aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ia64/fpu/e_scalb.S
blob: 3d48aab189d60246a9012fd6c3a24f910060fabb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
.file "scalb.s"


// Copyright (c) 2000 - 2003, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.

// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//==============================================================
// 02/02/00 Initial version
// 01/26/01 Scalb completely reworked and now standalone version
// 05/20/02 Cleaned up namespace and sf0 syntax
// 02/10/03 Reordered header: .section, .global, .proc, .align
// 08/06/03 Improved performance
//
// API
//==============================================================
// double = scalb  (double x, double n)
// input  floating point f8 and floating point f9
// output floating point f8
//
// int_type = 0 if int is 32 bits
// int_type = 1 if int is 64 bits
//
// Returns x* 2**n using an fma and detects overflow
// and underflow.
//
//
// Strategy:
//  Compute biased exponent of result exp_Result = N + exp_X
//  Break into ranges:
//   exp_Result > 0x103fe                 -> Certain overflow
//   exp_Result = 0x103fe                 -> Possible overflow
//   0x0fc01 <= exp_Result < 0x103fe      -> No over/underflow (main path)
//   0x0fc01 - 52 <= exp_Result < 0x0fc01 -> Possible underflow
//   exp_Result < 0x0fc01 - 52            -> Certain underflow

FR_Big         = f6
FR_NBig        = f7
FR_Floating_X  = f8
FR_Result      = f8
FR_Floating_N  = f9
FR_Result2     = f9
FR_Result3     = f10
FR_Norm_X      = f11
FR_Two_N       = f12
FR_N_float_int = f13
FR_Norm_N      = f14

GR_neg_ov_limit= r14
GR_big_exp     = r14
GR_N_Biased    = r15
GR_Big         = r16
GR_exp_Result  = r18
GR_pos_ov_limit= r19
GR_exp_sure_ou = r19
GR_Bias        = r20
GR_N_as_int    = r21
GR_signexp_X   = r22
GR_exp_X       = r23
GR_exp_mask    = r24
GR_max_exp     = r25
GR_min_exp     = r26
GR_min_den_exp = r27
GR_Scratch     = r28
GR_signexp_N   = r29
GR_exp_N       = r30

GR_SAVE_B0          = r32
GR_SAVE_GP          = r33
GR_SAVE_PFS         = r34
GR_Parameter_X      = r35
GR_Parameter_Y      = r36
GR_Parameter_RESULT = r37
GR_Tag              = r38

.section .text
GLOBAL_IEEE754_ENTRY(scalb)

//
//   Is x NAN, INF, ZERO, +-?
//   Build the exponent Bias
//
{    .mfi
     getf.exp      GR_signexp_N = FR_Floating_N // Get signexp of n
     fclass.m      p6,p0 = FR_Floating_X, 0xe7  // @snan | @qnan | @inf | @zero
     mov           GR_Bias = 0x0ffff
}
{    .mfi
     mov           GR_Big = 35000      // If N this big then certain overflow
     fcvt.fx.trunc.s1   FR_N_float_int = FR_Floating_N // Get N in significand
     nop.i         0
}
;;

{    .mfi
     getf.exp      GR_signexp_X = FR_Floating_X // Get signexp of x
     fclass.m      p7,p0 = FR_Floating_N, 0x0b  // Test for n=unorm
     nop.i         0
}
//
//   Normalize n
//
{    .mfi
     mov           GR_exp_mask = 0x1ffff     // Exponent mask
     fnorm.s1      FR_Norm_N = FR_Floating_N
     nop.i         0
}
;;

//
//   Is n NAN, INF, ZERO, +-?
//
{    .mfi
     mov           GR_big_exp = 0x1003e      // Exponent at which n is integer
     fclass.m      p9,p0 = FR_Floating_N, 0xe7  // @snan | @qnan | @inf | @zero
     mov           GR_max_exp = 0x103fe      // Exponent of maximum double
}
//
//   Normalize x
//
{ .mfb
     nop.m         0
     fnorm.s1      FR_Norm_X = FR_Floating_X
(p7) br.cond.spnt  SCALB_N_UNORM             // Branch if n=unorm
}
;;

