aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/ldbl-128/s_erfl.c
blob: 57202253a6be3683b656c4783dc9fc2b61d4b152 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

/* Modifications and expansions for 128-bit long double contributed by
   Stephen L. Moshier <moshier@na-net.ornl.gov>  */

/* double erf(double x)
 * double erfc(double x)
 *			     x
 *		      2      |\
 *     erf(x)  =  ---------  | exp(-t*t)dt
 *		   sqrt(pi) \|
 *			     0
 *
 *     erfc(x) =  1-erf(x)
 *  Note that
 *		erf(-x) = -erf(x)
 *		erfc(-x) = 2 - erfc(x)
 *
 * Method:
 *	1.  erf(x)  = x + x*R(x^2) for |x| in [0, 7/8]
 *	   Remark. The formula is derived by noting
 *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
 *	   and that
 *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
 *	   is close to one.
 *
 *      1a. erf(x)  = 1 - erfc(x), for |x| > 1.0
 *          erfc(x) = 1 - erf(x)  if |x| < 1/4
 *
 *      2. For |x| in [7/8, 1], let s = |x| - 1, and
 *         c = 0.84506291151 rounded to single (24 bits)
 *	erf(s + c)  = sign(x) * (c  + P1(s)/Q1(s))
 *	   Remark: here we use the taylor series expansion at x=1.
 *		erf(1+s) = erf(1) + s*Poly(s)
 *			 = 0.845.. + P1(s)/Q1(s)
 *	   Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
 *
 *      3. For x in [1/4, 5/4],
 *	erfc(s + const)  = erfc(const)  + s P1(s)/Q1(s)
 *              for const = 1/4, 3/8, ..., 9/8
 *              and 0 <= s <= 1/8 .
 *
 *      4. For x in [5/4, 107],
 *	erfc(x) = (1/x)*exp(-x*x-0.5625 + R(z))
 *              z=1/x^2
 *         The interval is partitioned into several segments
 *         of width 1/8 in 1/x.
 *
 *      Note1:
 *	   To compute exp(-x*x-0.5625+R/S), let s be a single
 *	   precision number and s := x; then
 *		-x*x = -s*s + (s-x)*(s+x)
 *	        exp(-x*x-0.5626+R/S) =
 *			exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
 *      Note2:
 *	   Here 4 and 5 make use of the asymptotic series
 *			  exp(-x*x)
 *		erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
 *			  x*sqrt(pi)
 *
 *      5. For inf > x >= 107
 *	erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
 *	erfc(x) = tiny*tiny (raise underflow) if x > 0
 *			= 2 - tiny if x<0
 *
 *      7. Special case:
 *	erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
 *	erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
 *		erfc/erf(NaN) is NaN
 */

#include "math.h"
#include "math_private.h"

/* Evaluate P[n] x^n  +  P[n-1] x^(n-1)  +  ...  +  P[0] */

static long double
neval (long double x, long double *p, int n)
{
  long double y;

  p += n;
  y = *p--;
  do
    {
      y = y * x + *p--;
    }
  while (--n > 0);
  return y;
}


/* Evaluate x^n+1  +  P[n] x^(n)  +  P[n-1] x^(n-1)  +  ...  +  P[0] */

static long double
deval (long double x, long double *p, int n)
{
  long double y;

  p += n;
  y = x + *p--;
  do
    {
      y = y * x + *p--;
    }
  while (--n > 0);
  return y;
}



#ifdef __STDC__
static const long double
#else
static long double
#endif
tiny = 1e-4931L,
  half = 0.5L,
  one = 1.0L,
  two = 2.0L,
  /* 2/sqrt(pi) - 1 */
  efx = 1.2837916709551257389615890312154517168810E-1L,
  /* 8 * (2/sqrt(pi) - 1) */
  efx8 = 1.0270333367641005911692712249723613735048E0L;


