aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/ldbl-128/k_tanl.c
blob: 3d8e0342e88e4a9ed7bf1d51a13bc8ae12f22fbb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

/*
  Long double expansions contributed by
  Stephen L. Moshier <moshier@na-net.ornl.gov>
*/

/* __kernel_tanl( x, y, k )
 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
 * Input x is assumed to be bounded by ~pi/4 in magnitude.
 * Input y is the tail of x.
 * Input k indicates whether tan (if k=1) or
 * -1/tan (if k= -1) is returned.
 *
 * Algorithm
 *	1. Since tan(-x) = -tan(x), we need only to consider positive x.
 *	2. if x < 2^-57, return x with inexact if x!=0.
 *	3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2)
 *          on [0,0.67433].
 *
 *	   Note: tan(x+y) = tan(x) + tan'(x)*y
 *		          ~ tan(x) + (1+x*x)*y
 *	   Therefore, for better accuracy in computing tan(x+y), let
 *		r = x^3 * R(x^2)
 *	   then
 *		tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y))
 *
 *      4. For x in [0.67433,pi/4],  let y = pi/4 - x, then
 *		tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
 *		       = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
 */

#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const long double
#else
static long double
#endif
  one = 1.0L,
  pio4hi = 7.8539816339744830961566084581987569936977E-1L,
  pio4lo = 2.1679525325309452561992610065108379921906E-35L,

  /* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2)
     0 <= x <= 0.6743316650390625
     Peak relative error 8.0e-36  */
 TH =  3.333333333333333333333333333333333333333E-1L,
 T0 = -1.813014711743583437742363284336855889393E7L,
 T1 =  1.320767960008972224312740075083259247618E6L,
 T2 = -2.626775478255838182468651821863299023956E4L,
 T3 =  1.764573356488504935415411383687150199315E2L,
 T4 = -3.333267763822178690794678978979803526092E-1L,

 U0 = -1.359761033807687578306772463253710042010E8L,
 U1 =  6.494370630656893175666729313065113194784E7L,
 U2 = -4.180787672237927475505536849168729386782E6L,
 U3 =  8.031643765106170040139966622980914621521E4L,
 U4 = -5.323131271912475695157127875560667378597E2L;
  /* 1.000000000000000000000000000000000000000E0 */


#ifdef __STDC__
long double
__kernel_tanl (long double x, long double y, int iy)
#else
long double
__kernel_tanl (x, y, iy)
     long double x, y;
     int iy;
#endif
{
  long double z, r, v, w, s;
  int32_t ix, sign;
  ieee854_long_double_shape_type u, u1;

  u.value = x;
  ix = u.parts32.w0 & 0x7fffffff;
  if (ix < 0x3fc60000)		/* x < 2**-57 */
    {
      if ((int) x == 0)
	{			/* generate inexact */
	  if ((ix | u.parts32.w1 | u.parts32.w2 | u.parts32.w3
	       | (iy + 1)) == 0)
	    return one / fabs (x);
	  else
	    return (iy == 1) ? x : -one / x;
	}
    }
  if (ix >= 0x3ffe5942) /* |x| >= 0.6743316650390625 */
    {
      if ((u.parts32.w0 & 0x80000000) != 0)
	{
	  x = -x;
	  y = -y;
	  sign = -1;
	}
      else
	sign = 1;
      z = pio4hi - x;
      w = pio4lo - y;
      x = z + w;
      y = 0.0;
    }
  z = x * x;
  r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4)));
  v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z))));
  r = r / v;

  s = z * x;
  r = y + z * (s * r + y);
  r += TH * s;
  w = x + r;
  if (ix >= 0x3ffe5942)
    {
      v = (long double) iy;
      w = (v - 2.0 * (x - (w * w / (w + v) - r)));
      if (sign < 0)
	w = -w;
      return w;
    }
  if (iy == 1)
    return w;
  else
    {				/* if allow error up to 2 ulp,
				   simply return -1.0/(x+r) here */
      /*  compute -1.0/(x+r) accurately */
      u1.value = w;
      u1.parts32.w2 = 0;
      u1.parts32.w3 = 0;
      v = r - (u1.value - x);		/* u1+v = r+x */
      z = -1.0 / w;
      u.value = z;
      u.parts32.w2 = 0;
      u.parts32.w3 = 0;
      s = 1.0 + u.value * u1.value;
      return u.value + z * (s + u.value * v);
    }
}