summaryrefslogtreecommitdiff
path: root/sysdeps/generic/dl-tls.c
blob: b7ed69f934d279568c0c8478976d9eed6a111d56 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
/* Thread-local storage handling in the ELF dynamic linker.  Generic version.
   Copyright (C) 2002 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, write to the Free
   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
   02111-1307 USA.  */

#include <assert.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/param.h>

#include <abort-instr.h>
#include <tls.h>

/* We don't need any of this if TLS is not supported.  */
#ifdef USE_TLS

# include <dl-tls.h>
# include <ldsodefs.h>

/* Value used for dtv entries for which the allocation is delayed.  */
# define TLS_DTV_UNALLOCATED	((void *) -1l)


/* Out-of-memory handler.  */
# ifdef SHARED
static void
__attribute__ ((__noreturn__))
oom (void)
{
  static const char msg[] = "\
cannot allocate memory for thread-local data: ABORT\n";

  __libc_write (STDERR_FILENO, msg, sizeof (msg) - 1);

  /* Kill ourself.  */
  __kill (__getpid (), SIGKILL);

  /* Just in case something goes wrong with the kill.  */
  while (1)
    {
#  ifdef ABORT_INSTRUCTION
      ABORT_INSTRUCTION;
#  endif
    }
}
# endif



size_t
internal_function
_dl_next_tls_modid (void)
{
  size_t result;

  if (__builtin_expect (GL(dl_tls_dtv_gaps), false))
    {
      size_t disp = 0;
      struct dtv_slotinfo_list *runp = GL(dl_tls_dtv_slotinfo_list);

      /* Note that this branch will never be executed during program
	 start since there are no gaps at that time.  Therefore it
	 does not matter that the dl_tls_dtv_slotinfo is not allocated
	 yet when the function is called for the first times.  */
      result = GL(dl_tls_static_nelem) + 1;
      /* If the following would not be true we mustn't have assumed
	 there is a gap.  */
      assert (result <= GL(dl_tls_max_dtv_idx));
      do
	{
	  while (result - disp < runp->len)
	    {
	      if (runp->slotinfo[result - disp].map == NULL)
		break;

	      ++result;
	      assert (result <= GL(dl_tls_max_dtv_idx) + 1);
	    }

	  if (result - disp < runp->len)
	    break;

	  disp += runp->len;
	}
      while ((runp = runp->next) != NULL);

      if (result >= GL(dl_tls_max_dtv_idx))
	{
	  /* The new index must indeed be exactly one higher than the
	     previous high.  */
	  assert (result == GL(dl_tls_max_dtv_idx));

	  /* There is no gap anymore.  */
	  GL(dl_tls_dtv_gaps) = false;

	  goto nogaps;
	}
    }
  else
    {
      /* No gaps, allocate a new entry.  */
    nogaps:
      result = ++GL(dl_tls_max_dtv_idx);
    }

  return result;
}


void
internal_function
_dl_determine_tlsoffset (void)
{
  struct dtv_slotinfo *slotinfo;
  size_t max_align = __alignof__ (void *);
  size_t offset;
  size_t cnt;

  /* The first element of the dtv slot info list is allocated.  */
  assert (GL(dl_tls_dtv_slotinfo_list) != NULL);
  /* There is at this point only one element in the
     dl_tls_dtv_slotinfo_list list.  */
  assert (GL(dl_tls_dtv_slotinfo_list)->next == NULL);

# if TLS_TCB_AT_TP
  /* We simply start with zero.  */
  offset = 0;

  slotinfo = GL(dl_tls_dtv_slotinfo_list)->slotinfo;
  for (cnt = 1; slotinfo[cnt].map != NULL; ++cnt)
    {
      assert (cnt < GL(dl_tls_dtv_slotinfo_list)->len);

      max_align = MAX (max_align, slotinfo[cnt].map->l_tls_align);

      /* Compute the offset of the next TLS block.  */
      offset = roundup (offset + slotinfo[cnt].map->l_tls_blocksize,
			slotinfo[cnt].map->l_tls_align);

      /* XXX For some architectures we perhaps should store the
	 negative offset.  */
      slotinfo[cnt].map->l_tls_offset = offset;
    }

  /* The thread descriptor (pointed to by the thread pointer) has its
     own alignment requirement.  Adjust the static TLS size
     and TLS offsets appropriately.  */
  // XXX How to deal with this.  We cannot simply add zero bytes
  // XXX after the first (closest to the TCB) TLS block since this
  // XXX would invalidate the offsets the linker creates for the LE
  // XXX model.