/* erf(x)  = x  + x R(x^2)
   0 <= x <= 7/8
   Peak relative error 1.8e-35  */
#define NTN1 8
static long double TN1[NTN1 + 1] =
{
 -3.858252324254637124543172907442106422373E10L,
  9.580319248590464682316366876952214879858E10L,
  1.302170519734879977595901236693040544854E10L,
  2.922956950426397417800321486727032845006E9L,
  1.764317520783319397868923218385468729799E8L,
  1.573436014601118630105796794840834145120E7L,
  4.028077380105721388745632295157816229289E5L,
  1.644056806467289066852135096352853491530E4L,
  3.390868480059991640235675479463287886081E1L
};
#define NTD1 8
static long double TD1[NTD1 + 1] =
{
  -3.005357030696532927149885530689529032152E11L,
  -1.342602283126282827411658673839982164042E11L,
  -2.777153893355340961288511024443668743399E10L,
  -3.483826391033531996955620074072768276974E9L,
  -2.906321047071299585682722511260895227921E8L,
  -1.653347985722154162439387878512427542691E7L,
  -6.245520581562848778466500301865173123136E5L,
  -1.402124304177498828590239373389110545142E4L,
  -1.209368072473510674493129989468348633579E2L
/* 1.0E0 */
};


/* erf(z+1)  = erf_const + P(z)/Q(z)
   -.125 <= z <= 0
   Peak relative error 7.3e-36  */
static long double erf_const = 0.845062911510467529296875L;
#define NTN2 8
static long double TN2[NTN2 + 1] =
{
 -4.088889697077485301010486931817357000235E1L,
  7.157046430681808553842307502826960051036E3L,
 -2.191561912574409865550015485451373731780E3L,
  2.180174916555316874988981177654057337219E3L,
  2.848578658049670668231333682379720943455E2L,
  1.630362490952512836762810462174798925274E2L,
  6.317712353961866974143739396865293596895E0L,
  2.450441034183492434655586496522857578066E1L,
  5.127662277706787664956025545897050896203E-1L
};
#define NTD2 8
static long double TD2[NTD2 + 1] =
{
  1.731026445926834008273768924015161048885E4L,
  1.209682239007990370796112604286048173750E4L,
  1.160950290217993641320602282462976163857E4L,
  5.394294645127126577825507169061355698157E3L,
  2.791239340533632669442158497532521776093E3L,
  8.989365571337319032943005387378993827684E2L,
  2.974016493766349409725385710897298069677E2L,
  6.148192754590376378740261072533527271947E1L,
  1.178502892490738445655468927408440847480E1L
 /* 1.0E0 */
};


/* erfc(x + 0.25) = erfc(0.25) + x R(x)
   0 <= x < 0.125
   Peak relative error 1.4e-35  */
#define NRNr13 8
static long double RNr13[NRNr13 + 1] =
{
 -2.353707097641280550282633036456457014829E3L,
  3.871159656228743599994116143079870279866E2L,
 -3.888105134258266192210485617504098426679E2L,
 -2.129998539120061668038806696199343094971E1L,
 -8.125462263594034672468446317145384108734E1L,
  8.151549093983505810118308635926270319660E0L,
 -5.033362032729207310462422357772568553670E0L,
 -4.253956621135136090295893547735851168471E-2L,
 -8.098602878463854789780108161581050357814E-2L
};
#define NRDr13 7
static long double RDr13[NRDr13 + 1] =
{
  2.220448796306693503549505450626652881752E3L,
  1.899133258779578688791041599040951431383E2L,
  1.061906712284961110196427571557149268454E3L,
  7.497086072306967965180978101974566760042E1L,
  2.146796115662672795876463568170441327274E2L,
  1.120156008362573736664338015952284925592E1L,
  2.211014952075052616409845051695042741074E1L,
  6.469655675326150785692908453094054988938E-1L
 /* 1.0E0 */
};
/* erfc(0.25) = C13a + C13b to extra precision.  */
static long double C13a = 0.723663330078125L;
static long double C13b = 1.0279753638067014931732235184287934646022E-5L;


/* erfc(x + 0.375) = erfc(0.375) + x R(x)
   0 <= x < 0.125
   Peak relative error 1.2e-35  */
#define NRNr14 8
static long double RNr14[NRNr14 + 1] =
{
 -2.446164016404426277577283038988918202456E3L,
  6.718753324496563913392217011618096698140E2L,
 -4.581631138049836157425391886957389240794E2L,
 -2.382844088987092233033215402335026078208E1L,
 -7.119237852400600507927038680970936336458E1L,
  1.313609646108420136332418282286454287146E1L,
 -6.188608702082264389155862490056401365834E0L,
 -2.787116601106678287277373011101132659279E-2L,
 -2.230395570574153963203348263549700967918E-2L
};
#define NRDr14 7
static long double RDr14[NRDr14 + 1] =
{
  2.495187439241869732696223349840963702875E3L,
  2.503549449872925580011284635695738412162E2L,
  1.159033560988895481698051531263861842461E3L,
  9.493751466542304491261487998684383688622E1L,
  2.276214929562354328261422263078480321204E2L,
  1.367697521219069280358984081407807931847E1L,
  2.276988395995528495055594829206582732682E1L,
  7.647745753648996559837591812375456641163E-1L
 /* 1.0E0 */
};
/* erfc(0.375) = C14a + C14b to extra precision.  */
static long double C14a = 0.5958709716796875L;
static long double C14b = 1.2118885490201676174914080878232469565953E-5L;

