1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
|
/*
* IBM Accurate Mathematical Library
* Copyright (c) International Business Machines Corp., 2001
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/******************************************************************/
/* */
/* MODULE_NAME:ulog.h */
/* */
/* common data and variables prototype and definition */
/******************************************************************/
#ifndef ULOG_H
#define ULOG_H
#ifdef BIG_ENDI
static const number
/* polynomial I */
/**/ a2 = {{0xbfe00000, 0x0001aa8f} }, /* -0.500... */
/**/ a3 = {{0x3fd55555, 0x55588d2e} }, /* 0.333... */
/* polynomial II */
/**/ b0 = {{0x3fd55555, 0x55555555} }, /* 0.333... */
/**/ b1 = {{0xbfcfffff, 0xffffffbb} }, /* -0.249... */
/**/ b2 = {{0x3fc99999, 0x9999992f} }, /* 0.199... */
/**/ b3 = {{0xbfc55555, 0x556503fd} }, /* -0.166... */
/**/ b4 = {{0x3fc24924, 0x925b3d62} }, /* 0.142... */
/**/ b5 = {{0xbfbffffe, 0x160472fc} }, /* -0.124... */
/**/ b6 = {{0x3fbc71c5, 0x25db58ac} }, /* 0.111... */
/**/ b7 = {{0xbfb9a4ac, 0x11a2a61c} }, /* -0.100... */
/**/ b8 = {{0x3fb75077, 0x0df2b591} }, /* 0.091... */
/* polynomial III */
#if 0
/**/ c1 = {{0x3ff00000, 0x00000000} }, /* 1 */
#endif
/**/ c2 = {{0xbfe00000, 0x00000000} }, /* -1/2 */
/**/ c3 = {{0x3fd55555, 0x55555555} }, /* 1/3 */
/**/ c4 = {{0xbfd00000, 0x00000000} }, /* -1/4 */
/**/ c5 = {{0x3fc99999, 0x9999999a} }, /* 1/5 */
/* polynomial IV */
/**/ d2 = {{0xbfe00000, 0x00000000} }, /* -1/2 */
/**/ dd2 = {{0x00000000, 0x00000000} }, /* -1/2-d2 */
/**/ d3 = {{0x3fd55555, 0x55555555} }, /* 1/3 */
/**/ dd3 = {{0x3c755555, 0x55555555} }, /* 1/3-d3 */
/**/ d4 = {{0xbfd00000, 0x00000000} }, /* -1/4 */
/**/ dd4 = {{0x00000000, 0x00000000} }, /* -1/4-d4 */
/**/ d5 = {{0x3fc99999, 0x9999999a} }, /* 1/5 */
/**/ dd5 = {{0xbc699999, 0x9999999a} }, /* 1/5-d5 */
/**/ d6 = {{0xbfc55555, 0x55555555} }, /* -1/6 */
/**/ dd6 = {{0xbc655555, 0x55555555} }, /* -1/6-d6 */
/**/ d7 = {{0x3fc24924, 0x92492492} }, /* 1/7 */
/**/ dd7 = {{0x3c624924, 0x92492492} }, /* 1/7-d7 */
/**/ d8 = {{0xbfc00000, 0x00000000} }, /* -1/8 */
/**/ dd8 = {{0x00000000, 0x00000000} }, /* -1/8-d8 */
/**/ d9 = {{0x3fbc71c7, 0x1c71c71c} }, /* 1/9 */
/**/ dd9 = {{0x3c5c71c7, 0x1c71c71c} }, /* 1/9-d9 */
/**/ d10 = {{0xbfb99999, 0x9999999a} }, /* -1/10 */
/**/ dd10 = {{0x3c599999, 0x9999999a} }, /* -1/10-d10 */
/**/ d11 = {{0x3fb745d1, 0x745d1746} }, /* 1/11 */
/**/ d12 = {{0xbfb55555, 0x55555555} }, /* -1/12 */
/**/ d13 = {{0x3fb3b13b, 0x13b13b14} }, /* 1/13 */
/**/ d14 = {{0xbfb24924, 0x92492492} }, /* -1/14 */
/**/ d15 = {{0x3fb11111, 0x11111111} }, /* 1/15 */
