1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
|
.file "expf.s"
// Copyright (c) 2000, 2001, Intel Corporation
// All rights reserved.
//
// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// WARRANTY DISCLAIMER
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://developer.intel.com/opensource.
// History
//==============================================================
// 4/04/00 Unwind update
// 4/04/00 Unwind support added
// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
// 8/21/00 Improvements to save 2 cycles on main path, and shorten x=0 case
// 12/07/00 Widen main path, shorten x=inf, nan paths
//
#include "libm_support.h"
// Assembly macros
//==============================================================
// integer registers used
exp_GR_0x0f = r33
exp_GR_0xf0 = r34
EXP_AD_P_1 = r36
EXP_AD_P_2 = r37
EXP_AD_T1 = r38
EXP_AD_T2 = r39
exp_GR_Mint = r40
exp_GR_Mint_p_128 = r41
exp_GR_Ind1 = r42
EXP_AD_M1 = r43
exp_GR_Ind2 = r44
EXP_AD_M2 = r45
exp_GR_min_oflow = r46
exp_GR_max_zero = r47
exp_GR_max_norm = r48
exp_GR_max_uflow = r49
exp_GR_min_norm = r50
exp_GR_17ones = r51
exp_GR_gt_ln = r52
exp_GR_T2_size = r53
exp_GR_17ones_m1 = r56
exp_GR_one = r57
GR_SAVE_B0 = r53
GR_SAVE_PFS = r55
GR_SAVE_GP = r54
GR_Parameter_X = r59
GR_Parameter_Y = r60
GR_Parameter_RESULT = r61
GR_Parameter_TAG = r62
FR_X = f10
FR_Y = f1
FR_RESULT = f8
// floating point registers used
EXP_MIN_SGL_OFLOW_ARG = f11
EXP_MAX_SGL_ZERO_ARG = f12
EXP_MAX_SGL_NORM_ARG = f13
EXP_MAX_SGL_UFLOW_ARG = f14
EXP_MIN_SGL_NORM_ARG = f15
exp_coeff_P5 = f32
exp_coeff_P6 = f33
exp_coeff_P3 = f34
exp_coeff_P4 = f35
exp_coeff_P1 = f36
exp_coeff_P2 = f37
exp_Mx = f38
exp_Mfloat = f39
exp_R = f40
exp_P1 = f41
exp_P2 = f42
exp_P3 = f43
exp_Rsq = f44
exp_R4 = f45
exp_P4 = f46
exp_P5 = f47
exp_P6 = f48
exp_P7 = f49
exp_T1 = f50
exp_T2 = f51
exp_T = f52
exp_A = f53
exp_norm_f8 = f54
exp_wre_urm_f8 = f55
exp_ftz_urm_f8 = f56
exp_gt_pln = f57
#ifdef _LIBC
.rodata
#else
.data
#endif
.align 16
exp_coeff_1_table:
ASM_TYPE_DIRECTIVE(exp_coeff_1_table,@object)
data8 0x3F56F35FDE4F8563 // p5
data8 0x3F2A378BEFECCFDD // p6
data8 0x3FE00000258C581D // p1
data8 0x3FC555557AE7B3D4 // p2
ASM_SIZE_DIRECTIVE(exp_coeff_1_table)
exp_coeff_2_table:
ASM_TYPE_DIRECTIVE(exp_coeff_2_table,@object)
data8 0x3FA5551BB6592FAE // p3
data8 0x3F8110E8EBFFD485 // p4
ASM_SIZE_DIRECTIVE(exp_coeff_2_table)
exp_T2_table:
ASM_TYPE_DIRECTIVE(exp_T2_table,@object)
data8 0xa175cf9cd7d85844 , 0x00003f46 // exp(-128)
data8 0xdb7279415a1f9eed , 0x00003f47 // exp(-127)
data8 0x95213b242bd8ca5f , 0x00003f49 // exp(-126)
data8 0xcab03c968c989f83 , 0x00003f4a // exp(-125)
data8 0x89bdb674702961ad , 0x00003f4c // exp(-124)
data8 0xbb35a2eec278be35 , 0x00003f4d // exp(-123)
data8 0xfe71b17f373e7e7a , 0x00003f4e // exp(-122)
data8 0xace9a6ec52a39b63 , 0x00003f50 // exp(-121)
data8 0xeb03423fe393cf1c , 0x00003f51 // exp(-120)
data8 0x9fb52c5bcaef1693 , 0x00003f53 // exp(-119)
data8 0xd910b6377ed60bf1 , 0x00003f54 // exp(-118)
data8 0x9382dad8a9fdbfe4 , 0x00003f56 // exp(-117)
data8 0xc87d0a84dea869a3 , 0x00003f57 // exp(-116)
