1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
|
.file "remainderl.s"
// Copyright (c) 2000 - 2003, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//====================================================================
// 02/02/00 Initial version
// 03/02/00 New algorithm
// 04/04/00 Unwind support added
// 07/21/00 Fixed quotient=2^{24*m+23}*1.q1...q23 1 bug
// 08/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
// 11/29/00 Set FR_Y to f9
// 05/20/02 Cleaned up namespace and sf0 syntax
// 02/10/03 Reordered header: .section, .global, .proc, .align
//
// API
//====================================================================
// long double remainderl(long double,long double);
//
// Overview of operation
//====================================================================
// remainder(a,b)=a-i*b,
// where i is an integer such that, if b!=0 and a is finite,
// |a/b-i|<=1/2. If |a/b-i|=1/2, i is even.
//
// Algorithm
//====================================================================
// a). eliminate special cases
// b). if |a/b|<0.25 (first quotient estimate), return a
// c). use single precision divide algorithm to get quotient q
// rounded to 24 bits of precision
// d). calculate partial remainders (using both q and q-ulp);
// select one and RZ(a/b) based on the sign of |a|-|b|*q
// e). if the exponent difference (exponent(a)-exponent(b))
// is less than 24 (quotient estimate<2^{24}-2), use RZ(a/b)
// and sticky bits to round to integer; exit loop and
// calculate final remainder
// f). if exponent(a)-exponent(b)>=24, select new value of a as
// the partial remainder calculated using RZ(a/b);
// repeat from c).
//
// Special cases
//====================================================================
// a=+/- Inf, or b=+/-0: return NaN, call libm_error_support
// a=NaN or b=NaN: return NaN
//
// Registers used
//====================================================================
// Predicate registers: p6-p14
// General registers: r2,r3,r28,r29,r32 (ar.pfs), r33-r39
// Floating point registers: f6-f15,f32
//
GR_SAVE_B0 = r33
GR_SAVE_PFS = r34
GR_SAVE_GP = r35
GR_SAVE_SP = r36
GR_Parameter_X = r37
GR_Parameter_Y = r38
GR_Parameter_RESULT = r39
GR_Parameter_TAG = r40
FR_X = f10
FR_Y = f9
FR_RESULT = f8
.section .text
GLOBAL_IEEE754_ENTRY(remainderl)
// inputs in f8, f9
// result in f8
{ .mfi
alloc r32=ar.pfs,1,4,4,0
// f13=|a|
fmerge.s f13=f0,f8
nop.i 0
}
{.mfi
getf.sig r29=f9
// f14=|b|
fmerge.s f14=f0,f9
nop.i 0;;
}
{.mlx
mov r28=0x2ffdd
// r2=2^{23}
movl r3=0x4b000000;;
}
{.mmi
setf.exp f32=r28
nop.m 0
// y pseudo-zero ?
cmp.eq p11,p10=r29,r0;;
}
// Y +-NAN, +-inf, +-0? p11
{ .mfi
nop.m 999
(p10) fclass.m p11,p10 = f9, 0xe7
nop.i 999
}
// qnan snan inf norm unorm 0 -+
// 1 1 1 0 0 0 11
// e 3
// X +-NAN, +-inf, ? p9
{ .mfi
nop.m 999
fclass.m.unc p9,p8 = f8, 0xe3
nop.i 999;;
}
{.mfi
nop.m 0
mov f12=f0
nop.i 0
}
{ .mfi
// set p7=1
cmp.eq.unc p7,p0=r0,r0
// Step (1)
// y0 = 1 / b in f10
frcpa.s1 f10,p6=f13,f14
nop.i 0;;
}
// Y +-NAN, +-inf, +-0? p11
{ .mfi
nop.m 999
// pseudo-NaN ?