/**/ d16 = {{0xbfb00000, 0x00000000} }, /* -1/16 */
/**/ d17 = {{0x3fae1e1e, 0x1e1e1e1e} }, /* 1/17 */
/**/ d18 = {{0xbfac71c7, 0x1c71c71c} }, /* -1/18 */
/**/ d19 = {{0x3faaf286, 0xbca1af28} }, /* 1/19 */
/**/ d20 = {{0xbfa99999, 0x9999999a} }, /* -1/20 */
/* constants */
/**/ zero = {{0x00000000, 0x00000000} }, /* 0 */
/**/ one = {{0x3ff00000, 0x00000000} }, /* 1 */
/**/ half = {{0x3fe00000, 0x00000000} }, /* 1/2 */
/**/ mhalf = {{0xbfe00000, 0x00000000} }, /* -1/2 */
/**/ sqrt_2 = {{0x3ff6a09e, 0x667f3bcc} }, /* sqrt(2) */
/**/ h1 = {{0x3fd2e000, 0x00000000} }, /* 151/2**9 */
/**/ h2 = {{0x3f669000, 0x00000000} }, /* 361/2**17 */
/**/ delu = {{0x3f700000, 0x00000000} }, /* 1/2**8 */
/**/ delv = {{0x3ef00000, 0x00000000} }, /* 1/2**16 */
/**/ ln2a = {{0x3fe62e42, 0xfefa3800} }, /* ln(2) 43 bits */
/**/ ln2b = {{0x3d2ef357, 0x93c76730} }, /* ln(2)-ln2a */
/**/ e1 = {{0x3bbcc868, 0x00000000} }, /* 6.095e-21 */
/**/ e2 = {{0x3c1138ce, 0x00000000} }, /* 2.334e-19 */
/**/ e3 = {{0x3aa1565d, 0x00000000} }, /* 2.801e-26 */
/**/ e4 = {{0x39809d88, 0x00000000} }, /* 1.024e-31 */
/**/ e[M] ={{{0x37da223a, 0x00000000} }, /* 1.2e-39 */
/**/ {{0x35c851c4, 0x00000000} }, /* 1.3e-49 */
/**/ {{0x2ab85e51, 0x00000000} }, /* 6.8e-103 */
/**/ {{0x17383827, 0x00000000} }},/* 8.1e-197 */
/**/ two54 = {{0x43500000, 0x00000000} }, /* 2**54 */
/**/ u03 = {{0x3f9eb851, 0xeb851eb8} }; /* 0.03 */
#else
#ifdef LITTLE_ENDI
static const number
/* polynomial I */
/**/ a2 = {{0x0001aa8f, 0xbfe00000} }, /* -0.500... */
/**/ a3 = {{0x55588d2e, 0x3fd55555} }, /* 0.333... */
/* polynomial II */
/**/ b0 = {{0x55555555, 0x3fd55555} }, /* 0.333... */
/**/ b1 = {{0xffffffbb, 0xbfcfffff} }, /* -0.249... */
/**/ b2 = {{0x9999992f, 0x3fc99999} }, /* 0.199... */
/**/ b3 = {{0x556503fd, 0xbfc55555} }, /* -0.166... */
/**/ b4 = {{0x925b3d62, 0x3fc24924} }, /* 0.142... */
/**/ b5 = {{0x160472fc, 0xbfbffffe} }, /* -0.124... */
/**/ b6 = {{0x25db58ac, 0x3fbc71c5} }, /* 0.111... */
/**/ b7 = {{0x11a2a61c, 0xbfb9a4ac} }, /* -0.100... */
/**/ b8 = {{0x0df2b591, 0x3fb75077} }, /* 0.091... */
/* polynomial III */
#if 0
/**/ c1 = {{0x00000000, 0x3ff00000} }, /* 1 */
#endif
/**/ c2 = {{0x00000000, 0xbfe00000} }, /* -1/2 */
/**/ c3 = {{0x55555555, 0x3fd55555} }, /* 1/3 */
/**/ c4 = {{0x00000000, 0xbfd00000} }, /* -1/4 */
/**/ c5 = {{0x9999999a, 0x3fc99999} }, /* 1/5 */
/* polynomial IV */
/**/ d2 = {{0x00000000, 0xbfe00000} }, /* -1/2 */
/**/ dd2 = {{0x00000000, 0x00000000} }, /* -1/2-d2 */
/**/ d3 = {{0x55555555, 0x3fd55555} }, /* 1/3 */
/**/ dd3 = {{0x55555555, 0x3c755555} }, /* 1/3-d3 */
/**/ d4 = {{0x00000000, 0xbfd00000} }, /* -1/4 */