data8 0x883efb4c6d1087b0 , 0x00003f59 // exp(-115)
data8 0xb92d7373dce9a502 , 0x00003f5a // exp(-114)
data8 0xfbaeb020577fb0cb , 0x00003f5b // exp(-113)
ASM_SIZE_DIRECTIVE(exp_T2_table)
exp_T1_table:
ASM_TYPE_DIRECTIVE(exp_T1_table,@object)
data8 0x8000000000000000 , 0x00003fff // exp(16 * 0)
data8 0x87975e8540010249 , 0x00004016 // exp(16 * 1)
data8 0x8fa1fe625b3163ec , 0x0000402d // exp(16 * 2)
data8 0x9826b576512a59d7 , 0x00004044 // exp(16 * 3)
data8 0xa12cc167acbe6902 , 0x0000405b // exp(16 * 4)
data8 0xaabbcdcc279f59e4 , 0x00004072 // exp(16 * 5)
data8 0xb4dbfaadc045d16f , 0x00004089 // exp(16 * 6)
data8 0xbf95e372ccdbf146 , 0x000040a0 // exp(16 * 7)
data8 0xcaf2a62eea10bbfb , 0x000040b7 // exp(16 * 8)
data8 0xd6fbeb62fddbd340 , 0x000040ce // exp(16 * 9)
data8 0xe3bbee32e4a440ea , 0x000040e5 // exp(16 * 10)
data8 0xf13d8517c34199a8 , 0x000040fc // exp(16 * 11)
data8 0xff8c2b166241eedd , 0x00004113 // exp(16 * 12)
data8 0x875a04c0b38d6129 , 0x0000412b // exp(16 * 13)
data8 0x8f610127db6774d7 , 0x00004142 // exp(16 * 14)
data8 0x97e1dd87e5c20bb6 , 0x00004159 // exp(16 * 15)
ASM_SIZE_DIRECTIVE(exp_T1_table)
// Argument Reduction
// exp_Mx = (int)f8 ==> The value of f8 rounded to int is placed into the
// significand of exp_Mx as a two's
// complement number.
// Later we want to have exp_Mx in a general register. Do this with a getf.sig
// and call the general register exp_GR_Mint
// exp_Mfloat = (float)(int)f8 ==> the two's complement number in
// significand of exp_Mx is turned
// into a floating point number.
// R = 1 - exp_Mfloat ==> reduced argument
// Core Approximation
// Calculate a series in R
// R * p6 + p5
// R * p4 + p3
// R * p2 + p1
// R^2
// R^4
// R^2(R * p6 + p5) + (R * p4 + p3)
// R^2(R * p2 + p1)
// R^4(R^2(R * p6 + p5) + (R * p4 + p3)) + (R^2(R * p2 + p1))
// R + 1
// exp(R) = (1 + R) + R^4(R^2(R * p6 + p5) + (R * p4 + p3)) + (R^2(R * p2 + p1))
// exp(R) = 1 + R + R^2 * p1 + R^3 * p2 + R^4 * p3 + R^5 * p4 + R^6 * p5 + R^7 * p6
// Reconstruction
// signficand of exp_Mx is two's complement,
// -103 < x < 89
// The smallest single denormal is 2^-149 = ssdn
// For e^x = ssdn
// x = log(ssdn) = -103.279
// But with rounding result goes to ssdn until -103.972079
// The largest single normal is 1.<23 1's> 2^126 ~ 2^127 = lsn
// For e^x = lsn
// x = log(lsn) = 88.7228
//
// expf overflows when x > 42b17218 = 88.7228
// expf returns largest single denormal when x = c2aeac50
// expf goes to zero when x < c2cff1b5
// Consider range of 8-bit two's complement, -128 ---> 127
// Add 128; range becomes 0 ---> 255
// The number (=i) in 0 ---> 255 is used as offset into two tables.
// i = abcd efgh = abcd * 16 + efgh = i1 * 16 + i2
// i1 = (exp_GR_Mint + 128) & 0xf0 (show 0xf0 as -0x10 to avoid assembler error)
// (The immediate in the AND is an 8-bit two's complement)
// i1 = i1 + start of T1 table (EXP_AD_T1)
// Note that the entries in T1 are double-extended numbers on 16-byte boundaries
// and that i1 is already shifted left by 16 after the AND.
// i2 must be shifted left by 4 before adding to the start of the table.