SCALB_COMMON1:
// Main path continues.  Also return here from u=unorm path.
//   Handle special cases if x = Nan, Inf, Zero
{ .mfb
     nop.m         0
     fcmp.lt.s1    p7,p0 = FR_Floating_N, f0  // Test N negative
(p6) br.cond.spnt  SCALB_NAN_INF_ZERO
}
;;

//   Handle special cases if n = Nan, Inf, Zero
{    .mfi
     getf.sig      GR_N_as_int = FR_N_float_int // Get n from significand
     fclass.m      p8,p0 = FR_Floating_X, 0x0b // Test for x=unorm
     mov           GR_exp_sure_ou = 0x1000e // Exp_N where x*2^N sure over/under
}
{    .mfb
     mov           GR_min_exp = 0x0fc01      // Exponent of minimum double
     fcvt.xf       FR_N_float_int = FR_N_float_int // Convert N to FP integer
(p9) br.cond.spnt  SCALB_NAN_INF_ZERO
}
;;

{    .mmi
     and           GR_exp_N = GR_exp_mask, GR_signexp_N // Get exponent of N
(p7) sub           GR_Big = r0, GR_Big          // Limit for N
     nop.i         0
}
;;

{    .mib
     cmp.lt        p9,p0 = GR_exp_N, GR_big_exp // N possible non-integer?
     cmp.ge        p6,p0 = GR_exp_N, GR_exp_sure_ou // N certain over/under?
(p8) br.cond.spnt  SCALB_X_UNORM             // Branch if x=unorm
}
;;

SCALB_COMMON2:
// Main path continues.  Also return here from x=unorm path.
//   Create biased exponent for 2**N
{    .mmi
(p6) mov           GR_N_as_int = GR_Big      // Limit N
;;
     add           GR_N_Biased = GR_Bias,GR_N_as_int
     nop.i         0
}
;;

{    .mfi
     setf.exp      FR_Two_N = GR_N_Biased               // Form 2**N
(p9) fcmp.neq.unc.s1 p9,p0 = FR_Norm_N, FR_N_float_int  // Test if N an integer
     and           GR_exp_X = GR_exp_mask, GR_signexp_X // Get exponent of X
}
;;

//
//   Compute biased result exponent
//   Branch if N is not an integer
//
{    .mib
     add           GR_exp_Result = GR_exp_X, GR_N_as_int
     mov           GR_min_den_exp = 0x0fc01 - 52 // Exponent of min denorm dble
(p9) br.cond.spnt  SCALB_N_NOT_INT
}
;;

//
//   Raise Denormal operand flag with compare
//   Do final operation
//
{    .mfi
     cmp.lt        p7,p6 = GR_exp_Result, GR_max_exp  // Test no overflow
     fcmp.ge.s0    p0,p11 = FR_Floating_X,FR_Floating_N  // Dummy to set denorm
     cmp.lt        p9,p0 = GR_exp_Result, GR_min_den_exp // Test sure underflow
}
{    .mfb
     nop.m         0
     fma.d.s0      FR_Result = FR_Two_N,FR_Norm_X,f0
(p9) br.cond.spnt  SCALB_UNDERFLOW           // Branch if certain underflow
}
;;

{    .mib
(p6) cmp.gt.unc    p6,p8 = GR_exp_Result, GR_max_exp  // Test sure overflow
(p7) cmp.ge.unc    p7,p9 = GR_exp_Result, GR_min_exp  // Test no over/underflow
(p7) br.ret.sptk   b0                         // Return from main path
}
;;

{    .bbb
(p6) br.cond.spnt  SCALB_OVERFLOW            // Branch if certain overflow
(p8) br.cond.spnt  SCALB_POSSIBLE_OVERFLOW   // Branch if possible overflow
(p9) br.cond.spnt  SCALB_POSSIBLE_UNDERFLOW  // Branch if possible underflow
}
;;

// Here if possible underflow.
// Resulting exponent: 0x0fc01-52 <= exp_Result < 0x0fc01
SCALB_POSSIBLE_UNDERFLOW:
//
// Here if possible overflow.
// Resulting exponent: 0x103fe = exp_Result
SCALB_POSSIBLE_OVERFLOW:

//   Set up necessary status fields
//
//   S0 user supplied status
//   S2 user supplied status + WRE + TD  (Overflows)
//   S3 user supplied status + FZ + TD   (Underflows)
//
{    .mfi
     mov           GR_pos_ov_limit = 0x103ff // Exponent for positive overflow
     fsetc.s3      0x7F,0x41
     nop.i         0
}
{    .mfi
     mov           GR_neg_ov_limit = 0x303ff // Exponent for negative overflow
     fsetc.s2      0x7F,0x42
     nop.i         0
}
;;

//
//   Do final operation with s2 and s3
//
{    .mfi
     setf.exp      FR_NBig = GR_neg_ov_limit
     fma.d.s3      FR_Result3 = FR_Two_N,FR_Norm_X,f0
     nop.i         0
}
{    .mfi
     setf.exp      FR_Big = GR_pos_ov_limit
     fma.d.s2      FR_Result2 = FR_Two_N,FR_Norm_X,f0
     nop.i         0
}
;;

//   Check for overflow or underflow.
//   Restore s3
//   Restore s2
//
{    .mfi
     nop.m         0
     fsetc.s3      0x7F,0x40
     nop.i         0
}
{    .mfi
     nop.m         0
     fsetc.s2      0x7F,0x40
     nop.i         0
}
;;

//
//   Is the result zero?
//
{    .mfi
     nop.m         0
     fclass.m      p6, p0 =  FR_Result3, 0x007
     nop.i         0
}
{    .mfi
     nop.m         0
     fcmp.ge.s1    p7, p8 = FR_Result2 , FR_Big
     nop.i         0
}
;;

//
//   Detect masked underflow - Tiny + Inexact Only
//
{    .mfi
     nop.m         0
(p6) fcmp.neq.unc.s1 p6, p0 = FR_Result , FR_Result2
     nop.i         0
}
;;

//
//   Is result bigger the allowed range?
//   Branch out for underflow
//
{    .mfb
     nop.m          0
(p8) fcmp.le.unc.s1 p9, p10 = FR_Result2 , FR_NBig
(p6) br.cond.spnt   SCALB_UNDERFLOW
}
;;

//
//   Branch out for overflow
//
{ .bbb
(p7) br.cond.spnt   SCALB_OVERFLOW
(p9) br.cond.spnt   SCALB_OVERFLOW
     br.ret.sptk    b0             //   Return from main path.
}
;;

// Here if result overflows
SCALB_OVERFLOW:
{ .mib
     alloc         r32=ar.pfs,3,0,4,0
     addl          GR_Tag = 53, r0     // Set error tag for overflow
     br.cond.sptk  __libm_error_region // Call error support for overflow
}
;;

// Here if result underflows
SCALB_UNDERFLOW:
{ .mib
     alloc         r32=ar.pfs,3,0,4,0
     addl          GR_Tag = 54, r0     // Set error tag for underflow
     br.cond.sptk  __libm_error_region // Call error support for underflow
}
;;

SCALB_NAN_INF_ZERO:

//
//   Before entry, N has been converted to a fp integer in significand of 
//     FR_N_float_int
//
//   Convert  N_float_int to floating point value
//
{    .mfi
     getf.sig     GR_N_as_int = FR_N_float_int
     fclass.m     p6,p0 = FR_Floating_N, 0xc3 //@snan | @qnan
     nop.i        0
}
{    .mfi
     addl         GR_Scratch = 1,r0
     fcvt.xf      FR_N_float_int = FR_N_float_int
     nop.i        0
}
;;

{    .mfi
     nop.m        0
     fclass.m     p7,p0 = FR_Floating_X, 0xc3 //@snan | @qnan
     shl          GR_Scratch = GR_Scratch,63
}
;;

{    .mfi
     nop.m        0
     fclass.m     p8,p0 = FR_Floating_N, 0x21 // @inf
     nop.i        0
}
{    .mfi
     nop.m        0
     fclass.m     p9,p0 = FR_Floating_N, 0x22 // @-inf
     nop.i        0
}
;;

//
//   Either X or N is a Nan, return result and possible raise invalid.
//
{    .mfb
     nop.m        0
(p6) fma.d.s0     FR_Result = FR_Floating_N,FR_Floating_X,f0
(p6) br.ret.spnt  b0
}
;;

{    .mfb
     nop.m        0
(p7) fma.d.s0     FR_Result = FR_Floating_N,FR_Floating_X,f0
(p7) br.ret.spnt  b0
}
;;

