aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ia64/fpu/e_exp.S
blob: db02336ecf35e57643e500ff048d80c6a54b08e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
.file "exp.s"

// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
// 
// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS 
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY 
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
// 
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at 
// http://developer.intel.com/opensource.
//
// History
//==============================================================
// 2/02/00  Initial version 
// 3/07/00  exp(inf)  = inf but now does NOT call error support
//          exp(-inf) = 0   but now does NOT call error support
// 4/04/00  Unwind support added
// 8/15/00  Bundle added after call to __libm_error_support to properly
//          set [the previously overwritten] GR_Parameter_RESULT.
// 11/30/00 Reworked to shorten main path, widen main path to include all
//          args in normal range, and add quick exit for 0, nan, inf.
// 12/05/00 Loaded constants earlier with setf to save 2 cycles.

// API
//==============================================================
// double exp(double)

// Overview of operation
//==============================================================
// Take the input x. w is "how many log2/128 in x?"
//  w = x * 128/log2
//  n = int(w)
//  x = n log2/128 + r + delta

//  n = 128M + index_1 + 2^4 index_2
//  x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta

//  exp(x) = 2^M  2^(index_1/128)  2^(index_2/8) exp(r) exp(delta)
//       Construct 2^M
//       Get 2^(index_1/128) from table_1;
//       Get 2^(index_2/8)   from table_2;
//       Calculate exp(r) by series
//          r = x - n (log2/128)_high
//          delta = - n (log2/128)_low
//       Calculate exp(delta) as 1 + delta


// Special values 
//==============================================================
// exp(+0)    = 1.0
// exp(-0)    = 1.0

// exp(+qnan) = +qnan 
// exp(-qnan) = -qnan 
// exp(+snan) = +qnan 
// exp(-snan) = -qnan 

// exp(-inf)  = +0 
// exp(+inf)  = +inf

// Overfow and Underfow
//=======================
// exp(-x) = smallest double normal when
//     x = -708.396 = c086232bdd7abcd2

// exp(x) = largest double normal when
//     x = 709.7827 = 40862e42fefa39ef



// Registers used
//==============================================================
// Floating Point registers used: 
// f8, input
// f9 -> f15,  f32 -> f60

// General registers used: 
// r32 -> r60 

// Predicate registers used:
// p6 -> p15

#include "libm_support.h"

// Assembly macros
//==============================================================

exp_GR_rshf                   = r33
EXP_AD_TB1                    = r34
EXP_AD_TB2                    = r35
EXP_AD_P                      = r36

exp_GR_N                      = r37
exp_GR_index_1                = r38
exp_GR_index_2_16             = r39

exp_GR_biased_M               = r40
exp_GR_index_1_16             = r41
EXP_AD_T1                     = r42
EXP_AD_T2                     = r43
exp_GR_sig_inv_ln2            = r44

exp_GR_17ones                 = r45
exp_GR_one                    = r46
exp_TB1_size                  = r47
exp_TB2_size                  = r48
exp_GR_rshf_2to56             = r49

exp_GR_gt_ln                  = r50
exp_GR_exp_2tom56             = r51

exp_GR_17ones_m1              = r52

GR_SAVE_B0                    = r53
GR_SAVE_PFS                   = r54
GR_SAVE_GP                    = r55
GR_SAVE_SP                    = r56

GR_Parameter_X                = r57
GR_Parameter_Y                = r58
GR_Parameter_RESULT           = r59
GR_Parameter_TAG              = r60


FR_X             = f10
FR_Y             = f1
FR_RESULT        = f8

EXP_RSHF_2TO56   = f6
EXP_INV_LN2_2TO63 = f7
EXP_W_2TO56_RSH  = f9
EXP_2TOM56       = f11
exp_P4           = f12 
exp_P3           = f13 
exp_P2           = f14 
exp_P1           = f15 

exp_ln2_by_128_hi  = f33 
exp_ln2_by_128_lo  = f34 

EXP_RSHF           = f35
EXP_Nfloat         = f36 
exp_W              = f37
exp_r              = f38
exp_f              = f39

exp_rsq            = f40
exp_rcube          = f41

EXP_2M             = f42
exp_S1             = f43
exp_T1             = f44

EXP_MIN_DBL_OFLOW_ARG = f45
EXP_MAX_DBL_ZERO_ARG  = f46
EXP_MAX_DBL_NORM_ARG  = f47
EXP_MAX_DBL_UFLOW_ARG = f48
EXP_MIN_DBL_NORM_ARG  = f49
exp_rP4pP3         = f50
exp_P_lo           = f51
exp_P_hi           = f52
exp_P              = f53
exp_S              = f54

