summaryrefslogtreecommitdiff
path: root/posix/regex_internal.c
blob: 2809c4513226b41e543232e4b9db3abe691d0b32 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
/* Extended regular expression matching and search library.
   Copyright (C) 2002 Free Software Foundation, Inc.
   This file is part of the GNU C Library.
   Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, write to the Free
   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
   02111-1307 USA.  */

#include <assert.h>
#include <ctype.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <wchar.h>
#include <wctype.h>

#ifdef _LIBC
# ifndef _RE_DEFINE_LOCALE_FUNCTIONS
#  define _RE_DEFINE_LOCALE_FUNCTIONS 1
#  include <locale/localeinfo.h>
#  include <locale/elem-hash.h>
#  include <locale/coll-lookup.h>
# endif
#endif

/* This is for other GNU distributions with internationalized messages.  */
#if HAVE_LIBINTL_H || defined _LIBC
# include <libintl.h>
# ifdef _LIBC
#  undef gettext
#  define gettext(msgid) \
  INTUSE(__dcgettext) (_libc_intl_domainname_internal, msgid, LC_MESSAGES)
# endif
#else
# define gettext(msgid) (msgid)
#endif

#ifndef gettext_noop
/* This define is so xgettext can find the internationalizable
   strings.  */
# define gettext_noop(String) String
#endif

#include "regex.h"
#include "regex_internal.h"

static void re_string_construct_common (const unsigned char *str,
                                        int len, re_string_t *pstr,
                                        RE_TRANSLATE_TYPE trans, int icase);
#ifdef RE_ENABLE_I18N
static int re_string_skip_chars (re_string_t *pstr, int new_raw_idx);
#endif /* RE_ENABLE_I18N */
static re_dfastate_t *create_newstate_common (re_dfa_t *dfa,
                                              const re_node_set *nodes,
                                              unsigned int hash);
static reg_errcode_t register_state (re_dfa_t *dfa, re_dfastate_t *newstate,
                                     unsigned int hash);
static re_dfastate_t *create_ci_newstate (re_dfa_t *dfa,
                                          const re_node_set *nodes,
                                          unsigned int hash);
static re_dfastate_t *create_cd_newstate (re_dfa_t *dfa,
                                          const re_node_set *nodes,
                                          unsigned int context,
                                          unsigned int hash);
static unsigned int inline calc_state_hash (const re_node_set *nodes,
                                            unsigned int context);

/* Functions for string operation.  */

/* This function allocate the buffers.  It is necessary to call
   re_string_reconstruct before using the object.  */

static reg_errcode_t
re_string_allocate (pstr, str, len, init_len, trans, icase)
     re_string_t *pstr;
     const unsigned char *str;
     int len, init_len, icase;
     RE_TRANSLATE_TYPE trans;
{
  reg_errcode_t ret;
  int init_buf_len = (len + 1 < init_len) ? len + 1: init_len;
  re_string_construct_common (str, len, pstr, trans, icase);

  ret = re_string_realloc_buffers (pstr, init_buf_len);
  if (BE (ret != REG_NOERROR, 0))
    return ret;

  pstr->mbs_case = (MBS_CASE_ALLOCATED (pstr) ? pstr->mbs_case
                    : (unsigned char *)str);
  pstr->mbs = MBS_ALLOCATED (pstr) ? pstr->mbs : pstr->mbs_case;
  pstr->valid_len = (MBS_CASE_ALLOCATED (pstr) || MBS_ALLOCATED (pstr)
                     || MB_CUR_MAX > 1) ? pstr->valid_len : len;
  return REG_NOERROR;
}

