1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
|
/*
* IBM Accurate Mathematical Library
* written by International Business Machines Corp.
* Copyright (C) 2001 Free Software Foundation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*********************************************************************/
/* */
/* MODULE_NAME:ulog.c */
/* */
/* FUNCTION:ulog */
/* */
/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h ulog.h */
/* mpexp.c mplog.c mpa.c */
/* ulog.tbl */
/* */
/* An ultimate log routine. Given an IEEE double machine number x */
/* it computes the correctly rounded (to nearest) value of log(x). */
/* Assumption: Machine arithmetic operations are performed in */
/* round to nearest mode of IEEE 754 standard. */
/* */
/*********************************************************************/
#include "endian.h"
#include "dla.h"
#include "mpa.h"
#include "MathLib.h"
#include "math_private.h"
void __mplog(mp_no *, mp_no *, int);
/*********************************************************************/
/* An ultimate log routine. Given an IEEE double machine number x */
/* it computes the correctly rounded (to nearest) value of log(x). */
/*********************************************************************/
double __ieee754_log(double x) {
#define M 4
static const int pr[M]={8,10,18,32};
int i,j,n,ux,dx,p;
#if 0
int k;
#endif
double dbl_n,u,p0,q,r0,w,nln2a,luai,lubi,lvaj,lvbj,
sij,ssij,ttij,A,B,B0,y,y1,y2,polI,polII,sa,sb,
t1,t2,t3,t4,t5,t6,t7,t8,t,ra,rb,ww,
a0,aa0,s1,s2,ss2,s3,ss3,a1,aa1,a,aa,b,bb,c;
number num;
mp_no mpx,mpy,mpy1,mpy2,mperr;
#include "ulog.tbl"
#include "ulog.h"
/* Treating special values of x ( x<=0, x=INF, x=NaN etc.). */
num.d = x; ux = num.i[HIGH_HALF]; dx = num.i[LOW_HALF];
n=0;
if (ux < 0x00100000) {
if (((ux & 0x7fffffff) | dx) == 0) return MHALF/ZERO; /* return -INF */
if (ux < 0) return (x-x)/ZERO; /* return NaN */
n -= 54; x *= two54.d; /* scale x */
num.d = x;
}
if (ux >= 0x7ff00000) return x+x; /* INF or NaN */
/* Regular values of x */
w = x-ONE;
if (ABS(w) > U03) { goto case_03; }
/*--- Stage I, the case abs(x-1) < 0.03 */
t8 = MHALF*w;
EMULV(t8,w,a,aa,t1,t2,t3,t4,t5)
EADD(w,a,b,bb)
/* Evaluate polynomial II */
polII = (b0.d+w*(b1.d+w*(b2.d+w*(b3.d+w*(b4.d+
w*(b5.d+w*(b6.d+w*(b7.d+w*b8.d))))))))*w*w*w;
c = (aa+bb)+polII;
/* End stage I, case abs(x-1) < 0.03 */
if ((y=b+(c+b*E2)) == b+(c-b*E2)) return y;
/*--- Stage II, the case abs(x-1) < 0.03 */
a = d11.d+w*(d12.d+w*(d13.d+w*(d14.d+w*(d15.d+w*(d16.d+
w*(d17.d+w*(d18.d+w*(d19.d+w*d20.d))))))));
EMULV(w,a,s2,ss2,t1,t2,t3,t4,t5)
ADD2(d10.d,dd10.d,s2,ss2,s3,ss3,t1,t2)
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
ADD2(d9.d,dd9.d,s2,ss2,s3,ss3,t1,t2)
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