  GL(dl_tls_static_size) = offset + TLS_TCB_SIZE;
# elif TLS_DTV_AT_TP
  /* The TLS blocks start right after the TCB.  */
  offset = TLS_TCB_SIZE;

  /* The first block starts right after the TCB.  */
  slotinfo = GL(dl_tls_dtv_slotinfo_list)->slotinfo;
  if (slotinfo[1].map != NULL)
    {
      size_t prev_size

      offset = roundup (offset, slotinfo[1].map->l_tls_align);
      slotinfo[1].map->l_tls_offset = offset;
      max_align = slotinfo[1].map->l_tls_align;
      prev_size = slotinfo[1].map->l_tls_blocksize;

      for (cnt = 2; slotinfo[cnt].map != NULL; ++cnt)
	{
	  assert (cnt < GL(dl_tls_dtv_slotinfo_list)->len);

	  max_align = MAX (max_align, slotinfo[cnt].map->l_tls_align);

	  /* Compute the offset of the next TLS block.  */
	  offset = roundup (offset + prev_size,
			    slotinfo[cnt].map->l_tls_align);

	  /* XXX For some architectures we perhaps should store the
	     negative offset.  */
	  slotinfo[cnt].map->l_tls_offset = offset;

	  prev_size = slotinfo[cnt].map->l_tls_blocksize;
	}

      offset += prev_size;
    }

  GL(dl_tls_static_size) = offset;
# else
#  error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined"
# endif

  /* The alignment requirement for the static TLS block.  */
  GL(dl_tls_static_align) = MAX (TLS_TCB_ALIGN, max_align);
}


void *
internal_function
_dl_allocate_tls (void)
{
  void *result;
  dtv_t *dtv;
  size_t dtv_length;

  /* Allocate a correctly aligned chunk of memory.  */
  /* XXX For now */
  assert (GL(dl_tls_static_align) <= GL(dl_pagesize));
# ifdef MAP_ANON
#  define _dl_zerofd (-1)
# else
#  define _dl_zerofd GL(dl_zerofd)
  if ((dl_zerofd) == -1)
    GL(dl_zerofd) = _dl_sysdep_open_zero_fill ();
#  define MAP_ANON 0
# endif
  result = __mmap (0, GL(dl_tls_static_size), PROT_READ|PROT_WRITE,
		   MAP_ANON|MAP_PRIVATE, _dl_zerofd, 0);

  /* We allocate a few more elements in the dtv than are needed for the
     initial set of modules.  This should avoid in most cases expansions
     of the dtv.  */
  dtv_length = GL(dl_tls_max_dtv_idx) + DTV_SURPLUS;
  dtv = (dtv_t *) malloc ((dtv_length + 2) * sizeof (dtv_t));
  if (result != MAP_FAILED && dtv != NULL)
    {
      struct dtv_slotinfo_list *listp;
      bool first_block = true;
      size_t total = 0;

# if TLS_TCB_AT_TP
      /* The TCB follows the TLS blocks.  */
      result = (char *) result + GL(dl_tls_static_size) - TLS_TCB_SIZE;
# endif

      /* This is the initial length of the dtv.  */
      dtv[0].counter = dtv_length;
      /* Fill in the generation number.  */
      dtv[1].counter = GL(dl_tls_generation) = 0;
      /* Initialize all of the rest of the dtv with zero to indicate
	 nothing there.  */
      memset (dtv + 2, '\0', dtv_length * sizeof (dtv_t));

      /* We have to look prepare the dtv for all currently loaded
	 modules using TLS.  For those which are dynamically loaded we
	 add the values indicating deferred allocation.  */
      listp = GL(dl_tls_dtv_slotinfo_list);
      while (1)
	{
	  size_t cnt;

	  for (cnt = first_block ? 1 : 0; cnt < listp->len; ++cnt)
	    {
	      struct link_map *map;
	      void *dest;

	      /* Check for the total number of used slots.  */
	      if (total + cnt >= GL(dl_tls_max_dtv_idx))
		break;

	      map = listp->slotinfo[cnt].map;
	      if (map == NULL)
		/* Unused entry.  */
		continue;

	      if (map->l_type == lt_loaded)
		{
		  /* For dynamically loaded modules we simply store
		     the value indicating deferred allocation.  */
		  dtv[1 + map->l_tls_modid].pointer = TLS_DTV_UNALLOCATED;
		  continue;
		}

	      assert (map->l_tls_modid == cnt);
	      assert (map->l_tls_blocksize >= map->l_tls_initimage_size);
# if TLS_TCB_AT_TP
	      assert (map->l_tls_offset >= map->l_tls_blocksize);
	      dest = (char *) result - map->l_tls_offset;
# elif TLS_DTV_AT_TP
	      dest = (char *) result + map->l_tls_offset;
# else
#  error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined"
# endif