/* This function allocate the buffers, and initialize them.  */

static reg_errcode_t
re_string_construct (pstr, str, len, trans, icase)
     re_string_t *pstr;
     const unsigned char *str;
     int len, icase;
     RE_TRANSLATE_TYPE trans;
{
  reg_errcode_t ret;
  re_string_construct_common (str, len, pstr, trans, icase);
  /* Set 0 so that this function can initialize whole buffers.  */
  pstr->valid_len = 0;

  if (len > 0)
    {
      ret = re_string_realloc_buffers (pstr, len + 1);
      if (BE (ret != REG_NOERROR, 0))
        return ret;
    }
  pstr->mbs_case = (MBS_CASE_ALLOCATED (pstr) ? pstr->mbs_case
                    : (unsigned char *)str);
  pstr->mbs = MBS_ALLOCATED (pstr) ? pstr->mbs : pstr->mbs_case;

  if (icase)
    {
#ifdef RE_ENABLE_I18N
      if (MB_CUR_MAX > 1)
        build_wcs_upper_buffer (pstr);
      else
#endif /* RE_ENABLE_I18N  */
        build_upper_buffer (pstr);
    }
  else
    {
#ifdef RE_ENABLE_I18N
      if (MB_CUR_MAX > 1)
        build_wcs_buffer (pstr);
      else
#endif /* RE_ENABLE_I18N  */
        {
          if (trans != NULL)
            re_string_translate_buffer (pstr);
          else
            pstr->valid_len = len;
        }
    }

  /* Initialized whole buffers, then valid_len == bufs_len.  */
  pstr->valid_len = pstr->bufs_len;
  return REG_NOERROR;
}

/* Helper functions for re_string_allocate, and re_string_construct.  */

static reg_errcode_t
re_string_realloc_buffers (pstr, new_buf_len)
     re_string_t *pstr;
     int new_buf_len;
{
#ifdef RE_ENABLE_I18N
  if (MB_CUR_MAX > 1)
    {
      pstr->wcs = re_realloc (pstr->wcs, wint_t, new_buf_len);
      if (BE (pstr->wcs == NULL, 0))
        return REG_ESPACE;
    }
#endif /* RE_ENABLE_I18N  */
  if (MBS_ALLOCATED (pstr))
    {
      pstr->mbs = re_realloc (pstr->mbs, unsigned char, new_buf_len);
      if (BE (pstr->mbs == NULL, 0))
        return REG_ESPACE;
    }
  if (MBS_CASE_ALLOCATED (pstr))
    {
      pstr->mbs_case = re_realloc (pstr->mbs_case, unsigned char, new_buf_len);
      if (BE (pstr->mbs_case == NULL, 0))
        return REG_ESPACE;
      if (!MBS_ALLOCATED (pstr))
        pstr->mbs = pstr->mbs_case;
    }
  pstr->bufs_len = new_buf_len;
  return REG_NOERROR;
}


static void
re_string_construct_common (str, len, pstr, trans, icase)
     const unsigned char *str;
     int len;
     re_string_t *pstr;
     RE_TRANSLATE_TYPE trans;
     int icase;
{
  memset (pstr, '\0', sizeof (re_string_t));
  pstr->raw_mbs = str;
  pstr->len = len;
  pstr->trans = trans;
  pstr->icase = icase ? 1 : 0;
}

#ifdef RE_ENABLE_I18N

/* Build wide character buffer PSTR->WCS.
   If the byte sequence of the string are:
     <mb1>(0), <mb1>(1), <mb2>(0), <mb2>(1), <sb3>
   Then wide character buffer will be:
     <wc1>   , WEOF    , <wc2>   , WEOF    , <wc3>
   We use WEOF for padding, they indicate that the position isn't
   a first byte of a multibyte character.