EXP_NORM_f8        = f56   

exp_wre_urm_f8     = f57
exp_ftz_urm_f8     = f57

exp_gt_pln         = f58

exp_S2             = f59
exp_T2             = f60


// Data tables
//==============================================================

#ifdef _LIBC
.rodata
#else
.data
#endif

.align 16

// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************

// double-extended 1/ln(2)
// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
// 3fff b8aa 3b29 5c17 f0bc 
// For speed the significand will be loaded directly with a movl and setf.sig
//   and the exponent will be bias+63 instead of bias+0.  Thus subsequent
//   computations need to scale appropriately.
// The constant 128/ln(2) is needed for the computation of w.  This is also 
//   obtained by scaling the computations.
//
// Two shifting constants are loaded directly with movl and setf.d. 
//   1. EXP_RSHF_2TO56 = 1.1000..00 * 2^(63-7) 
//        This constant is added to x*1/ln2 to shift the integer part of
//        x*128/ln2 into the rightmost bits of the significand.
//        The result of this fma is EXP_W_2TO56_RSH.
//   2. EXP_RSHF       = 1.1000..00 * 2^(63) 
//        This constant is subtracted from EXP_W_2TO56_RSH * 2^(-56) to give
//        the integer part of w, n, as a floating-point number.
//        The result of this fms is EXP_Nfloat.


exp_table_1:
ASM_TYPE_DIRECTIVE(exp_table_1,@object)
data8 0x40862e42fefa39f0 // smallest dbl overflow arg
data8 0xc0874c0000000000 // approx largest arg for zero result
data8 0x40862e42fefa39ef // largest dbl arg to give normal dbl result
data8 0xc086232bdd7abcd3 // largest dbl underflow arg
data8 0xc086232bdd7abcd2 // smallest dbl arg to give normal dbl result
data8 0x0                // pad
data8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hi
data8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo

// Table 1 is 2^(index_1/128) where
// index_1 goes from 0 to 15

data8 0x8000000000000000 , 0x00003FFF
data8 0x80B1ED4FD999AB6C , 0x00003FFF
data8 0x8164D1F3BC030773 , 0x00003FFF
data8 0x8218AF4373FC25EC , 0x00003FFF
data8 0x82CD8698AC2BA1D7 , 0x00003FFF
data8 0x8383594EEFB6EE37 , 0x00003FFF
data8 0x843A28C3ACDE4046 , 0x00003FFF
data8 0x84F1F656379C1A29 , 0x00003FFF
data8 0x85AAC367CC487B15 , 0x00003FFF
data8 0x8664915B923FBA04 , 0x00003FFF
data8 0x871F61969E8D1010 , 0x00003FFF
data8 0x87DB357FF698D792 , 0x00003FFF
data8 0x88980E8092DA8527 , 0x00003FFF
data8 0x8955EE03618E5FDD , 0x00003FFF
data8 0x8A14D575496EFD9A , 0x00003FFF
data8 0x8AD4C6452C728924 , 0x00003FFF
ASM_SIZE_DIRECTIVE(exp_table_1)

// Table 2 is 2^(index_1/8) where
// index_2 goes from 0 to 7
exp_table_2:
ASM_TYPE_DIRECTIVE(exp_table_2,@object)
data8 0x8000000000000000 , 0x00003FFF
data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
data8 0x9837F0518DB8A96F , 0x00003FFF
data8 0xA5FED6A9B15138EA , 0x00003FFF
data8 0xB504F333F9DE6484 , 0x00003FFF
data8 0xC5672A115506DADD , 0x00003FFF
data8 0xD744FCCAD69D6AF4 , 0x00003FFF
data8 0xEAC0C6E7DD24392F , 0x00003FFF
ASM_SIZE_DIRECTIVE (exp_table_2)


exp_p_table:
ASM_TYPE_DIRECTIVE(exp_p_table,@object)
data8 0x3f8111116da21757 //P_4
data8 0x3fa55555d787761c //P_3
data8 0x3fc5555555555414 //P_2
data8 0x3fdffffffffffd6a //P_1
ASM_SIZE_DIRECTIVE(exp_p_table)


.align 32
.global exp#

.section .text
.proc  exp#
.align 32
exp: 
#ifdef _LIBC
.global __ieee754_exp#
__ieee754_exp:
#endif

