1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
|
/* Copyright (C) 1996, 1997 Free Software Foundation, Inc.
Contributed by David Mosberger (davidm@cs.arizona.edu).
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/*
* We have three versions, depending on how exact we need the results.
*/
#if defined(_IEEE_FP) && defined(_IEEE_FP_INEXACT)
/* Most demanding: go to the original source. */
#include <libm-ieee754/e_sqrt.c>
#else
/* Careful with rearranging this without consulting the assembly below. */
const static struct sqrt_data_struct {
unsigned long dn, up, half, almost_three_half;
unsigned long one_and_a_half, two_to_minus_30, one, nan;
const int T2[64];
} sqrt_data = {
0x3fefffffffffffff, /* __dn = nextafter(1,-Inf) */
0x3ff0000000000001, /* __up = nextafter(1,+Inf) */
0x3fe0000000000000, /* half */
0x3ff7ffffffc00000, /* almost_three_half = 1.5-2^-30 */
0x3ff8000000000000, /* one_and_a_half */
0x3e10000000000000, /* two_to_minus_30 */
0x3ff0000000000000, /* one */
0xffffffffffffffff, /* nan */
{ 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd }
};
#ifdef _IEEE_FP
/*
* This version is much faster than the standard one included above,
* but it doesn't maintain the inexact flag.
*/
#define lobits(x) (((unsigned int *)&x)[0])
#define hibits(x) (((unsigned int *)&x)[1])
static inline double initial_guess(double x, unsigned int k,
const struct sqrt_data_struct * const ptr)
{
double ret = 0.0;
k = 0x5fe80000 - (k >> 1);
k = k - ptr->T2[63&(k>>14)];
hibits(ret) = k;
return ret;
}
/* up = nextafter(1,+Inf), dn = nextafter(1,-Inf) */
#define __half (ptr->half)
#define __one_and_a_half (ptr->one_and_a_half)
#define __two_to_minus_30 (ptr->two_to_minus_30)
#define __one (ptr->one)
#define __up (ptr->up)
#define __dn (ptr->dn)
#define __Nan (ptr->nan)
#define Double(x) (*(double *)&x)
/* Multiply with chopping rounding.. */
#define choppedmul(a,b,c) \
__asm__("multc %1,%2,%0":"=&f" (c):"f" (a), "f" (b))
double
__ieee754_sqrt(double x)
{
const struct sqrt_data_struct * const ptr = &sqrt_data;
unsigned long k, bits;
double y, z, zp, zn;
double dn, up, low, high;
double half, one_and_a_half, one, two_to_minus_30;
*(double *)&bits = x;
k = bits;
/* Negative or NaN or Inf */
if ((k >> 52) >= 0x7ff)
goto special;
y = initial_guess(x, k >> 32, ptr);
half = Double(__half);
one_and_a_half = Double(__one_and_a_half);
y = y*(one_and_a_half - half*x*y*y);
dn = Double(__dn);
two_to_minus_30 = Double(__two_to_minus_30);
y = y*((one_and_a_half - two_to_minus_30) - half*x*y*y);
up = Double(__up);
z = x*y;
one = Double(__one);
z = z + half*z*(one-z*y);
choppedmul(z,dn,zp);
choppedmul(z,up,zn);
choppedmul(z,zp,low);
low = low - x;
choppedmul(z,zn,high);
high = high - x;
/* I can't get gcc to use fcmov's.. */
__asm__("fcmovge %2,%3,%0"
:"=f" (z)
:"0" (z), "f" (low), "f" (zp));
__asm__("fcmovlt %2,%3,%0"
:"=f" (z)
:"0" (z), "f" (high), "f" (zn));
return z; /* Argh! gcc jumps to end here */
special:
/* throw away sign bit */
k <<= 1;
/* -0 */
if (!k)
return x;
/* special? */
if ((k >> 53) == 0x7ff) {
/* NaN? */
if (k << 11)
return x;
/* sqrt(+Inf) = +Inf */
if (x > 0)
return x;
}
x = Double(__Nan);
return x;
}
#else
/*
* This version is much faster than generic sqrt implementation, but
* it doesn't handle exceptional values or the inexact flag.