/* erfc(x + 0.5) = erfc(0.5) + x R(x)
   0 <= x < 0.125
   Peak relative error 4.7e-36  */
#define NRNr15 8
static long double RNr15[NRNr15 + 1] =
{
 -2.624212418011181487924855581955853461925E3L,
  8.473828904647825181073831556439301342756E2L,
 -5.286207458628380765099405359607331669027E2L,
 -3.895781234155315729088407259045269652318E1L,
 -6.200857908065163618041240848728398496256E1L,
  1.469324610346924001393137895116129204737E1L,
 -6.961356525370658572800674953305625578903E0L,
  5.145724386641163809595512876629030548495E-3L,
  1.990253655948179713415957791776180406812E-2L
};
#define NRDr15 7
static long double RDr15[NRDr15 + 1] =
{
  2.986190760847974943034021764693341524962E3L,
  5.288262758961073066335410218650047725985E2L,
  1.363649178071006978355113026427856008978E3L,
  1.921707975649915894241864988942255320833E2L,
  2.588651100651029023069013885900085533226E2L,
  2.628752920321455606558942309396855629459E1L,
  2.455649035885114308978333741080991380610E1L,
  1.378826653595128464383127836412100939126E0L
  /* 1.0E0 */
};
/* erfc(0.5) = C15a + C15b to extra precision.  */
static long double C15a = 0.4794921875L;
static long double C15b = 7.9346869534623172533461080354712635484242E-6L;

/* erfc(x + 0.625) = erfc(0.625) + x R(x)
   0 <= x < 0.125
   Peak relative error 5.1e-36  */
#define NRNr16 8
static long double RNr16[NRNr16 + 1] =
{
 -2.347887943200680563784690094002722906820E3L,
  8.008590660692105004780722726421020136482E2L,
 -5.257363310384119728760181252132311447963E2L,
 -4.471737717857801230450290232600243795637E1L,
 -4.849540386452573306708795324759300320304E1L,
  1.140885264677134679275986782978655952843E1L,
 -6.731591085460269447926746876983786152300E0L,
  1.370831653033047440345050025876085121231E-1L,
  2.022958279982138755020825717073966576670E-2L,
};
#define NRDr16 7
static long double RDr16[NRDr16 + 1] =
{
  3.075166170024837215399323264868308087281E3L,
  8.730468942160798031608053127270430036627E2L,
  1.458472799166340479742581949088453244767E3L,
  3.230423687568019709453130785873540386217E2L,
  2.804009872719893612081109617983169474655E2L,
  4.465334221323222943418085830026979293091E1L,
  2.612723259683205928103787842214809134746E1L,
  2.341526751185244109722204018543276124997E0L,
  /* 1.0E0 */
};
/* erfc(0.625) = C16a + C16b to extra precision.  */
static long double C16a = 0.3767547607421875L;
static long double C16b = 4.3570693945275513594941232097252997287766E-6L;

/* erfc(x + 0.75) = erfc(0.75) + x R(x)
   0 <= x < 0.125
   Peak relative error 1.7e-35  */
#define NRNr17 8
static long double RNr17[NRNr17 + 1] =
{
  -1.767068734220277728233364375724380366826E3L,
  6.693746645665242832426891888805363898707E2L,
  -4.746224241837275958126060307406616817753E2L,
  -2.274160637728782675145666064841883803196E1L,
  -3.541232266140939050094370552538987982637E1L,
  6.988950514747052676394491563585179503865E0L,
  -5.807687216836540830881352383529281215100E0L,
  3.631915988567346438830283503729569443642E-1L,
  -1.488945487149634820537348176770282391202E-2L
};
#define NRDr17 7
static long double RDr17[NRDr17 + 1] =
{
  2.748457523498150741964464942246913394647E3L,
  1.020213390713477686776037331757871252652E3L,
  1.388857635935432621972601695296561952738E3L,
  3.903363681143817750895999579637315491087E2L,
  2.784568344378139499217928969529219886578E2L,
  5.555800830216764702779238020065345401144E1L,
  2.646215470959050279430447295801291168941E1L,
  2.984905282103517497081766758550112011265E0L,
  /* 1.0E0 */
};
/* erfc(0.75) = C17a + C17b to extra precision.  */
static long double C17a = 0.2888336181640625L;
static long double C17b = 1.0748182422368401062165408589222625794046E-5L;