// i2 = ((exp_GR_Mint + 128) & 0x0f) << 4
// i2 = i2 + start of T2 table (EXP_AD_T2)
// T = T1 * T2
// A = T * (1 + R)
// answer = T * (R^2 * p1 + R^3 * p2 + R^4 * p3 + R^5 * p4 + R^6 * p5 + R^7 * p6) +
// T * (1 + R)
// = T * exp(R)
.global expf#
.section .text
.proc expf#
.align 32
expf:
#ifdef _LIBC
.global __ieee754_expf#
__ieee754_expf:
#endif
{ .mfi
alloc r32 = ar.pfs,1,26,4,0
fcvt.fx.s1 exp_Mx = f8
mov exp_GR_17ones = 0x1FFFF
}
{ .mlx
addl EXP_AD_P_1 = @ltoff(exp_coeff_1_table),gp
movl exp_GR_min_oflow = 0x42b17218
}
;;
// Fnorm done to take any enabled faults
{ .mfi
ld8 EXP_AD_P_1 = [EXP_AD_P_1]
fclass.m p6,p0 = f8, 0x07 //@zero
nop.i 999
}
{ .mfi
add exp_GR_max_norm = -1, exp_GR_min_oflow // 0x42b17217
fnorm exp_norm_f8 = f8
nop.i 999
}
;;
{ .mfi
setf.s EXP_MIN_SGL_OFLOW_ARG = exp_GR_min_oflow // 0x42b17218
fclass.m p7,p0 = f8, 0x22 // Test for x=-inf
mov exp_GR_0xf0 = 0x0f0
}
{ .mlx
setf.s EXP_MAX_SGL_NORM_ARG = exp_GR_max_norm
movl exp_GR_max_zero = 0xc2cff1b5
}
;;
{ .mlx
mov exp_GR_0x0f = 0x00f
movl exp_GR_max_uflow = 0xc2aeac50
}
{ .mfb
nop.m 999
(p6) fma.s f8 = f1,f1,f0
(p6) br.ret.spnt b0 // quick exit for x=0
}
;;
{ .mfi
setf.s EXP_MAX_SGL_ZERO_ARG = exp_GR_max_zero
fclass.m p8,p0 = f8, 0x21 // Test for x=+inf
adds exp_GR_min_norm = 1, exp_GR_max_uflow // 0xc2aeac51
}
{ .mfb
ldfpd exp_coeff_P5,exp_coeff_P6 = [EXP_AD_P_1],16
(p7) fma.s f8 = f0,f0,f0
(p7) br.ret.spnt b0 // quick exit for x=-inf
}
;;
{ .mmf
ldfpd exp_coeff_P1,exp_coeff_P2 = [EXP_AD_P_1],16
setf.s EXP_MAX_SGL_UFLOW_ARG = exp_GR_max_uflow
fclass.m p9,p0 = f8, 0xc3 // Test for x=nan
}
;;
{ .mmb
ldfpd exp_coeff_P3,exp_coeff_P4 = [EXP_AD_P_1],16
setf.s EXP_MIN_SGL_NORM_ARG = exp_GR_min_norm
(p8) br.ret.spnt b0 // quick exit for x=+inf
}
;;
// EXP_AD_P_1 now points to exp_T2_table
{ .mfi
mov exp_GR_T2_size = 0x100
fcvt.xf exp_Mfloat = exp_Mx
nop.i 999
}
;;
{ .mfb
getf.sig exp_GR_Mint = exp_Mx
(p9) fmerge.s f8 = exp_norm_f8, exp_norm_f8
(p9) br.ret.spnt b0 // quick exit for x=nan
}
;;
{ .mmi
nop.m 999
mov EXP_AD_T2 = EXP_AD_P_1
add EXP_AD_T1 = exp_GR_T2_size,EXP_AD_P_1 ;;
}
{ .mmi
adds exp_GR_Mint_p_128 = 0x80,exp_GR_Mint ;;
and exp_GR_Ind1 = exp_GR_Mint_p_128, exp_GR_0xf0
and exp_GR_Ind2 = exp_GR_Mint_p_128, exp_GR_0x0f ;;
}
// Divide arguments into the following categories:
// Certain Underflow/zero p11 - -inf < x <= MAX_SGL_ZERO_ARG
// Certain Underflow p12 - MAX_SGL_ZERO_ARG < x <= MAX_SGL_UFLOW_ARG
// Possible Underflow p13 - MAX_SGL_UFLOW_ARG < x < MIN_SGL_NORM_ARG
// Certain Safe - MIN_SGL_NORM_ARG <= x <= MAX_SGL_NORM_ARG
// Possible Overflow p14 - MAX_SGL_NORM_ARG < x < MIN_SGL_OFLOW_ARG
// Certain Overflow p15 - MIN_SGL_OFLOW_ARG <= x < +inf
//
// If the input is really a single arg, then there will never be "Possible
// Underflow" or "Possible Overflow" arguments.