{ .mlx
      alloc      r32=ar.pfs,1,24,4,0                               
      movl exp_GR_sig_inv_ln2 = 0xb8aa3b295c17f0bc  // significand of 1/ln2
}
{ .mlx
      addl       EXP_AD_TB1    = @ltoff(exp_table_1), gp
      movl exp_GR_rshf_2to56 = 0x4768000000000000 ;;  // 1.10000 2^(63+56)
}
;;

// We do this fnorm right at the beginning to take any enabled
// faults and to normalize any input unnormals so that SWA is not taken.
{ .mfi
      ld8        EXP_AD_TB1    = [EXP_AD_TB1]
      fclass.m   p8,p0 = f8,0x07  // Test for x=0
      mov        exp_GR_17ones = 0x1FFFF                          
}
{ .mfi
      mov        exp_TB1_size  = 0x100
      fnorm      EXP_NORM_f8   = f8                                          
      mov exp_GR_exp_2tom56 = 0xffff-56
}
;;

// Form two constants we need
//  1/ln2 * 2^63  to compute  w = x * 1/ln2 * 128 
//  1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand

{ .mmf
      setf.sig  EXP_INV_LN2_2TO63 = exp_GR_sig_inv_ln2 // form 1/ln2 * 2^63
      setf.d  EXP_RSHF_2TO56 = exp_GR_rshf_2to56 // Form const 1.100 * 2^(63+56)
      fclass.m   p9,p0 = f8,0x22  // Test for x=-inf
}
;;

{ .mlx
      setf.exp EXP_2TOM56 = exp_GR_exp_2tom56 // form 2^-56 for scaling Nfloat
      movl exp_GR_rshf = 0x43e8000000000000   // 1.10000 2^63 for right shift
}
{ .mfb
      mov        exp_TB2_size  = 0x80
(p8)  fma.d      f8 = f1,f1,f0           // quick exit for x=0
(p8)  br.ret.spnt b0
;;
}

{ .mfi
      ldfpd      EXP_MIN_DBL_OFLOW_ARG, EXP_MAX_DBL_ZERO_ARG = [EXP_AD_TB1],16
      fclass.m   p10,p0 = f8,0x21  // Test for x=+inf
      nop.i 999
}
{ .mfb
      nop.m 999
(p9)  fma.d      f8 = f0,f0,f0           // quick exit for x=-inf
(p9)  br.ret.spnt b0
;;                    
}

{ .mmf
      ldfpd      EXP_MAX_DBL_NORM_ARG, EXP_MAX_DBL_UFLOW_ARG = [EXP_AD_TB1],16
      setf.d  EXP_RSHF = exp_GR_rshf // Form right shift const 1.100 * 2^63
      fclass.m   p11,p0 = f8,0xc3  // Test for x=nan
;;
}

{ .mfb
      ldfd      EXP_MIN_DBL_NORM_ARG = [EXP_AD_TB1],16
      nop.f 999
(p10) br.ret.spnt b0               // quick exit for x=+inf
;;
}

{ .mfi
      ldfe       exp_ln2_by_128_hi  = [EXP_AD_TB1],16
      nop.f 999
      nop.i 999
;;
}


{ .mfb
      ldfe       exp_ln2_by_128_lo  = [EXP_AD_TB1],16
(p11) fmerge.s   f8 = EXP_NORM_f8, EXP_NORM_f8
(p11) br.ret.spnt b0               // quick exit for x=nan
;;
}

// After that last load, EXP_AD_TB1 points to the beginning of table 1

// W = X * Inv_log2_by_128
// By adding 1.10...0*2^63 we shift and get round_int(W) in significand.
// We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing.

{ .mfi
      nop.m 999
      fma.s1  EXP_W_2TO56_RSH  = EXP_NORM_f8, EXP_INV_LN2_2TO63, EXP_RSHF_2TO56
      nop.i 999
;;
}


// Divide arguments into the following categories:
//  Certain Underflow/zero  p11 - -inf < x <= MAX_DBL_ZERO_ARG 
//  Certain Underflow       p12 - MAX_DBL_ZERO_ARG < x <= MAX_DBL_UFLOW_ARG 
//  Possible Underflow      p13 - MAX_DBL_UFLOW_ARG < x < MIN_DBL_NORM_ARG
//  Certain Safe                - MIN_DBL_NORM_ARG <= x <= MAX_DBL_NORM_ARG
//  Possible Overflow       p14 - MAX_DBL_NORM_ARG < x < MIN_DBL_OFLOW_ARG
//  Certain Overflow        p15 - MIN_DBL_OFLOW_ARG <= x < +inf
//
// If the input is really a double arg, then there will never be "Possible
// Underflow" or "Possible Overflow" arguments.
//