/* erfc(x + 0.875) = erfc(0.875) + x R(x)
   0 <= x < 0.125
   Peak relative error 2.2e-35  */
#define NRNr18 8
static long double RNr18[NRNr18 + 1] =
{
 -1.342044899087593397419622771847219619588E3L,
  6.127221294229172997509252330961641850598E2L,
 -4.519821356522291185621206350470820610727E2L,
  1.223275177825128732497510264197915160235E1L,
 -2.730789571382971355625020710543532867692E1L,
  4.045181204921538886880171727755445395862E0L,
 -4.925146477876592723401384464691452700539E0L,
  5.933878036611279244654299924101068088582E-1L,
 -5.557645435858916025452563379795159124753E-2L
};
#define NRDr18 7
static long double RDr18[NRDr18 + 1] =
{
  2.557518000661700588758505116291983092951E3L,
  1.070171433382888994954602511991940418588E3L,
  1.344842834423493081054489613250688918709E3L,
  4.161144478449381901208660598266288188426E2L,
  2.763670252219855198052378138756906980422E2L,
  5.998153487868943708236273854747564557632E1L,
  2.657695108438628847733050476209037025318E1L,
  3.252140524394421868923289114410336976512E0L,
  /* 1.0E0 */
};
/* erfc(0.875) = C18a + C18b to extra precision.  */
static long double C18a = 0.215911865234375L;
static long double C18b = 1.3073705765341685464282101150637224028267E-5L;

/* erfc(x + 1.0) = erfc(1.0) + x R(x)
   0 <= x < 0.125
   Peak relative error 1.6e-35  */
#define NRNr19 8
static long double RNr19[NRNr19 + 1] =
{
 -1.139180936454157193495882956565663294826E3L,
  6.134903129086899737514712477207945973616E2L,
 -4.628909024715329562325555164720732868263E2L,
  4.165702387210732352564932347500364010833E1L,
 -2.286979913515229747204101330405771801610E1L,
  1.870695256449872743066783202326943667722E0L,
 -4.177486601273105752879868187237000032364E0L,
  7.533980372789646140112424811291782526263E-1L,
 -8.629945436917752003058064731308767664446E-2L
};
#define NRDr19 7
static long double RDr19[NRDr19 + 1] =
{
  2.744303447981132701432716278363418643778E3L,
  1.266396359526187065222528050591302171471E3L,
  1.466739461422073351497972255511919814273E3L,
  4.868710570759693955597496520298058147162E2L,
  2.993694301559756046478189634131722579643E2L,
  6.868976819510254139741559102693828237440E1L,
  2.801505816247677193480190483913753613630E1L,
  3.604439909194350263552750347742663954481E0L,
  /* 1.0E0 */
};
/* erfc(1.0) = C19a + C19b to extra precision.  */
static long double C19a = 0.15728759765625L;
static long double C19b = 1.1609394035130658779364917390740703933002E-5L;

/* erfc(x + 1.125) = erfc(1.125) + x R(x)
   0 <= x < 0.125
   Peak relative error 3.6e-36  */
#define NRNr20 8
static long double RNr20[NRNr20 + 1] =
{
 -9.652706916457973956366721379612508047640E2L,
  5.577066396050932776683469951773643880634E2L,
 -4.406335508848496713572223098693575485978E2L,
  5.202893466490242733570232680736966655434E1L,
 -1.931311847665757913322495948705563937159E1L,
 -9.364318268748287664267341457164918090611E-2L,
 -3.306390351286352764891355375882586201069E0L,
  7.573806045289044647727613003096916516475E-1L,
 -9.611744011489092894027478899545635991213E-2L
};
#define NRDr20 7
static long double RDr20[NRDr20 + 1] =
{
  3.032829629520142564106649167182428189014E3L,
  1.659648470721967719961167083684972196891E3L,
  1.703545128657284619402511356932569292535E3L,
  6.393465677731598872500200253155257708763E2L,
  3.489131397281030947405287112726059221934E2L,
  8.848641738570783406484348434387611713070E1L,
  3.132269062552392974833215844236160958502E1L,
  4.430131663290563523933419966185230513168E0L
 /* 1.0E0 */
};
/* erfc(1.125) = C20a + C20b to extra precision.  */
static long double C20a = 0.111602783203125L;
static long double C20b = 8.9850951672359304215530728365232161564636E-6L;

