aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/dbl-64/s_fma.c
blob: ca7300c11e053345c119ef2e451f485dfce153ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
/* Compute x * y + z as ternary operation.
   Copyright (C) 2010 Free Software Foundation, Inc.
   This file is part of the GNU C Library.
   Contributed by Jakub Jelinek <jakub@redhat.com>, 2010.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, write to the Free
   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
   02111-1307 USA.  */

#include <float.h>
#include <math.h>
#include <fenv.h>
#include <ieee754.h>

/* This implementation uses rounding to odd to avoid problems with
   double rounding.  See a paper by Boldo and Melquiond:
   http://www.lri.fr/~melquion/doc/08-tc.pdf  */

double
__fma (double x, double y, double z)
{
  union ieee754_double u, v, w;
  int adjust = 0;
  u.d = x;
  v.d = y;
  w.d = z;
  if (__builtin_expect (u.ieee.exponent + v.ieee.exponent
			>= 0x7ff + IEEE754_DOUBLE_BIAS - DBL_MANT_DIG, 0)
      || __builtin_expect (u.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0)
      || __builtin_expect (v.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0)
      || __builtin_expect (w.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0))
    {
      /* If x or y or z is Inf/NaN or if fma will certainly overflow,
	 compute as x * y + z.  */
      if (u.ieee.exponent == 0x7ff
	  || v.ieee.exponent == 0x7ff
	  || w.ieee.exponent == 0x7ff
	  || u.ieee.exponent + v.ieee.exponent
	     > 0x7ff + IEEE754_DOUBLE_BIAS)
	return x * y + z;
      if (u.ieee.exponent + v.ieee.exponent
	  >= 0x7ff + IEEE754_DOUBLE_BIAS - DBL_MANT_DIG)
	{
	  /* Compute 1p-53 times smaller result and multiply
	     at the end.  */
	  if (u.ieee.exponent > v.ieee.exponent)
	    u.ieee.exponent -= DBL_MANT_DIG;
	  else
	    v.ieee.exponent -= DBL_MANT_DIG;
	  /* If x + y exponent is very large and z exponent is very small,
	     it doesn't matter if we don't adjust it.  */
	  if (w.ieee.exponent > DBL_MANT_DIG)
	    w.ieee.exponent -= DBL_MANT_DIG;
	  adjust = 1;
	}
      else if (w.ieee.exponent >= 0x7ff - DBL_MANT_DIG)
	{
	  /* Similarly.
	     If z exponent is very large and x and y exponents are
	     very small, it doesn't matter if we don't adjust it.  */
	  if (u.ieee.exponent > v.ieee.exponent)
	    {
	      if (u.ieee.exponent > DBL_MANT_DIG)
		u.ieee.exponent -= DBL_MANT_DIG;
	    }
	  else if (v.ieee.exponent > DBL_MANT_DIG)
	    v.ieee.exponent -= DBL_MANT_DIG;
	  w.ieee.exponent -= DBL_MANT_DIG;
	  adjust = 1;
	}
      else if (u.ieee.exponent >= 0x7ff - DBL_MANT_DIG)
	{
	  u.ieee.exponent -= DBL_MANT_DIG;
	  if (v.ieee.exponent)
	    v.ieee.exponent += DBL_MANT_DIG;
	  else
	    v.d *= 0x1p53;
	}
      else
	{
	  v.ieee.exponent -= DBL_MANT_DIG;
	  if (u.ieee.exponent)
	    u.ieee.exponent += DBL_MANT_DIG;
	  else
	    u.d *= 0x1p53;
	}
      x = u.d;
      y = v.d;
      z = w.d;
    }
  /* Multiplication m1 + m2 = x * y using Dekker's algorithm.  */
#define C ((1 << (DBL_MANT_DIG + 1) / 2) + 1)
  double x1 = x * C;
  double y1 = y * C;
  double m1 = x * y;
  x1 = (x - x1) + x1;
  y1 = (y - y1) + y1;
  double x2 = x - x1;
  double y2 = y - y1;
  double m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2;

  /* Addition a1 + a2 = z + m1 using Knuth's algorithm.  */
  double a1 = z + m1;
  double t1 = a1 - z;
  double t2 = a1 - t1;
  t1 = m1 - t1;
  t2 = z - t2;
  double a2 = t1 + t2;

  fenv_t env;
  feholdexcept (&env);
  fesetround (FE_TOWARDZERO);
  /* Perform m2 + a2 addition with round to odd.  */
  u.d = a2 + m2;
  if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7ff)
    u.ieee.mantissa1 |= fetestexcept (FE_INEXACT) != 0;
  feupdateenv (&env);

  /* Add that to a1.  */
  a1 = a1 + u.d;

  /* And adjust exponent if needed.  */
  if (__builtin_expect (adjust, 0))
    a1 *= 0x1p53;

  return a1;
}
#ifndef __fma
weak_alias (__fma, fma)
#endif

#ifdef NO_LONG_DOUBLE
strong_alias (__fma, __fmal)
weak_alias (__fmal, fmal)
#endif