(p10) fclass.nm p11,p0 = f9, 0xff
nop.i 999
}
// qnan snan inf norm unorm 0 -+
// 1 1 1 0 0 0 11
// e 3
// X +-NAN, +-inf, ? p9
{ .mfi
nop.m 999
(p8) fclass.nm p9,p0 = f8, 0xff
nop.i 999;;
}
{.bbb
(p9) br.cond.spnt FREM_X_NAN_INF
(p11) br.cond.spnt FREM_Y_NAN_INF_ZERO
nop.b 0
} {.mfi
nop.m 0
// set D flag if a (f8) is denormal
fnma.s0 f6=f8,f1,f8
nop.i 0;;
}
remloop24:
{ .mfi
nop.m 0
// Step (2)
// q0 = a * y0 in f15
(p6) fma.s1 f12=f13,f10,f0
nop.i 0
} { .mfi
nop.m 0
// Step (3)
// e0 = 1 - b * y0 in f7
(p6) fnma.s1 f7=f14,f10,f1
nop.i 0;;
} {.mlx
nop.m 0
// r2=1.25*2^{-24}
movl r2=0x33a00000;;
}
{.mfi
nop.m 0
// q1=q0*(1+e0)
(p6) fma.s1 f15=f12,f7,f12
nop.i 0
}
{ .mfi
nop.m 0
// Step (4)
// e1 = e0 * e0 + E in f7
(p6) fma.s1 f7=f7,f7,f32
nop.i 0;;
}
{.mii
(p7) getf.exp r29=f12
(p7) mov r28=0xfffd
nop.i 0;;
}
{ .mfi
// f12=2^{23}
setf.s f12=r3
// Step (5)
// q2 = q1 + e1 * q1 in f11
(p6) fma.s.s1 f11=f7,f15,f15
nop.i 0
} { .mfi
nop.m 0
// Step (6)
// q2 = q1 + e1 * q1 in f6
(p6) fma.s1 f6=f7,f15,f15
nop.i 0;;
}
{.mmi
// f15=1.25*2^{-24}
setf.s f15=r2
// q<1/4 ? (i.e. expon< -2)
(p7) cmp.gt p7,p0=r28,r29
nop.i 0;;
}
{.mfb
// r29= -32+bias
mov r29=0xffdf
// if |a/b|<1/4, set D flag before returning
(p7) fma.s0 f9=f9,f0,f8
nop.b 0;;
}
{.mfb
nop.m 0
// can be combined with bundle above if sign of 0 or
// FTZ enabled are not important
(p7) fmerge.s f8=f8,f9
// return if |a|<4*|b| (estimated quotient < 1/4)
(p7) br.ret.spnt b0;;
}
{.mfi
// f7=2^{-32}
setf.exp f7=r29
// set f8 to current a value | sign
fmerge.s f8=f8,f13
nop.i 0;;
}
{.mfi
getf.exp r28=f6
// last step ? (q<2^{23})
fcmp.lt.unc.s1 p0,p12=f6,f12
nop.i 0;;
}
{.mfi
nop.m 0
// r=a-b*q
fnma.s1 f6=f14,f11,f13
nop.i 0
} {.mfi
// r2=23+bias
mov r2=0xffff+23
// q'=q-q*(1.25*2^{-24}) (q'=q-ulp)
fnma.s.s1 f15=f11,f15,f11
nop.i 0;;
}
{.mmi
nop.m 0
cmp.eq p11,p14=r2,r28
nop.i 0;;
}
.pred.rel "mutex",p11,p14
{.mfi
nop.m 0
// if exp_q=2^23, then r=a-b*2^{23}
(p11) fnma.s1 f13=f12,f14,f13
nop.i 0
}
{.mfi
nop.m 0
// r2=a-b*q'
(p14) fnma.s1 f13=f14,f15,f13
nop.i 0;;
}
{.mfi
nop.m 0
// r>0 iff q=RZ(a/b) and inexact
fcmp.gt.unc.s1 p8,p0=f6,f0
nop.i 0
} {.mfi
nop.m 0
// r<0 iff q'=RZ(a/b) and inexact
(p14) fcmp.lt.unc.s1 p9,p10=f6,f0
nop.i 0;;
}
.pred.rel "mutex",p8,p9
{.mfi
nop.m 0
// (p8) Q=q+(last iteration ? sticky bits:0)
// i.e. Q=q+q*x (x=2^{-32} or 0)
(p8) fma.s1 f11=f11,f7,f11
nop.i 0
} {.mfi
nop.m 0
// (p9) Q=q'+(last iteration ? sticky bits:0)
// i.e. Q=q'+q'*x (x=2^{-32} or 0)
(p9) fma.s1 f11=f15,f7,f15
nop.i 0;;
}
{.mfb
nop.m 0
// (p9) set r=r2 (new a, if not last iteration)
// (p10) new a =r
(p10) mov f13=f6
(p12) br.cond.sptk remloop24;;
}
// last iteration
{.mfi
nop.m 0
// set f9=|b|*sgn(a)
fmerge.s f9=f8,f9
nop.i 0
}
{.mfi
nop.m 0
// round to integer
fcvt.fx.s1 f11=f11
nop.i 0;;
}
{.mfi
nop.m 0
// save sign of a
fmerge.s f7=f8,f8
nop.i 0
} {.mfi
nop.m 0
// normalize
fcvt.xf f11=f11
nop.i 0;;
}
{.mfi
nop.m 0
// This can be removed if sign of 0 is not important
// get remainder using sf1
fnma.s1 f12=f9,f11,f8
nop.i 0
}
{.mfi
nop.m 0
// get remainder
fnma.s0 f8=f9,f11,f8
nop.i 0;;
}
{.mfi
nop.m 0
// f12=0?