   Note that this function assumes PSTR->VALID_LEN elements are already
   built and starts from PSTR->VALID_LEN.  */

static void
build_wcs_buffer (pstr)
     re_string_t *pstr;
{
  mbstate_t prev_st;
  int byte_idx, end_idx, mbclen, remain_len;
  /* Build the buffers from pstr->valid_len to either pstr->len or
     pstr->bufs_len.  */
  end_idx = (pstr->bufs_len > pstr->len)? pstr->len : pstr->bufs_len;
  for (byte_idx = pstr->valid_len; byte_idx < end_idx;)
    {
      wchar_t wc;
      remain_len = end_idx - byte_idx;
      prev_st = pstr->cur_state;
      mbclen = mbrtowc (&wc, pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx,
                        remain_len, &pstr->cur_state);
      if (BE (mbclen == (size_t) -2, 0))
        {
          /* The buffer doesn't have enough space, finish to build.  */
          pstr->cur_state = prev_st;
          break;
        }
      else if (BE (mbclen == (size_t) -1 || mbclen == 0, 0))
        {
          /* We treat these cases as a singlebyte character.  */
          mbclen = 1;
          wc = (wchar_t) pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx];
          pstr->cur_state = prev_st;
        }

      /* Apply the translateion if we need.  */
      if (pstr->trans != NULL && mbclen == 1)
        {
          int ch =  pstr->trans[pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]];
          pstr->mbs_case[byte_idx] = ch;
        }
      /* Write wide character and padding.  */
      pstr->wcs[byte_idx++] = wc;
      /* Write paddings.  */
      for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
        pstr->wcs[byte_idx++] = WEOF;
    }
  pstr->valid_len = byte_idx;
}

/* Build wide character buffer PSTR->WCS like build_wcs_buffer,
   but for REG_ICASE.  */

static void
build_wcs_upper_buffer (pstr)
     re_string_t *pstr;
{
  mbstate_t prev_st;
  int byte_idx, end_idx, mbclen, remain_len;
  /* Build the buffers from pstr->valid_len to either pstr->len or
     pstr->bufs_len.  */
  end_idx = (pstr->bufs_len > pstr->len)? pstr->len : pstr->bufs_len;
  for (byte_idx = pstr->valid_len; byte_idx < end_idx;)
    {
      wchar_t wc;
      remain_len = end_idx - byte_idx;
      prev_st = pstr->cur_state;
      mbclen = mbrtowc (&wc, pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx,
                        remain_len, &pstr->cur_state);
      if (BE (mbclen == (size_t) -2, 0))
        {
          /* The buffer doesn't have enough space, finish to build.  */
          pstr->cur_state = prev_st;
          break;
        }
      else if (mbclen == 1 || mbclen == (size_t) -1 || mbclen == 0)
        {
          /* In case of a singlebyte character.  */
          int ch = pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx];
          /* Apply the translateion if we need.  */
          if (pstr->trans != NULL && mbclen == 1)
            {
              ch = pstr->trans[ch];
              pstr->mbs_case[byte_idx] = ch;
            }
          pstr->wcs[byte_idx] = iswlower (wc) ? toupper (wc) : wc;
          pstr->mbs[byte_idx++] = islower (ch) ? toupper (ch) : ch;
          if (BE (mbclen == (size_t) -1, 0))
            pstr->cur_state = prev_st;
        }
      else /* mbclen > 1 */
        {
          if (iswlower (wc))
            wcrtomb (pstr->mbs + byte_idx, towupper (wc), &prev_st);
          else
            memcpy (pstr->mbs + byte_idx,
                    pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx, mbclen);
          pstr->wcs[byte_idx++] = iswlower (wc) ? toupper (wc) : wc;
          /* Write paddings.  */
          for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
            pstr->wcs[byte_idx++] = WEOF;
        }
    }
  pstr->valid_len = byte_idx;
}

/* Skip characters until the index becomes greater than NEW_RAW_IDX.
   Return the index.  */

static int
re_string_skip_chars (pstr, new_raw_idx)
     re_string_t *pstr;
     int new_raw_idx;
{
  mbstate_t prev_st;
  int rawbuf_idx, mbclen;