//
//   If N + Inf do something special
//   For N = -Inf, create Int
//
{    .mfb
     nop.m        0
(p8) fma.d.s0     FR_Result = FR_Floating_X, FR_Floating_N,f0
(p8) br.ret.spnt  b0
}
{    .mfi
     nop.m        0
(p9) fnma.d.s0    FR_Floating_N = FR_Floating_N, f1, f0
     nop.i        0
}
;;

//
//   If N==-Inf,return x/(-N)
//
{    .mfb
     cmp.ne       p7,p0 = GR_N_as_int,GR_Scratch
(p9) frcpa.s0     FR_Result,p0 = FR_Floating_X,FR_Floating_N
(p9) br.ret.spnt  b0
}
;;

//
//   Is N an integer.
//
{    .mfi
     nop.m        0
(p7) fcmp.neq.unc.s1 p7,p0 = FR_Norm_N, FR_N_float_int
     nop.i        0
}
;;

//
//   If N not an int, return NaN and raise invalid.
//
{    .mfb
     nop.m        0
(p7) frcpa.s0     FR_Result,p0 = f0,f0
(p7) br.ret.spnt  b0
}
;;

//
//   Always return x in other path.
//
{    .mfb
     nop.m        0
     fma.d.s0     FR_Result = FR_Floating_X,f1,f0
     br.ret.sptk  b0
}
;;

// Here if n not int
// Return NaN and raise invalid.
SCALB_N_NOT_INT:
{    .mfb
     nop.m        0
     frcpa.s0     FR_Result,p0 = f0,f0
     br.ret.sptk  b0
}
;;

// Here if n=unorm
SCALB_N_UNORM:
{ .mfb
     getf.exp      GR_signexp_N = FR_Norm_N // Get signexp of normalized n
     fcvt.fx.trunc.s1   FR_N_float_int = FR_Norm_N // Get N in significand
     br.cond.sptk  SCALB_COMMON1            // Return to main path
}
;;

// Here if x=unorm
SCALB_X_UNORM:
{ .mib
     getf.exp      GR_signexp_X = FR_Norm_X // Get signexp of normalized x
     nop.i         0
     br.cond.sptk  SCALB_COMMON2            // Return to main path
}
;;

GLOBAL_IEEE754_END(scalb)
LOCAL_LIBM_ENTRY(__libm_error_region)

//
// Get stack address of N
//
.prologue
{ .mfi
    add   GR_Parameter_Y=-32,sp
    nop.f 0
.save   ar.pfs,GR_SAVE_PFS
    mov  GR_SAVE_PFS=ar.pfs
}
//
// Adjust sp
//
{ .mfi
.fframe 64
   add sp=-64,sp
   nop.f 0
   mov GR_SAVE_GP=gp
};;

//
//  Store N on stack in correct position
//  Locate the address of x on stack
//
{ .mmi
   stfd [GR_Parameter_Y] = FR_Norm_N,16
   add GR_Parameter_X = 16,sp
.save   b0, GR_SAVE_B0
   mov GR_SAVE_B0=b0
};;

//
// Store x on the stack.
// Get address for result on stack.
//
.body
{ .mib
   stfd [GR_Parameter_X] = FR_Norm_X
   add   GR_Parameter_RESULT = 0,GR_Parameter_Y
   nop.b 0
}
{ .mib
   stfd [GR_Parameter_Y] = FR_Result
   add   GR_Parameter_Y = -16,GR_Parameter_Y
   br.call.sptk b0=__libm_error_support#
};;

//
//  Get location of result on stack
//
{ .mmi
   add   GR_Parameter_RESULT = 48,sp
   nop.m 0
   nop.i 0
};;

//
//  Get the new result
//
{ .mmi
   ldfd  FR_Result = [GR_Parameter_RESULT]
.restore sp
   add   sp = 64,sp
   mov   b0 = GR_SAVE_B0
};;

//
//  Restore gp, ar.pfs and return
//
{ .mib
   mov   gp = GR_SAVE_GP
   mov   ar.pfs = GR_SAVE_PFS
   br.ret.sptk     b0
};;

LOCAL_LIBM_END(__libm_error_region)

.type   __libm_error_support#,@function
.global __libm_error_support#