/* erfc(1/x) = 1/x exp (-1/x^2 - 0.5625 + R(1/x^2))
   7/8 <= 1/x < 1
   Peak relative error 1.4e-35  */
#define NRNr8 9
static long double RNr8[NRNr8 + 1] =
{
  3.587451489255356250759834295199296936784E1L,
  5.406249749087340431871378009874875889602E2L,
  2.931301290625250886238822286506381194157E3L,
  7.359254185241795584113047248898753470923E3L,
  9.201031849810636104112101947312492532314E3L,
  5.749697096193191467751650366613289284777E3L,
  1.710415234419860825710780802678697889231E3L,
  2.150753982543378580859546706243022719599E2L,
  8.740953582272147335100537849981160931197E0L,
  4.876422978828717219629814794707963640913E-2L
};
#define NRDr8 8
static long double RDr8[NRDr8 + 1] =
{
  6.358593134096908350929496535931630140282E1L,
  9.900253816552450073757174323424051765523E2L,
  5.642928777856801020545245437089490805186E3L,
  1.524195375199570868195152698617273739609E4L,
  2.113829644500006749947332935305800887345E4L,
  1.526438562626465706267943737310282977138E4L,
  5.561370922149241457131421914140039411782E3L,
  9.394035530179705051609070428036834496942E2L,
  6.147019596150394577984175188032707343615E1L
  /* 1.0E0 */
};

/* erfc(1/x) = 1/x exp (-1/x^2 - 0.5625 + R(1/x^2))
   0.75 <= 1/x <= 0.875
   Peak relative error 2.0e-36  */
#define NRNr7 9
static long double RNr7[NRNr7 + 1] =
{
 1.686222193385987690785945787708644476545E1L,
 1.178224543567604215602418571310612066594E3L,
 1.764550584290149466653899886088166091093E4L,
 1.073758321890334822002849369898232811561E5L,
 3.132840749205943137619839114451290324371E5L,
 4.607864939974100224615527007793867585915E5L,
 3.389781820105852303125270837910972384510E5L,
 1.174042187110565202875011358512564753399E5L,
 1.660013606011167144046604892622504338313E4L,
 6.700393957480661937695573729183733234400E2L
};
#define NRDr7 9
static long double RDr7[NRDr7 + 1] =
{
-1.709305024718358874701575813642933561169E3L,
-3.280033887481333199580464617020514788369E4L,
-2.345284228022521885093072363418750835214E5L,
-8.086758123097763971926711729242327554917E5L,
-1.456900414510108718402423999575992450138E6L,
-1.391654264881255068392389037292702041855E6L,
-6.842360801869939983674527468509852583855E5L,
-1.597430214446573566179675395199807533371E5L,
-1.488876130609876681421645314851760773480E4L,
-3.511762950935060301403599443436465645703E2L
 /* 1.0E0 */
};

/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
   5/8 <= 1/x < 3/4
   Peak relative error 1.9e-35  */
#define NRNr6 9
static long double RNr6[NRNr6 + 1] =
{
 1.642076876176834390623842732352935761108E0L,
 1.207150003611117689000664385596211076662E2L,
 2.119260779316389904742873816462800103939E3L,
 1.562942227734663441801452930916044224174E4L,
 5.656779189549710079988084081145693580479E4L,
 1.052166241021481691922831746350942786299E5L,
 9.949798524786000595621602790068349165758E4L,
 4.491790734080265043407035220188849562856E4L,
 8.377074098301530326270432059434791287601E3L,
 4.506934806567986810091824791963991057083E2L
};
#define NRDr6 9
static long double RDr6[NRDr6 + 1] =
{
-1.664557643928263091879301304019826629067E2L,
-3.800035902507656624590531122291160668452E3L,
-3.277028191591734928360050685359277076056E4L,
-1.381359471502885446400589109566587443987E5L,
-3.082204287382581873532528989283748656546E5L,
-3.691071488256738343008271448234631037095E5L,
-2.300482443038349815750714219117566715043E5L,
-6.873955300927636236692803579555752171530E4L,
-8.262158817978334142081581542749986845399E3L,
-2.517122254384430859629423488157361983661E2L
 /* 1.00 */
};