//
{ .mfi
add EXP_AD_M1 = exp_GR_Ind1,EXP_AD_T1
fcmp.ge.s1 p15,p14 = exp_norm_f8,EXP_MIN_SGL_OFLOW_ARG
nop.i 999
}
{ .mfi
shladd EXP_AD_M2 = exp_GR_Ind2,4,EXP_AD_T2
fms.s1 exp_R = f1,f8,exp_Mfloat
nop.i 999 ;;
}
{ .mfi
ldfe exp_T1 = [EXP_AD_M1]
fcmp.le.s1 p11,p12 = exp_norm_f8,EXP_MAX_SGL_ZERO_ARG
nop.i 999 ;;
}
{ .mfb
ldfe exp_T2 = [EXP_AD_M2]
(p14) fcmp.gt.s1 p14,p0 = exp_norm_f8,EXP_MAX_SGL_NORM_ARG
(p15) br.cond.spnt L(EXP_CERTAIN_OVERFLOW) ;;
}
{ .mfb
nop.m 999
(p12) fcmp.le.s1 p12,p0 = exp_norm_f8,EXP_MAX_SGL_UFLOW_ARG
(p11) br.cond.spnt L(EXP_CERTAIN_UNDERFLOW_ZERO)
}
;;
{ .mfi
nop.m 999
(p13) fcmp.lt.s1 p13,p0 = exp_norm_f8,EXP_MIN_SGL_NORM_ARG
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 exp_Rsq = exp_R,exp_R,f0
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 exp_P3 = exp_R,exp_coeff_P2,exp_coeff_P1
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 exp_P1 = exp_R,exp_coeff_P6,exp_coeff_P5
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 exp_P2 = exp_R,exp_coeff_P4,exp_coeff_P3
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 exp_P7 = f1,exp_R,f1
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 exp_P5 = exp_Rsq,exp_P3,f0
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 exp_R4 = exp_Rsq,exp_Rsq,f0
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 exp_T = exp_T1,exp_T2,f0
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 exp_P4 = exp_Rsq,exp_P1,exp_P2
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 exp_A = exp_T,exp_P7,f0
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 exp_P6 = exp_R4,exp_P4,exp_P5
nop.i 999
}
;;
{ .bbb
(p12) br.cond.spnt L(EXP_CERTAIN_UNDERFLOW)
(p13) br.cond.spnt L(EXP_POSSIBLE_UNDERFLOW)
(p14) br.cond.spnt L(EXP_POSSIBLE_OVERFLOW)
}
;;
{ .mfb
nop.m 999
fma.s f8 = exp_T,exp_P6,exp_A
br.ret.sptk b0
}
;;
L(EXP_POSSIBLE_OVERFLOW):
// We got an answer. EXP_MAX_SGL_NORM_ARG < x < EXP_MIN_SGL_OFLOW_ARG
// overflow is a possibility, not a certainty
// Set wre in s2 and perform the last operation with s2
// We define an overflow when the answer with
// WRE set
// user-defined rounding mode
// is lsn +1
// Is the exponent 1 more than the largest single?
// If so, go to ERROR RETURN, else (no overflow) get the answer and
// leave.
// Largest single is FE (biased single)
// FE - 7F + FFFF = 1007E
// Create + largest_single_plus_ulp
// Create - largest_single_plus_ulp
// Calculate answer with WRE set.
// Cases when answer is lsn+1 are as follows:
// midpoint
// |
// lsn | lsn+1
// --+----------|----------+------------
// |
// +inf +inf -inf
// RN RN
// RZ
// exp_gt_pln contains the floating point number lsn+1.
// The setf.exp puts 0x1007f in the exponent and 0x800... in the significand.
// If the answer is >= lsn+1, we have overflowed.
// Then p6 is TRUE. Set the overflow tag, save input in FR_X,
// do the final calculation for IEEE result, and branch to error return.