  /* Skip the characters which are not necessary to check.  */
  for (rawbuf_idx = pstr->raw_mbs_idx + pstr->valid_len;
       rawbuf_idx < new_raw_idx;)
    {
      int remain_len = pstr->len - rawbuf_idx;
      prev_st = pstr->cur_state;
      mbclen = mbrlen (pstr->raw_mbs + rawbuf_idx, remain_len,
                       &pstr->cur_state);
      if (BE (mbclen == (size_t) -2 || mbclen == (size_t) -1 || mbclen == 0, 0))
        {
          /* We treat these cases as a singlebyte character.  */
          mbclen = 1;
          pstr->cur_state = prev_st;
        }
      /* Then proceed the next character.  */
      rawbuf_idx += mbclen;
    }
  return rawbuf_idx;
}
#endif /* RE_ENABLE_I18N  */

/* Build the buffer PSTR->MBS, and apply the translation if we need.  
   This function is used in case of REG_ICASE.  */

static void
build_upper_buffer (pstr)
     re_string_t *pstr;
{
  int char_idx, end_idx;
  end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;

  for (char_idx = pstr->valid_len; char_idx < end_idx; ++char_idx)
    {
      int ch = pstr->raw_mbs[pstr->raw_mbs_idx + char_idx];
      if (pstr->trans != NULL)
        {
          ch =  pstr->trans[ch];
          pstr->mbs_case[char_idx] = ch;
        }
      if (islower (ch))
        pstr->mbs[char_idx] = toupper (ch);
      else
        pstr->mbs[char_idx] = ch;
    }
  pstr->valid_len = char_idx;
}

/* Apply TRANS to the buffer in PSTR.  */

static void
re_string_translate_buffer (pstr)
     re_string_t *pstr;
{
  int buf_idx, end_idx;
  end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;

  for (buf_idx = pstr->valid_len; buf_idx < end_idx; ++buf_idx)
    {
      int ch = pstr->raw_mbs[pstr->raw_mbs_idx + buf_idx];
      pstr->mbs_case[buf_idx] = pstr->trans[ch];
    }

  pstr->valid_len = buf_idx;
}

/* This function re-construct the buffers.
   Concretely, convert to wide character in case of MB_CUR_MAX > 1,
   convert to upper case in case of REG_ICASE, apply translation.  */

static reg_errcode_t
re_string_reconstruct (pstr, idx, eflags, newline)
     re_string_t *pstr;
     int idx, eflags, newline;
{
  int offset = idx - pstr->raw_mbs_idx;
  if (offset < 0)
    {
      /* Reset buffer.  */
#ifdef RE_ENABLE_I18N
      if (MB_CUR_MAX > 1)
        memset (&pstr->cur_state, '\0', sizeof (mbstate_t));
#endif /* RE_ENABLE_I18N */
      pstr->valid_len = pstr->raw_mbs_idx = 0;
      pstr->tip_context = ((eflags & REG_NOTBOL) ? CONTEXT_BEGBUF
                           : CONTEXT_NEWLINE | CONTEXT_BEGBUF);
      if (!MBS_CASE_ALLOCATED (pstr))
        pstr->mbs_case = (unsigned char *)pstr->raw_mbs;
      if (!MBS_ALLOCATED (pstr) && !MBS_CASE_ALLOCATED (pstr))
        pstr->mbs = (unsigned char *)pstr->raw_mbs;
      offset = idx;
    }