ADD2(d8.d,dd8.d,s2,ss2,s3,ss3,t1,t2)
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
ADD2(d7.d,dd7.d,s2,ss2,s3,ss3,t1,t2)
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
ADD2(d6.d,dd6.d,s2,ss2,s3,ss3,t1,t2)
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
ADD2(d5.d,dd5.d,s2,ss2,s3,ss3,t1,t2)
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
ADD2(d4.d,dd4.d,s2,ss2,s3,ss3,t1,t2)
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
ADD2(d3.d,dd3.d,s2,ss2,s3,ss3,t1,t2)
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
ADD2(d2.d,dd2.d,s2,ss2,s3,ss3,t1,t2)
MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
MUL2(w,ZERO,s2,ss2,s3,ss3,t1,t2,t3,t4,t5,t6,t7,t8)
ADD2(w,ZERO, s3,ss3, b, bb,t1,t2)
/* End stage II, case abs(x-1) < 0.03 */
if ((y=b+(bb+b*E4)) == b+(bb-b*E4)) return y;
goto stage_n;
/*--- Stage I, the case abs(x-1) > 0.03 */
case_03:
/* Find n,u such that x = u*2**n, 1/sqrt(2) < u < sqrt(2) */
n += (num.i[HIGH_HALF] >> 20) - 1023;
num.i[HIGH_HALF] = (num.i[HIGH_HALF] & 0x000fffff) | 0x3ff00000;
if (num.d > SQRT_2) { num.d *= HALF; n++; }
u = num.d; dbl_n = (double) n;
/* Find i such that ui=1+(i-75)/2**8 is closest to u (i= 0,1,2,...,181) */
num.d += h1.d;
i = (num.i[HIGH_HALF] & 0x000fffff) >> 12;
/* Find j such that vj=1+(j-180)/2**16 is closest to v=u/ui (j= 0,...,361) */
num.d = u*Iu[i].d + h2.d;
j = (num.i[HIGH_HALF] & 0x000fffff) >> 4;
/* Compute w=(u-ui*vj)/(ui*vj) */
p0=(ONE+(i-75)*DEL_U)*(ONE+(j-180)*DEL_V);
q=u-p0; r0=Iu[i].d*Iv[j].d; w=q*r0;
/* Evaluate polynomial I */
polI = w+(a2.d+a3.d*w)*w*w;
/* Add up everything */
nln2a = dbl_n*LN2A;
luai = Lu[i][0].d; lubi = Lu[i][1].d;
lvaj = Lv[j][0].d; lvbj = Lv[j][1].d;
EADD(luai,lvaj,sij,ssij)
EADD(nln2a,sij,A ,ttij)
B0 = (((lubi+lvbj)+ssij)+ttij)+dbl_n*LN2B;
B = polI+B0;
/* End stage I, case abs(x-1) >= 0.03 */
if ((y=A+(B+E1)) == A+(B-E1)) return y;
/*--- Stage II, the case abs(x-1) > 0.03 */
/* Improve the accuracy of r0 */
EMULV(p0,r0,sa,sb,t1,t2,t3,t4,t5)
t=r0*((ONE-sa)-sb);
EADD(r0,t,ra,rb)
/* Compute w */
MUL2(q,ZERO,ra,rb,w,ww,t1,t2,t3,t4,t5,t6,t7,t8)
EADD(A,B0,a0,aa0)
/* Evaluate polynomial III */
s1 = (c3.d+(c4.d+c5.d*w)*w)*w;
EADD(c2.d,s1,s2,ss2)
MUL2(s2,ss2,w,ww,s3,ss3,t1,t2,t3,t4,t5,t6,t7,t8)
MUL2(s3,ss3,w,ww,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
ADD2(s2,ss2,w,ww,s3,ss3,t1,t2)
ADD2(s3,ss3,a0,aa0,a1,aa1,t1,t2)
/* End stage II, case abs(x-1) >= 0.03 */
if ((y=a1+(aa1+E3)) == a1+(aa1-E3)) return y;
/* Final stages. Use multi-precision arithmetic. */
stage_n:
for (i=0; i<M; i++) {
p = pr[i];
__dbl_mp(x,&mpx,p); __dbl_mp(y,&mpy,p);
__mplog(&mpx,&mpy,p);
__dbl_mp(e[i].d,&mperr,p);
__add(&mpy,&mperr,&mpy1,p); __sub(&mpy,&mperr,&mpy2,p);
__mp_dbl(&mpy1,&y1,p); __mp_dbl(&mpy2,&y2,p);
if (y1==y2) return y1;
}
return y1;
}
|