	      /* We don't have to clear the BSS part of the TLS block
		 since mmap is used to allocate the memory which
		 guarantees it is initialized to zero.  */
	      dtv[1 + cnt].pointer = memcpy (dest, map->l_tls_initimage,
					     map->l_tls_initimage_size);
	    }

	  total += cnt;
	  if (total >= GL(dl_tls_max_dtv_idx))
	    break;

	  listp = listp->next;
	  assert (listp != NULL);
	}

      /* Add the dtv to the thread data structures.  */
      INSTALL_DTV (result, dtv);
    }
  else if (result != NULL)
    {
      free (result);
      result = NULL;
    }

  return result;
}
INTDEF(_dl_allocate_tls)


void
internal_function
_dl_deallocate_tls (void *tcb)
{
  dtv_t *dtv = GET_DTV (tcb);

  /* The array starts with dtv[-1].  */
  free (dtv - 1);

  munmap (tcb, GL(dl_tls_static_size));
}



# ifdef SHARED
/* The __tls_get_addr function has two basic forms which differ in the
   arguments.  The IA-64 form takes two parameters, the module ID and
   offset.  The form used, among others, on IA-32 takes a reference to
   a special structure which contain the same information.  The second
   form seems to be more often used (in the moment) so we default to
   it.  Users of the IA-64 form have to provide adequate definitions
   of the following macros.  */
#  ifndef GET_ADDR_ARGS
#   define GET_ADDR_ARGS tls_index *ti
#  endif
#  ifndef GET_ADDR_MODULE
#   define GET_ADDR_MODULE ti->ti_module
#  endif
#  ifndef GET_ADDR_OFFSET
#   define GET_ADDR_OFFSET ti->ti_offset
#  endif
/* Systems which do not have tls_index also probably have to define
   DONT_USE_TLS_INDEX.  */

#  ifndef __TLS_GET_ADDR
#   define __TLS_GET_ADDR __tls_get_addr
#  endif


/* Return the symbol address given the map of the module it is in and
   the symbol record.  This is used in dl-sym.c.  */
void *
internal_function
_dl_tls_symaddr (struct link_map *map, const ElfW(Sym) *ref)
{
#  ifndef DONT_USE_TLS_INDEX
  tls_index tmp =
    {
      .ti_module = map->l_tls_modid,
      .ti_offset = ref->st_value
    };

  return __TLS_GET_ADDR (&tmp);
#  else
  return __TLS_GET_ADDR (map->l_tls_modid, ref->st_value);
#  endif
}


static void *
allocate_and_init (struct link_map *map)
{
  void *newp;

  newp = __libc_memalign (map->l_tls_align, map->l_tls_blocksize);
  if (newp == NULL)
    oom ();

  /* Initialize the memory.  */
  memset (__mempcpy (newp, map->l_tls_initimage, map->l_tls_initimage_size),
	  '\0', map->l_tls_blocksize - map->l_tls_initimage_size);

  return newp;
}


/* The generic dynamic and local dynamic model cannot be used in
   statically linked applications.  */
void *
__tls_get_addr (GET_ADDR_ARGS)
{
  dtv_t *dtv = THREAD_DTV ();
  struct link_map *the_map = NULL;
  void *p;

  if (__builtin_expect (dtv[0].counter != GL(dl_tls_generation), 0))
    {
      struct dtv_slotinfo_list *listp;
      size_t idx;

      /* The global dl_tls_dtv_slotinfo array contains for each module
	 index the generation counter current when the entry was
	 created.  This array never shrinks so that all module indices
	 which were valid at some time can be used to access it.
	 Before the first use of a new module index in this function
	 the array was extended appropriately.  Access also does not
	 have to be guarded against modifications of the array.  It is
	 assumed that pointer-size values can be read atomically even
	 in SMP environments.  It is possible that other threads at
	 the same time dynamically load code and therefore add to the
	 slotinfo list.  This is a problem since we must not pick up
	 any information about incomplete work.  The solution to this
	 is to ignore all dtv slots which were created after the one
	 we are currently interested.  We know that dynamic loading
	 for this module is completed and this is the last load
	 operation we know finished.  */
      idx = GET_ADDR_MODULE;
      listp = GL(dl_tls_dtv_slotinfo_list);
      while (idx >= listp->len)
	{
	  idx -= listp->len;
	  listp = listp->next;
	}

      if (dtv[0].counter < listp->slotinfo[idx].gen)
	{
	  /* The generation counter for the slot is higher than what
	     the current dtv implements.  We have to update the whole
	     dtv but only those entries with a generation counter <=
	     the one for the entry we need.  */
	  size_t new_gen = listp->slotinfo[idx].gen;
	  size_t total = 0;