/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
   1/2 <= 1/x < 5/8
   Peak relative error 4.6e-36  */
#define NRNr5 10
static long double RNr5[NRNr5 + 1] =
{
-3.332258927455285458355550878136506961608E-3L,
-2.697100758900280402659586595884478660721E-1L,
-6.083328551139621521416618424949137195536E0L,
-6.119863528983308012970821226810162441263E1L,
-3.176535282475593173248810678636522589861E2L,
-8.933395175080560925809992467187963260693E2L,
-1.360019508488475978060917477620199499560E3L,
-1.075075579828188621541398761300910213280E3L,
-4.017346561586014822824459436695197089916E2L,
-5.857581368145266249509589726077645791341E1L,
-2.077715925587834606379119585995758954399E0L
};
#define NRDr5 9
static long double RDr5[NRDr5 + 1] =
{
 3.377879570417399341550710467744693125385E-1L,
 1.021963322742390735430008860602594456187E1L,
 1.200847646592942095192766255154827011939E2L,
 7.118915528142927104078182863387116942836E2L,
 2.318159380062066469386544552429625026238E3L,
 4.238729853534009221025582008928765281620E3L,
 4.279114907284825886266493994833515580782E3L,
 2.257277186663261531053293222591851737504E3L,
 5.570475501285054293371908382916063822957E2L,
 5.142189243856288981145786492585432443560E1L
 /* 1.0E0 */
};

/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
   3/8 <= 1/x < 1/2
   Peak relative error 2.0e-36  */
#define NRNr4 10
static long double RNr4[NRNr4 + 1] =
{
 3.258530712024527835089319075288494524465E-3L,
 2.987056016877277929720231688689431056567E-1L,
 8.738729089340199750734409156830371528862E0L,
 1.207211160148647782396337792426311125923E2L,
 8.997558632489032902250523945248208224445E2L,
 3.798025197699757225978410230530640879762E3L,
 9.113203668683080975637043118209210146846E3L,
 1.203285891339933238608683715194034900149E4L,
 8.100647057919140328536743641735339740855E3L,
 2.383888249907144945837976899822927411769E3L,
 2.127493573166454249221983582495245662319E2L
};
#define NRDr4 10
static long double RDr4[NRDr4 + 1] =
{
-3.303141981514540274165450687270180479586E-1L,
-1.353768629363605300707949368917687066724E1L,
-2.206127630303621521950193783894598987033E2L,
-1.861800338758066696514480386180875607204E3L,
-8.889048775872605708249140016201753255599E3L,
-2.465888106627948210478692168261494857089E4L,
-3.934642211710774494879042116768390014289E4L,
-3.455077258242252974937480623730228841003E4L,
-1.524083977439690284820586063729912653196E4L,
-2.810541887397984804237552337349093953857E3L,
-1.343929553541159933824901621702567066156E2L
 /* 1.0E0 */
};

/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
   1/4 <= 1/x < 3/8
   Peak relative error 8.4e-37  */
#define NRNr3 11
static long double RNr3[NRNr3 + 1] =
{
-1.952401126551202208698629992497306292987E-6L,
-2.130881743066372952515162564941682716125E-4L,
-8.376493958090190943737529486107282224387E-3L,
-1.650592646560987700661598877522831234791E-1L,
-1.839290818933317338111364667708678163199E0L,
-1.216278715570882422410442318517814388470E1L,
-4.818759344462360427612133632533779091386E1L,
-1.120994661297476876804405329172164436784E2L,
-1.452850765662319264191141091859300126931E2L,
-9.485207851128957108648038238656777241333E1L,
-2.563663855025796641216191848818620020073E1L,
-1.787995944187565676837847610706317833247E0L
};
#define NRDr3 10
static long double RDr3[NRDr3 + 1] =
{
 1.979130686770349481460559711878399476903E-4L,
 1.156941716128488266238105813374635099057E-2L,
 2.752657634309886336431266395637285974292E-1L,
 3.482245457248318787349778336603569327521E0L,
 2.569347069372696358578399521203959253162E1L,
 1.142279000180457419740314694631879921561E2L,
 3.056503977190564294341422623108332700840E2L,
 4.780844020923794821656358157128719184422E2L,
 4.105972727212554277496256802312730410518E2L,
 1.724072188063746970865027817017067646246E2L,
 2.815939183464818198705278118326590370435E1L
 /* 1.0E0 */
};