/**/ dd4 = {{0x00000000, 0x00000000} }, /* -1/4-d4 */
/**/ d5 = {{0x9999999a, 0x3fc99999} }, /* 1/5 */
/**/ dd5 = {{0x9999999a, 0xbc699999} }, /* 1/5-d5 */
/**/ d6 = {{0x55555555, 0xbfc55555} }, /* -1/6 */
/**/ dd6 = {{0x55555555, 0xbc655555} }, /* -1/6-d6 */
/**/ d7 = {{0x92492492, 0x3fc24924} }, /* 1/7 */
/**/ dd7 = {{0x92492492, 0x3c624924} }, /* 1/7-d7 */
/**/ d8 = {{0x00000000, 0xbfc00000} }, /* -1/8 */
/**/ dd8 = {{0x00000000, 0x00000000} }, /* -1/8-d8 */
/**/ d9 = {{0x1c71c71c, 0x3fbc71c7} }, /* 1/9 */
/**/ dd9 = {{0x1c71c71c, 0x3c5c71c7} }, /* 1/9-d9 */
/**/ d10 = {{0x9999999a, 0xbfb99999} }, /* -1/10 */
/**/ dd10 = {{0x9999999a, 0x3c599999} }, /* -1/10-d10 */
/**/ d11 = {{0x745d1746, 0x3fb745d1} }, /* 1/11 */
/**/ d12 = {{0x55555555, 0xbfb55555} }, /* -1/12 */
/**/ d13 = {{0x13b13b14, 0x3fb3b13b} }, /* 1/13 */
/**/ d14 = {{0x92492492, 0xbfb24924} }, /* -1/14 */
/**/ d15 = {{0x11111111, 0x3fb11111} }, /* 1/15 */
/**/ d16 = {{0x00000000, 0xbfb00000} }, /* -1/16 */
/**/ d17 = {{0x1e1e1e1e, 0x3fae1e1e} }, /* 1/17 */
/**/ d18 = {{0x1c71c71c, 0xbfac71c7} }, /* -1/18 */
/**/ d19 = {{0xbca1af28, 0x3faaf286} }, /* 1/19 */
/**/ d20 = {{0x9999999a, 0xbfa99999} }, /* -1/20 */
/* constants */
/**/ zero = {{0x00000000, 0x00000000} }, /* 0 */
/**/ one = {{0x00000000, 0x3ff00000} }, /* 1 */
/**/ half = {{0x00000000, 0x3fe00000} }, /* 1/2 */
/**/ mhalf = {{0x00000000, 0xbfe00000} }, /* -1/2 */
/**/ sqrt_2 = {{0x667f3bcc, 0x3ff6a09e} }, /* sqrt(2) */
/**/ h1 = {{0x00000000, 0x3fd2e000} }, /* 151/2**9 */
/**/ h2 = {{0x00000000, 0x3f669000} }, /* 361/2**17 */
/**/ delu = {{0x00000000, 0x3f700000} }, /* 1/2**8 */
/**/ delv = {{0x00000000, 0x3ef00000} }, /* 1/2**16 */
/**/ ln2a = {{0xfefa3800, 0x3fe62e42} }, /* ln(2) 43 bits */
/**/ ln2b = {{0x93c76730, 0x3d2ef357} }, /* ln(2)-ln2a */
/**/ e1 = {{0x00000000, 0x3bbcc868} }, /* 6.095e-21 */
/**/ e2 = {{0x00000000, 0x3c1138ce} }, /* 2.334e-19 */
/**/ e3 = {{0x00000000, 0x3aa1565d} }, /* 2.801e-26 */
/**/ e4 = {{0x00000000, 0x39809d88} }, /* 1.024e-31 */
/**/ e[M] ={{{0x00000000, 0x37da223a} }, /* 1.2e-39 */
/**/ {{0x00000000, 0x35c851c4} }, /* 1.3e-49 */
/**/ {{0x00000000, 0x2ab85e51} }, /* 6.8e-103 */
/**/ {{0x00000000, 0x17383827} }},/* 8.1e-197 */
/**/ two54 = {{0x00000000, 0x43500000} }, /* 2**54 */
/**/ u03 = {{0xeb851eb8, 0x3f9eb851} }; /* 0.03 */
#endif
#endif
#define ZERO zero.d
#define ONE one.d
#define HALF half.d
#define MHALF mhalf.d
#define SQRT_2 sqrt_2.d
#define DEL_U delu.d
#define DEL_V delv.d
#define LN2A ln2a.d
#define LN2B ln2b.d
#define E1 e1.d
#define E2 e2.d
#define E3 e3.d
#define E4 e4.d
#define U03 u03.d
#endif
|