	  /* We have to look through the entire dtv slotinfo list.  */
	  listp =  GL(dl_tls_dtv_slotinfo_list);
	  do
	    {
	      size_t cnt;

	      for (cnt = total = 0 ? 1 : 0; cnt < listp->len; ++cnt)
		{
		  size_t gen = listp->slotinfo[cnt].gen;
		  struct link_map *map;
		  size_t modid;

		  if (gen > new_gen)
		    /* This is a slot for a generation younger than
		       the one we are handling now.  It might be
		       incompletely set up so ignore it.  */
		    continue;

		  /* If the entry is older than the current dtv layout
		     we know we don't have to handle it.  */
		  if (gen <= dtv[0].counter)
		    continue;

		  /* If there is no map this means the entry is empty.  */
		  map = listp->slotinfo[cnt].map;
		  if (map == NULL)
		    {
		      /* If this modid was used at some point the memory
			 might still be allocated.  */
		      if (dtv[total + cnt].pointer != TLS_DTV_UNALLOCATED)
			free (dtv[total + cnt].pointer);

		      continue;
		    }

		  /* Check whether the current dtv array is large enough.  */
		  modid = map->l_tls_modid;
		  assert (total + cnt == modid);
		  if (dtv[-1].counter < modid)
		    {
		      /* Reallocate the dtv.  */
		      dtv_t *newp;
		      size_t newsize = GL(dl_tls_max_dtv_idx) + DTV_SURPLUS;
		      size_t oldsize = dtv[-1].counter;

		      assert (map->l_tls_modid <= newsize);

		      newp = (dtv_t *) realloc (&dtv[-1],
						(2 + newsize)
						* sizeof (dtv_t));
		      if (newp == NULL)
			oom ();

		      newp[0].counter = newsize;

		      /* Clear the newly allocate part.  */
		      memset (newp + 2 + oldsize, '\0',
			      (newsize - oldsize) * sizeof (dtv_t));

		      /* Point dtv to the generation counter.  */
		      dtv = &newp[1];

		      /* Install this new dtv in the thread data
			 structures.  */
		      INSTALL_NEW_DTV (dtv);
		    }

		  /* If there is currently memory allocate for this
		     dtv entry free it.  */
		  /* XXX Ideally we will at some point create a memory
		     pool.  */
		  if (dtv[modid].pointer != TLS_DTV_UNALLOCATED)
		    /* Note that free is called for NULL is well.  We
		       deallocate even if it is this dtv entry we are
		       supposed to load.  The reason is that we call
		       memalign and not malloc.  */
		    free (dtv[modid].pointer);

		  /* This module is loaded dynamically- We defer
		     memory allocation.  */
		  dtv[modid].pointer = TLS_DTV_UNALLOCATED;

		  if (modid == GET_ADDR_MODULE)
		    the_map = map;
		}

	      total += listp->len;
	    }
	  while ((listp = listp->next) != NULL);

	  /* This will be the new maximum generation counter.  */
	  dtv[0].counter = new_gen;
	}
    }

  p = dtv[GET_ADDR_MODULE].pointer;

  if (__builtin_expect (p == TLS_DTV_UNALLOCATED, 0))
    {
      /* The allocation was deferred.  Do it now.  */
      if (the_map == NULL)
	{
	  /* Find the link map for this module.  */
	  size_t idx = GET_ADDR_MODULE;
	  struct dtv_slotinfo_list *listp = GL(dl_tls_dtv_slotinfo_list);

	  while (idx >= listp->len)
	    {
	      idx -= listp->len;
	      listp = listp->next;
	    }

	  the_map = listp->slotinfo[idx].map;
	}

      p = dtv[GET_ADDR_MODULE].pointer = allocate_and_init (the_map);
    }

  return (char *) p + GET_ADDR_OFFSET;
}
# endif

#endif	/* use TLS */