// This can be removed if sign of 0 is not important
fcmp.eq.unc.s1 p8,p0=f12,f0
nop.i 0;;
}
{.mfb
nop.m 0
// if f8=0, set sign correctly
// This can be removed if sign of 0 is not important
(p8) fmerge.s f8=f7,f8
// return
br.ret.sptk b0;;
}
FREM_X_NAN_INF:
// Y zero ?
{.mfi
nop.m 0
fma.s1 f10=f9,f1,f0
nop.i 0;;
}
{.mfi
nop.m 0
fcmp.eq.unc.s1 p11,p0=f10,f0
nop.i 0;;
}
{.mib
nop.m 0
nop.i 0
// if Y zero
(p11) br.cond.spnt FREM_Y_ZERO;;
}
// X infinity? Return QNAN indefinite
{ .mfi
nop.m 999
fclass.m.unc p8,p0 = f8, 0x23
nop.i 999
}
// X infinity? Return QNAN indefinite
{ .mfi
nop.m 999
fclass.m.unc p11,p0 = f8, 0x23
nop.i 999;;
}
// Y NaN ?
{.mfi
nop.m 999
(p8) fclass.m.unc p0,p8=f9,0xc3
nop.i 0;;
}
{.mfi
nop.m 999
// also set Denormal flag if necessary
(p8) fnma.s0 f9=f9,f1,f9
nop.i 0
}
{ .mfi
nop.m 999
(p8) frcpa.s0 f8,p7 = f8,f8
nop.i 999 ;;
}
{.mfi
nop.m 999
(p11) mov f10=f8
nop.i 0
}
{ .mfi
nop.m 999
(p8) fma.s0 f8=f8,f1,f0
nop.i 0 ;;
}
{ .mfb
nop.m 999
frcpa.s0 f8,p7=f8,f9
(p11) br.cond.spnt EXP_ERROR_RETURN;;
}
{ .mib
nop.m 0
nop.i 0
br.ret.spnt b0 ;;
}
FREM_Y_NAN_INF_ZERO:
// Y INF
{ .mfi
nop.m 999
fclass.m.unc p7,p0 = f9, 0x23
nop.i 999 ;;
}
{ .mfb
nop.m 999
(p7) fma.s0 f8=f8,f1,f0
(p7) br.ret.spnt b0 ;;
}
// Y NAN?
{ .mfi
nop.m 999
fclass.m.unc p9,p10 = f9, 0xc3
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fclass.nm p9,p0 = f9, 0xff
nop.i 999 ;;
}
{ .mfb
nop.m 999
(p9) fma.s0 f8=f9,f1,f0
(p9) br.ret.spnt b0 ;;
}
FREM_Y_ZERO:
// Y zero? Must be zero at this point
// because it is the only choice left.
// Return QNAN indefinite
// X NAN?
{ .mfi
nop.m 999
fclass.m.unc p9,p10 = f8, 0xc3
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fclass.nm p9,p10 = f8, 0xff
nop.i 999 ;;
}
{.mfi
nop.m 999
(p9) frcpa.s0 f11,p7=f8,f0
nop.i 0;;
}
{ .mfi
nop.m 999
(p10) frcpa.s0 f11,p7 = f0,f0
nop.i 999;;
}
{ .mfi
nop.m 999
fmerge.s f10 = f8, f8
nop.i 999
}
{ .mfi
nop.m 999
fma.s0 f8=f11,f1,f0
nop.i 999;;
}
EXP_ERROR_RETURN:
{ .mib
mov GR_Parameter_TAG = 123
nop.i 999
br.sptk __libm_error_region;;
}
GLOBAL_IEEE754_END(remainderl)
libm_alias_ldouble_other (__remainder, remainder)
weak_alias (__remainderl, dreml)
LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
stfe [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
{ .mib
stfe [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y
nop.b 0 // Parameter 3 address
}
{ .mib
stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
nop.m 0
nop.m 0
add GR_Parameter_RESULT = 48,sp
};;
{ .mmi
ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
LOCAL_LIBM_END(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
|