/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
   1/8 <= 1/x < 1/4
   Peak relative error 1.5e-36  */
#define NRNr2 11
static long double RNr2[NRNr2 + 1] =
{
-2.638914383420287212401687401284326363787E-8L,
-3.479198370260633977258201271399116766619E-6L,
-1.783985295335697686382487087502222519983E-4L,
-4.777876933122576014266349277217559356276E-3L,
-7.450634738987325004070761301045014986520E-2L,
-7.068318854874733315971973707247467326619E-1L,
-4.113919921935944795764071670806867038732E0L,
-1.440447573226906222417767283691888875082E1L,
-2.883484031530718428417168042141288943905E1L,
-2.990886974328476387277797361464279931446E1L,
-1.325283914915104866248279787536128997331E1L,
-1.572436106228070195510230310658206154374E0L
};
#define NRDr2 10
static long double RDr2[NRDr2 + 1] =
{
 2.675042728136731923554119302571867799673E-6L,
 2.170997868451812708585443282998329996268E-4L,
 7.249969752687540289422684951196241427445E-3L,
 1.302040375859768674620410563307838448508E-1L,
 1.380202483082910888897654537144485285549E0L,
 8.926594113174165352623847870299170069350E0L,
 3.521089584782616472372909095331572607185E1L,
 8.233547427533181375185259050330809105570E1L,
 1.072971579885803033079469639073292840135E2L,
 6.943803113337964469736022094105143158033E1L,
 1.775695341031607738233608307835017282662E1L
 /* 1.0E0 */
};

/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
   1/128 <= 1/x < 1/8
   Peak relative error 2.2e-36  */
#define NRNr1 9
static long double RNr1[NRNr1 + 1] =
{
-4.250780883202361946697751475473042685782E-8L,
-5.375777053288612282487696975623206383019E-6L,
-2.573645949220896816208565944117382460452E-4L,
-6.199032928113542080263152610799113086319E-3L,
-8.262721198693404060380104048479916247786E-2L,
-6.242615227257324746371284637695778043982E-1L,
-2.609874739199595400225113299437099626386E0L,
-5.581967563336676737146358534602770006970E0L,
-5.124398923356022609707490956634280573882E0L,
-1.290865243944292370661544030414667556649E0L
};
#define NRDr1 8
static long double RDr1[NRDr1 + 1] =
{
 4.308976661749509034845251315983612976224E-6L,
 3.265390126432780184125233455960049294580E-4L,
 9.811328839187040701901866531796570418691E-3L,
 1.511222515036021033410078631914783519649E-1L,
 1.289264341917429958858379585970225092274E0L,
 6.147640356182230769548007536914983522270E0L,
 1.573966871337739784518246317003956180750E1L,
 1.955534123435095067199574045529218238263E1L,
 9.472613121363135472247929109615785855865E0L
  /* 1.0E0 */
};


#ifdef __STDC__
long double
__erfl (long double x)
#else
double
__erfl (x)
     long double x;
#endif
{
  long double a, y, z;
  int32_t i, ix, sign, flag;
  ieee854_long_double_shape_type u;

  u.value = x;
  sign = u.parts32.w0;
  ix = sign & 0x7fffffff;

  if (ix >= 0x7fff0000)
    {				/* erf(nan)=nan */
      i = ((sign & 0xffff0000) >> 31) << 1;
      return (long double) (1 - i) + one / x;	/* erf(+-inf)=+-1 */
    }

  if (ix >= 0x3fff0000) /* |x| >= 1.0 */
    {
      y = __erfcl (x);
      return (one - y);
      /*    return (one - __erfcl (x)); */
    }
  u.parts32.w0 = ix;
  a = u.value;
  z = x * x;
  if (ix < 0x3ffec000)  /* a < 0.875 */
    {
      if (ix < 0x3fc60000) /* |x|<2**-57 */
	{
	  if (ix < 0x00080000)
	    return 0.125 * (8.0 * x + efx8 * x);	/*avoid underflow */
	  return x + efx * x;
	}
      y = a + a * neval (z, TN1, NTN1) / deval (z, TD1, NTD1);
    }
  else
    {
      a = a - one;
      y = erf_const + neval (a, TN2, NTN2) / deval (a, TD2, NTD2);
    }

  if (sign & 0x80000000) /* x < 0 */
    y = -y;
  return( y );
}

weak_alias (__erfl, erfl)
#ifdef NO_LONG_DOUBLE
strong_alias (__erf, __erfl)
weak_alias (__erf, erfl)
#endif
#ifdef __STDC__
     long double
     __erfcl (long double x)
#else
     long double
     __erfcl (x)
     double
       x;
#endif
{
  long double P, Q, s, y, z, p, r;
  int32_t i, ix, sign, flag;
  ieee854_long_double_shape_type u;

