q0 = 1.766112549341972444333352727998584753865E9L,
Q1 = -7.848989743695296475743081255027098295771E8L,
Q2 = 1.615869009634292424463780387327037251069E8L,
Q3 = -2.019684072836541751428967854947019415698E7L,
Q4 = 1.682912729190313538934190635536631941751E6L,
Q5 = -9.615511549171441430850103489315371768998E4L,
Q6 = 3.697714952261803935521187272204485251835E3L,
Q7 = -8.802340681794263968892934703309274564037E1L,
/* Q8 = 1.000000000000000000000000000000000000000E0 */
/* C1 + C2 = ln 2 */
C1 = 6.93145751953125E-1L,
C2 = 1.428606820309417232121458176568075500134E-6L,
/* ln (2^16384 * (1 - 2^-113)) */
maxlog = 1.1356523406294143949491931077970764891253E4L,
/* ln 2^-114 */
minarg = -7.9018778583833765273564461846232128760607E1L, big = 2e4932L;
long double
__expm1l (long double x)
{
long double px, qx, xx;
int32_t ix, sign;
ieee854_long_double_shape_type u;
int k;
/* Detect infinity and NaN. */
u.value = x;
ix = u.parts32.w0;
sign = ix & 0x80000000;
ix &= 0x7fffffff;
if (ix >= 0x7fff0000)
{
/* Infinity. */
if (((ix & 0xffff) | u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0)
{
if (sign)
return -1.0L;
else
return x;
}
/* NaN. No invalid exception. */
return x;
}
/* expm1(+- 0) = +- 0. */
if ((ix == 0) && (u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0)
return x;
/* Overflow. */
if (x > maxlog)
return (big * big);
/* Minimum value. */
if (x < minarg)
return (4.0/big - 1.0L);
/* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
xx = C1 + C2; /* ln 2. */
px = __floorl (0.5 + x / xx);
k = px;
/* remainder times ln 2 */
x -= px * C1;
x -= px * C2;
/* Approximate exp(remainder ln 2). */
px = (((((((P7 * x
+ P6) * x
+ P5) * x + P4) * x + P3) * x + P2) * x + P1) * x + P0) * x;
qx = (((((((x
+ Q7) * x
+ Q6) * x + Q5) * x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0;
xx = x * x;
qx = x + (0.5 * xx + xx * px / qx);
/* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
We have qx = exp(remainder ln 2) - 1, so
exp(x) - 1 = 2^k (qx + 1) - 1
= 2^k qx + 2^k - 1. */
px = ldexpl (1.0L, k);
x = px * qx + (px - 1.0);
return x;
}
weak_alias (__expm1l, expm1l)
#ifdef NO_LONG_DOUBLE
strong_alias (__expm1, __expm1l) weak_alias (__expm1, expm1l)
#endif
|