1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
|
/*
* IBM Accurate Mathematical Library
* Copyright (c) International Business Machines Corp., 2001
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*********************************************************************/
/* MODULE_NAME: uroot.c */
/* */
/* FUNCTION: usqrt */
/* */
/* FILES NEEDED: dla.h endian.h mydefs.h uroot.h */
/* uroot.tbl */
/* */
/* An ultimate sqrt routine. Given an IEEE double machine number x */
/* it computes the correctly rounded (to nearest) value of square */
/* root of x. */
/* Assumption: Machine arithmetic operations are performed in */
/* round to nearest mode of IEEE 754 standard. */
/* */
/*********************************************************************/
#include "endian.h"
#include "mydefs.h"
#include "dla.h"
#include "MathLib.h"
#include "root.tbl"
/*********************************************************************/
/* An ultimate aqrt routine. Given an IEEE double machine number x */
/* it computes the correctly rounded (to nearest) value of square */
/* root of x. */
/*********************************************************************/
double __ieee754_sqrt(double x) {
#include "uroot.h"
static const double
rt0 = 9.99999999859990725855365213134618E-01,
rt1 = 4.99999999495955425917856814202739E-01,
rt2 = 3.75017500867345182581453026130850E-01,
rt3 = 3.12523626554518656309172508769531E-01;
static const double big = 134217728.0, big1 = 134217729.0;
double y,t,del,res,res1,hy,z,zz,p,hx,tx,ty,s;
mynumber a,b,c={0,0};
int4 n,k;
a.x=x;
k=a.i[HIGH_HALF];
a.i[HIGH_HALF]=(k&0x001fffff)|0x3fe00000;
t=inroot[(k&0x001fffff)>>14];
s=a.x;
/*----------------- 2^-1022 <= | x |< 2^1024 -----------------*/
if (k>0x000fffff && k<0x7ff00000) {
y=1.0-t*(t*s);
t=t*(rt0+y*(rt1+y*(rt2+y*rt3)));
c.i[HIGH_HALF]=0x20000000+((k&0x7fe00000)>>1);
y=t*s;
hy=(y+big)-big;
del=0.5*t*((s-hy*hy)-(y-hy)*(y+hy));
res=y+del;
if (res == (res+1.002*((y-res)+del))) return res*c.x;
else {
res1=res+1.5*((y-res)+del);
EMULV(res,res1,z,zz,p,hx,tx,hy,ty); /* (z+zz)=res*res1 */
return ((((z-s)+zz)<0)?max(res,res1):min(res,res1))*c.x;
}
}
else {
if (k>0x7ff00000) /* x -> infinity */
return (big1-big1)/(big-big);
if (k<0x00100000) { /* x -> -infinity */
if (x==0) return x;
if (k<0) return (big1-big1)/(big-big);
else return tm256.x*usqrt(x*t512.x);
}
else return (a.i[LOW_HALF]==0)?x:(big1-big1)/(big-big);
}
}
|