*/
asm ("\
/* Define offsets into the structure defined in C above. */
$DN = 0*8
$UP = 1*8
$HALF = 2*8
$ALMOST_THREE_HALF = 3*8
$NAN = 7*8
$T2 = 8*8
/* Stack variables. */
$K = 0
$Y = 8
.text
.align 3
.globl __ieee754_sqrt
.ent __ieee754_sqrt
__ieee754_sqrt:
ldgp $29, 0($27)
subq $sp, 16, $sp
.frame $sp, 16, $26, 0\n"
#ifdef PROF
" lda $28, _mcount
jsr $28, ($28), _mcount\n"
#endif
" .prologue 1
stt $f16, $K($sp)
lda $4, sqrt_data # load base address into t3
fblt $f16, $negative
/* Compute initial guess. */
.align 3
ldah $2, 0x5fe8 # e0 :
ldq $3, $K($sp) # .. e1 :
ldt $f12, $HALF($4) # e0 :
ldt $f18, $ALMOST_THREE_HALF($4) # .. e1 :
srl $3, 33, $1 # e0 :
mult $f16, $f12, $f11 # .. fm : $f11 = x * 0.5
subl $2, $1, $2 # e0 :
addt $f12, $f12, $f17 # .. fa : $f17 = 1.0
srl $2, 12, $1 # e0 :
and $1, 0xfc, $1 # .. e1 :
addq $1, $4, $1 # e0 :
ldl $1, $T2($1) # .. e1 :
addt $f12, $f17, $f15 # fa : $f15 = 1.5
subl $2, $1, $2 # .. e1 :
sll $2, 32, $2 # e0 :
ldt $f14, $DN($4) # .. e1 :
stq $2, $Y($sp) # e0 :
nop # .. e1 : avoid pipe flash
nop # e0 :
ldt $f13, $Y($sp) # .. e1 :
mult/su $f11, $f13, $f10 # fm : $f10 = (x * 0.5) * y
mult $f10, $f13, $f10 # fm : $f10 = ((x * 0.5) * y) * y
subt $f15, $f10, $f1 # fa : $f1 = (1.5 - 0.5*x*y*y)
mult $f13, $f1, $f13 # fm : yp = y*(1.5 - 0.5*x*y*y)
mult/su $f11, $f13, $f1 # fm : $f11 = x * 0.5 * yp
mult $f1, $f13, $f11 # fm : $f11 = (x * 0.5 * yp) * yp
subt $f18, $f11, $f1 # fa : $f1= (1.5-2^-30) - 0.5*x*yp*yp
mult $f13, $f1, $f13 # fm : ypp = $f13 = yp*$f1
subt $f15, $f12, $f1 # fa : $f1 = (1.5 - 0.5)
ldt $f15, $UP($4) # .. e1 :
mult/su $f16, $f13, $f10 # fm : z = $f10 = x * ypp
mult $f10, $f13, $f11 # fm : $f11 = z*ypp
mult $f10, $f12, $f12 # fm : $f12 = z*0.5
subt $f1, $f11, $f1 # .. fa : $f1 = 1 - z*ypp
mult $f12, $f1, $f12 # fm : $f12 = z*0.5*(1 - z*ypp)
addt $f10, $f12, $f0 # fa : zp=res=$f0= z + z*0.5*(1 - z*ypp)
mult/c $f0, $f14, $f12 # fm : zmi = zp * DN
mult/c $f0, $f15, $f11 # fm : zpl = zp * UP
mult/c $f0, $f12, $f1 # fm : $f1 = zp * zmi
mult/c $f0, $f11, $f15 # fm : $f15 = zp * zpl
subt/su $f1, $f16, $f13 # fa : y1 = zp*zmi - x
subt/su $f15, $f16, $f14 # fa : y2 = zp*zpl - x
fcmovge $f13, $f12, $f0 # res = (y1 >= 0) ? zmi : res
fcmovlt $f14, $f11, $f0 # res = (y2 < 0) ? zpl : res
addq $sp, 16, $sp # e0 :
ret # .. e1 :
$negative:
ldt $f0, $NAN($4)
addq $sp, 16, $sp
ret
.end __ieee754_sqrt");
#endif /* _IEEE_FP */
#endif /* _IEEE_FP && _IEEE_FP_INEXACT */
|