  u.value = x;
  sign = u.parts32.w0;
  ix = sign & 0x7fffffff;
  u.parts32.w0 = ix;

  if (ix >= 0x7fff0000)
    {				/* erfc(nan)=nan */
      /* erfc(+-inf)=0,2 */
      return (long double) (((u_int32_t) sign >> 31) << 1) + one / x;
    }

  if (ix < 0x3ffd0000) /* |x| <1/4 */
    {
      if (ix < 0x3f8d0000) /* |x|<2**-114 */
	return one - x;
      return one - __erfl (x);
    }
  if (ix < 0x3fff4000) /* 1.25 */
    {
      x = u.value;
      i = 8.0 * x;
      switch (i)
	{
	case 2:
	  z = x - 0.25L;
	  y = C13b + z * neval (z, RNr13, NRNr13) / deval (z, RDr13, NRDr13);
	  y += C13a;
	  break;
	case 3:
	  z = x - 0.375L;
	  y = C14b + z * neval (z, RNr14, NRNr14) / deval (z, RDr14, NRDr14);
	  y += C14a;
	  break;
	case 4:
	  z = x - 0.5L;
	  y = C15b + z * neval (z, RNr15, NRNr15) / deval (z, RDr15, NRDr15);
	  y += C15a;
	  break;
	case 5:
	  z = x - 0.625L;
	  y = C16b + z * neval (z, RNr16, NRNr16) / deval (z, RDr16, NRDr16);
	  y += C16a;
	  break;
	case 6:
	  z = x - 0.75L;
	  y = C17b + z * neval (z, RNr17, NRNr17) / deval (z, RDr17, NRDr17);
	  y += C17a;
	  break;
	case 7:
	  z = x - 0.875L;
	  y = C18b + z * neval (z, RNr18, NRNr18) / deval (z, RDr18, NRDr18);
	  y += C18a;
	  break;
	case 8:
	  z = x - 1.0L;
	  y = C19b + z * neval (z, RNr19, NRNr19) / deval (z, RDr19, NRDr19);
	  y += C19a;
	  break;
	case 9:
	  z = x - 1.125L;
	  y = C20b + z * neval (z, RNr20, NRNr20) / deval (z, RDr20, NRDr20);
	  y += C20a;
	  break;
	}
      if (sign & 0x80000000)
	y = 2.0L - y;
      return y;
    }
  /* 1.25 < |x| < 107 */
  if (ix < 0x4005ac00)
    {
      /* x < -9 */
      if ((ix >= 0x40022000) && (sign & 0x80000000))
	return two - tiny;

      x = fabsl (x);
      z = one / (x * x);
      i = 8.0 / x;
      switch (i)
	{
	default:
	case 0:
	  p = neval (z, RNr1, NRNr1) / deval (z, RDr1, NRDr1);
	  break;
	case 1:
	  p = neval (z, RNr2, NRNr2) / deval (z, RDr2, NRDr2);
	  break;
	case 2:
	  p = neval (z, RNr3, NRNr3) / deval (z, RDr3, NRDr3);
	  break;
	case 3:
	  p = neval (z, RNr4, NRNr4) / deval (z, RDr4, NRDr4);
	  break;
	case 4:
	  p = neval (z, RNr5, NRNr5) / deval (z, RDr5, NRDr5);
	  break;
	case 5:
	  p = neval (z, RNr6, NRNr6) / deval (z, RDr6, NRDr6);
	  break;
	case 6:
	  p = neval (z, RNr7, NRNr7) / deval (z, RDr7, NRDr7);
	  break;
	case 7:
	  p = neval (z, RNr8, NRNr8) / deval (z, RDr8, NRDr8);
	  break;
	}
      u.value = x;
      u.parts32.w3 = 0;
      u.parts32.w2 &= 0xfe000000;
      z = u.value;
      r = __ieee754_expl (-z * z - 0.5625) *
	__ieee754_expl ((z - x) * (z + x) + p);
      if ((sign & 0x80000000) == 0)
	return r / x;
      else
	return two - r / x;
    }
  else
    {
      if ((sign & 0x80000000) == 0)
	return tiny * tiny;
      else
	return two - tiny;
    }
}

weak_alias (__erfcl, erfcl)
#ifdef NO_LONG_DOUBLE
strong_alias (__erfc, __erfcl)
weak_alias (__erfc, erfcl)
#endif