{ .mfi
      add        EXP_AD_TB2 = exp_TB1_size, EXP_AD_TB1
      fcmp.ge.s1  p15,p14 = EXP_NORM_f8,EXP_MIN_DBL_OFLOW_ARG
      nop.i 999
;;                        
}

{ .mfi
      add        EXP_AD_P = exp_TB2_size, EXP_AD_TB2
      fcmp.le.s1  p11,p12 = EXP_NORM_f8,EXP_MAX_DBL_ZERO_ARG
      nop.i 999
;;
}

{ .mfb
      ldfpd      exp_P4, exp_P3  = [EXP_AD_P] ,16
(p14) fcmp.gt.unc.s1  p14,p0 = EXP_NORM_f8,EXP_MAX_DBL_NORM_ARG
(p15) br.cond.spnt L(EXP_CERTAIN_OVERFLOW)
;;
}


// Nfloat = round_int(W) 
// The signficand of EXP_W_2TO56_RSH contains the rounded integer part of W,
// as a twos complement number in the lower bits (that is, it may be negative).
// That twos complement number (called N) is put into exp_GR_N.

// Since EXP_W_2TO56_RSH is scaled by 2^56, it must be multiplied by 2^-56
// before the shift constant 1.10000 * 2^63 is subtracted to yield EXP_Nfloat.
// Thus, EXP_Nfloat contains the floating point version of N


{ .mfi
      nop.m 999
(p12) fcmp.le.unc  p12,p0 = EXP_NORM_f8,EXP_MAX_DBL_UFLOW_ARG
      nop.i 999
}
{ .mfb
      ldfpd      exp_P2, exp_P1  = [EXP_AD_P]                                  
      fms.s1          EXP_Nfloat = EXP_W_2TO56_RSH, EXP_2TOM56, EXP_RSHF 
(p11) br.cond.spnt L(EXP_CERTAIN_UNDERFLOW_ZERO)
;;
}

{ .mfi
      getf.sig        exp_GR_N        = EXP_W_2TO56_RSH
(p13) fcmp.lt.unc  p13,p0 = EXP_NORM_f8,EXP_MIN_DBL_NORM_ARG
      nop.i 999
;;
}


// exp_GR_index_1 has index_1
// exp_GR_index_2_16 has index_2 * 16
// exp_GR_biased_M has M
// exp_GR_index_1_16 has index_1 * 16

// r2 has true M
{ .mfi
      and            exp_GR_index_1 = 0x0f, exp_GR_N
      fnma.s1    exp_r   = EXP_Nfloat, exp_ln2_by_128_hi, EXP_NORM_f8 
      shr            r2 = exp_GR_N,  0x7
}
{ .mfi
      and            exp_GR_index_2_16 = 0x70, exp_GR_N
      fnma.s1    exp_f   = EXP_Nfloat, exp_ln2_by_128_lo, f1 
      nop.i 999
;;                            
}


// EXP_AD_T1 has address of T1                           
// EXP_AD_T2 has address if T2                            

{ .mmi
      addl           exp_GR_biased_M = 0xffff, r2 
      add            EXP_AD_T2 = EXP_AD_TB2, exp_GR_index_2_16 
      shladd         EXP_AD_T1 = exp_GR_index_1, 4, EXP_AD_TB1
;;                            
}


// Create Scale = 2^M
// r = x - Nfloat * ln2_by_128_hi 
// f = 1 - Nfloat * ln2_by_128_lo 

{ .mmi
      setf.exp        EXP_2M = exp_GR_biased_M                              
      ldfe       exp_T2  = [EXP_AD_T2]                                
      nop.i 999
;;
}

// Load T1 and T2
{ .mfi
      ldfe       exp_T1  = [EXP_AD_T1]                                
      nop.f 999
      nop.i 999
;;
}


{ .mfi
        nop.m 999
        fma.s1           exp_rsq = exp_r, exp_r, f0 
        nop.i 999
}
{ .mfi
        nop.m 999
        fma.s1        exp_rP4pP3 = exp_r, exp_P4, exp_P3               
        nop.i 999
;;
}