{ .mfi
mov exp_GR_gt_ln = 0x1007F
fsetc.s2 0x7F,0x42
nop.i 999
}
;;
{ .mfi
setf.exp exp_gt_pln = exp_GR_gt_ln
fma.s.s2 exp_wre_urm_f8 = exp_T, exp_P6, exp_A
nop.i 999
}
;;
{ .mfi
nop.m 999
fsetc.s2 0x7F,0x40
nop.i 999
}
;;
{ .mfi
nop.m 999
fcmp.ge.unc.s1 p6, p0 = exp_wre_urm_f8, exp_gt_pln
nop.i 999
}
;;
{ .mfb
nop.m 999
nop.f 999
(p6) br.cond.spnt L(EXP_CERTAIN_OVERFLOW) // Branch if really overflow
}
;;
{ .mfb
nop.m 999
fma.s f8 = exp_T, exp_P6, exp_A
br.ret.sptk b0 // Exit if really no overflow
}
;;
L(EXP_CERTAIN_OVERFLOW):
{ .mmi
sub exp_GR_17ones_m1 = exp_GR_17ones, r0, 1 ;;
setf.exp f9 = exp_GR_17ones_m1
nop.i 999 ;;
}
{ .mfi
nop.m 999
fmerge.s FR_X = f8,f8
nop.i 999
}
{ .mfb
mov GR_Parameter_TAG = 16
fma.s FR_RESULT = f9, f9, f0 // Set I,O and +INF result
br.cond.sptk __libm_error_region ;;
}
L(EXP_POSSIBLE_UNDERFLOW):
// We got an answer. EXP_MAX_SGL_UFLOW_ARG < x < EXP_MIN_SGL_NORM_ARG
// underflow is a possibility, not a certainty
// We define an underflow when the answer with
// ftz set
// is zero (tiny numbers become zero)
// Notice (from below) that if we have an unlimited exponent range,
// then there is an extra machine number E between the largest denormal and
// the smallest normal.
// So if with unbounded exponent we round to E or below, then we are
// tiny and underflow has occurred.
// But notice that you can be in a situation where we are tiny, namely
// rounded to E, but when the exponent is bounded we round to smallest
// normal. So the answer can be the smallest normal with underflow.
// E
// -----+--------------------+--------------------+-----
// | | |
// 1.1...10 2^-7f 1.1...11 2^-7f 1.0...00 2^-7e
// 0.1...11 2^-7e (biased, 1)
// largest dn smallest normal
// If the answer is = 0, we have underflowed.
// Then p6 is TRUE. Set the underflow tag, save input in FR_X,
// do the final calculation for IEEE result, and branch to error return.
{ .mfi
nop.m 999
fsetc.s2 0x7F,0x41
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s.s2 exp_ftz_urm_f8 = exp_T, exp_P6, exp_A
nop.i 999
}
;;
{ .mfi
nop.m 999
fsetc.s2 0x7F,0x40
nop.i 999
}
;;
{ .mfi
nop.m 999
fcmp.eq.unc.s1 p6, p0 = exp_ftz_urm_f8, f0
nop.i 999
}
;;
{ .mfb
nop.m 999
nop.f 999
(p6) br.cond.spnt L(EXP_CERTAIN_UNDERFLOW) // Branch if really underflow
}
;;
{ .mfb
nop.m 999
fma.s f8 = exp_T, exp_P6, exp_A
br.ret.sptk b0 // Exit if really no underflow
}
;;
L(EXP_CERTAIN_UNDERFLOW):
{ .mfi
nop.m 999
fmerge.s FR_X = f8,f8
nop.i 999
}
{ .mfb
mov GR_Parameter_TAG = 17
fma.s FR_RESULT = exp_T, exp_P6, exp_A // Set I,U and tiny result
br.cond.sptk __libm_error_region ;;
}
L(EXP_CERTAIN_UNDERFLOW_ZERO):
{ .mmi
mov exp_GR_one = 1 ;;
setf.exp f9 = exp_GR_one
nop.i 999 ;;
}
{ .mfi
nop.m 999
fmerge.s FR_X = f8,f8
nop.i 999
}
{ .mfb
mov GR_Parameter_TAG = 17
fma.s FR_RESULT = f9, f9, f0 // Set I,U and tiny (+0.0) result
br.cond.sptk __libm_error_region ;;
}
.endp expf
ASM_SIZE_DIRECTIVE(expf)
.proc __libm_error_region
__libm_error_region:
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 999
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
stfs [GR_Parameter_Y] = FR_Y,16 // Store Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
{ .mfi
stfs [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
nop.f 0
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
}
{ .mib
stfs [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
nop.m 0
nop.m 0
add GR_Parameter_RESULT = 48,sp
};;
{ .mmi
ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
.endp __libm_error_region
ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
|