{ .mfi
        nop.m 999
        fma.s1           exp_rcube = exp_r, exp_rsq, f0 
        nop.i 999 
}
{ .mfi
        nop.m 999
        fma.s1        exp_P_lo  = exp_r, exp_rP4pP3, exp_P2            
        nop.i 999
;;
}


{ .mfi
        nop.m 999
        fma.s1        exp_P_hi  = exp_rsq, exp_P1, exp_r              
        nop.i 999
}
{ .mfi
        nop.m 999
        fma.s1        exp_S2  = exp_f,exp_T2,f0                       
        nop.i 999
;;
}

{ .mfi
        nop.m 999
        fma.s1        exp_S1  = EXP_2M,exp_T1,f0                      
        nop.i 999
;;
}


{ .mfi
        nop.m 999
        fma.s1        exp_P     = exp_rcube, exp_P_lo, exp_P_hi       
        nop.i 999
;;
}

{ .mfi
        nop.m 999
        fma.s1        exp_S   = exp_S1,exp_S2,f0                      
        nop.i 999
;;
}

{ .bbb
(p12)   br.cond.spnt  L(EXP_CERTAIN_UNDERFLOW)
(p13)   br.cond.spnt  L(EXP_POSSIBLE_UNDERFLOW)
(p14)   br.cond.spnt  L(EXP_POSSIBLE_OVERFLOW)
;;
}


{ .mfb
        nop.m 999
        fma.d      f8 = exp_S, exp_P, exp_S 
        br.ret.sptk     b0 ;;               // Normal path exit 
}


L(EXP_POSSIBLE_OVERFLOW): 

// We got an answer. EXP_MAX_DBL_NORM_ARG < x < EXP_MIN_DBL_OFLOW_ARG
// overflow is a possibility, not a certainty

{ .mfi
	nop.m 999
        fsetc.s2 0x7F,0x42                                          
	nop.i 999 ;;
}

{ .mfi
	nop.m 999
        fma.d.s2      exp_wre_urm_f8 = exp_S, exp_P, exp_S          
	nop.i 999 ;;
}

// We define an overflow when the answer with
//    WRE set
//    user-defined rounding mode
// is ldn +1

// Is the exponent 1 more than the largest double?
// If so, go to ERROR RETURN, else get the answer and 
// leave.

// Largest double is 7FE (biased double)
//                   7FE - 3FF + FFFF = 103FE
// Create + largest_double_plus_ulp
// Create - largest_double_plus_ulp
// Calculate answer with WRE set.

// Cases when answer is ldn+1  are as follows:
//  ldn                   ldn+1
// --+----------|----------+------------
//              | 
//    +inf          +inf      -inf
//                  RN         RN
//                             RZ 

{ .mfi
	nop.m 999
        fsetc.s2 0x7F,0x40                                          
        mov           exp_GR_gt_ln  = 0x103ff ;;                      
}

{ .mfi
        setf.exp      exp_gt_pln    = exp_GR_gt_ln                 
	nop.f 999
	nop.i 999 ;;
}

{ .mfi
	nop.m 999
       fcmp.ge.unc.s1 p6, p0 =  exp_wre_urm_f8, exp_gt_pln 	  
	nop.i 999 ;;
}

{ .mfb
	nop.m 999
	nop.f 999
(p6)   br.cond.spnt L(EXP_CERTAIN_OVERFLOW) ;; // Branch if really overflow
}

{ .mfb
	nop.m 999
       fma.d        f8 = exp_S, exp_P, exp_S                      
       br.ret.sptk     b0 ;;             // Exit if really no overflow
}

L(EXP_CERTAIN_OVERFLOW):
{ .mmi
      sub   exp_GR_17ones_m1 = exp_GR_17ones, r0, 1 ;;
      setf.exp     f9 = exp_GR_17ones_m1
      nop.i 999 ;;
}

{ .mfi
      nop.m 999
      fmerge.s FR_X = f8,f8
      nop.i 999
}
{ .mfb
      mov        GR_Parameter_TAG = 14
      fma.d       FR_RESULT = f9, f9, f0    // Set I,O and +INF result
      br.cond.sptk  __libm_error_region ;;                             
}

L(EXP_POSSIBLE_UNDERFLOW): 

// We got an answer. EXP_MAX_DBL_UFLOW_ARG < x < EXP_MIN_DBL_NORM_ARG
// underflow is a possibility, not a certainty

// We define an underflow when the answer with
//    ftz set
// is zero (tiny numbers become zero)

// Notice (from below) that if we have an unlimited exponent range,
// then there is an extra machine number E between the largest denormal and
// the smallest normal.

// So if with unbounded exponent we round to E or below, then we are
// tiny and underflow has occurred.

// But notice that you can be in a situation where we are tiny, namely
// rounded to E, but when the exponent is bounded we round to smallest
// normal. So the answer can be the smallest normal with underflow.

//                           E
// -----+--------------------+--------------------+-----
//      |                    |                    |
//   1.1...10 2^-3fff    1.1...11 2^-3fff    1.0...00 2^-3ffe
//   0.1...11 2^-3ffe                                   (biased, 1)
//    largest dn                               smallest normal

{ .mfi
	nop.m 999
       fsetc.s2 0x7F,0x41                                          
	nop.i 999 ;;
}
{ .mfi
	nop.m 999
       fma.d.s2      exp_ftz_urm_f8 = exp_S, exp_P, exp_S          
	nop.i 999 ;;
}
{ .mfi
	nop.m 999
       fsetc.s2 0x7F,0x40                                          
	nop.i 999 ;;
}
{ .mfi
	nop.m 999
       fcmp.eq.unc.s1 p6, p0 =  exp_ftz_urm_f8, f0 	          
	nop.i 999 ;;
}
{ .mfb
	nop.m 999
	nop.f 999
(p6)   br.cond.spnt L(EXP_CERTAIN_UNDERFLOW) ;; // Branch if really underflow
}
{ .mfb
	nop.m 999
       fma.d        f8 = exp_S, exp_P, exp_S                      
       br.ret.sptk     b0 ;;                // Exit if really no underflow
}

L(EXP_CERTAIN_UNDERFLOW):
{ .mfi
      nop.m 999
      fmerge.s FR_X = f8,f8
      nop.i 999
}
{ .mfb
      mov        GR_Parameter_TAG = 15
      fma.d       FR_RESULT  = exp_S, exp_P, exp_S // Set I,U and tiny result
      br.cond.sptk  __libm_error_region ;;                             
}

L(EXP_CERTAIN_UNDERFLOW_ZERO):
{ .mmi
      mov   exp_GR_one = 1 ;;
      setf.exp     f9 = exp_GR_one
      nop.i 999 ;;
}

{ .mfi
      nop.m 999
      fmerge.s FR_X = f8,f8
      nop.i 999
}
{ .mfb
      mov        GR_Parameter_TAG = 15
      fma.d       FR_RESULT = f9, f9, f0    // Set I,U and tiny (+0.0) result
      br.cond.sptk  __libm_error_region ;;                             
}

.endp exp
ASM_SIZE_DIRECTIVE(exp)


.proc __libm_error_region
__libm_error_region:
.prologue
{ .mfi
        add   GR_Parameter_Y=-32,sp             // Parameter 2 value
        nop.f 0
.save   ar.pfs,GR_SAVE_PFS
        mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs 
}
{ .mfi
.fframe 64 
        add sp=-64,sp                           // Create new stack
        nop.f 0
        mov GR_SAVE_GP=gp                       // Save gp
};;
{ .mmi
        stfd [GR_Parameter_Y] = FR_Y,16         // STORE Parameter 2 on stack
        add GR_Parameter_X = 16,sp              // Parameter 1 address
.save   b0, GR_SAVE_B0                      
        mov GR_SAVE_B0=b0                       // Save b0 
};;
.body
{ .mib
        stfd [GR_Parameter_X] = FR_X                  // STORE Parameter 1 on stack 
        add   GR_Parameter_RESULT = 0,GR_Parameter_Y  // Parameter 3 address 
	nop.b 0                                      
}
{ .mib
        stfd [GR_Parameter_Y] = FR_RESULT             // STORE Parameter 3 on stack
        add   GR_Parameter_Y = -16,GR_Parameter_Y  
        br.call.sptk b0=__libm_error_support#         // Call error handling function
};;
{ .mmi
        nop.m 0
        nop.m 0
        add   GR_Parameter_RESULT = 48,sp
};;
{ .mmi
        ldfd  f8 = [GR_Parameter_RESULT]       // Get return result off stack
.restore sp
        add   sp = 64,sp                       // Restore stack pointer
        mov   b0 = GR_SAVE_B0                  // Restore return address
};;
{ .mib
        mov   gp = GR_SAVE_GP                  // Restore gp 
        mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
        br.ret.sptk     b0                     // Return
};; 

.endp __libm_error_region
ASM_SIZE_DIRECTIVE(__libm_error_region)
.type   __libm_error_support#,@function
.global __libm_error_support#