  if (offset != 0)
    {
      pstr->tip_context = re_string_context_at (pstr, offset - 1, eflags,
                                                newline);
      /* Are the characters which are already checked remain?  */
      if (offset < pstr->valid_len)
        {
          /* Yes, move them to the front of the buffer.  */
#ifdef RE_ENABLE_I18N
          if (MB_CUR_MAX > 1)
            memmove (pstr->wcs, pstr->wcs + offset,
                     (pstr->valid_len - offset) * sizeof (wint_t));
#endif /* RE_ENABLE_I18N */
          if (MBS_ALLOCATED (pstr))
            memmove (pstr->mbs, pstr->mbs + offset,
                     pstr->valid_len - offset);
          if (MBS_CASE_ALLOCATED (pstr))
            memmove (pstr->mbs_case, pstr->mbs_case + offset,
                     pstr->valid_len - offset);
          pstr->valid_len -= offset;
#if DEBUG
          assert (pstr->valid_len > 0);
#endif
        }
      else
        {
          /* No, skip all characters until IDX.  */
          pstr->valid_len = 0;
#ifdef RE_ENABLE_I18N
          if (MB_CUR_MAX > 1)
            {
              int wcs_idx;
              pstr->valid_len = re_string_skip_chars (pstr, idx) - idx;
              for (wcs_idx = 0; wcs_idx < pstr->valid_len; ++wcs_idx)
                pstr->wcs[wcs_idx] = WEOF;
            }
#endif /* RE_ENABLE_I18N */
        }
      if (!MBS_CASE_ALLOCATED (pstr))
        {
          pstr->mbs_case += offset; 
          /* In case of !MBS_ALLOCATED && !MBS_CASE_ALLOCATED.  */
          if (!MBS_ALLOCATED (pstr))
            pstr->mbs += offset; 
        }
    }
  pstr->raw_mbs_idx = idx;
  pstr->len -= offset;

  /* Then build the buffers.  */
#ifdef RE_ENABLE_I18N
  if (MB_CUR_MAX > 1)
    {
      if (pstr->icase)
        build_wcs_upper_buffer (pstr);
      else
        build_wcs_buffer (pstr);
    }
  else
#endif /* RE_ENABLE_I18N */
    {
      if (pstr->icase)
        build_upper_buffer (pstr);
      else if (pstr->trans != NULL)
        re_string_translate_buffer (pstr);
    }
  pstr->cur_idx = 0;

  return REG_NOERROR;
}

static void
re_string_destruct (pstr)
     re_string_t *pstr;
{
#ifdef RE_ENABLE_I18N
  re_free (pstr->wcs);
#endif /* RE_ENABLE_I18N  */
  if (MBS_ALLOCATED (pstr))
    re_free (pstr->mbs);
  if (MBS_CASE_ALLOCATED (pstr))
    re_free (pstr->mbs_case);
}

/* Return the context at IDX in INPUT.  */

static unsigned int
re_string_context_at (input, idx, eflags, newline_anchor)
     const re_string_t *input;
     int idx, eflags, newline_anchor;
{
  int c;
  if (idx < 0 || idx == input->len)
    {
      if (idx < 0)
        /* In this case, we use the value stored in input->tip_context,
           since we can't know the character in input->mbs[-1] here.  */
        return input->tip_context;
      else /* (idx == input->len) */
        return ((eflags & REG_NOTEOL) ? CONTEXT_ENDBUF
                : CONTEXT_NEWLINE | CONTEXT_ENDBUF);
    }
  c = re_string_byte_at (input, idx);
  if (IS_WORD_CHAR (c))
    return CONTEXT_WORD;
  return (newline_anchor && IS_NEWLINE (c)) ? CONTEXT_NEWLINE : 0;
}

/* Functions for set operation.  */

static reg_errcode_t
re_node_set_alloc (set, size)
     re_node_set *set;
     int size;
{
  set->alloc = size;
  set->nelem = 0;
  set->elems = re_malloc (int, size);
  if (BE (set->elems == NULL, 0))
    return REG_ESPACE;
  return REG_NOERROR;
}

static reg_errcode_t
re_node_set_init_1 (set, elem)
     re_node_set *set;
     int elem;
{
  set->alloc = 1;
  set->nelem = 1;
  set->elems = re_malloc (int, 1);
  if (BE (set->elems == NULL, 0))
    return REG_ESPACE;
  set->elems[0] = elem;
  return REG_NOERROR;
}

static reg_errcode_t
re_node_set_init_2 (set, elem1, elem2)
     re_node_set *set;
     int elem1, elem2;
{
  set->alloc = 2;
  set->elems = re_malloc (int, 2);
  if (BE (set->elems == NULL, 0))
    return REG_ESPACE;
  if (elem1 == elem2)
    {
      set->nelem = 1;
      set->elems[0] = elem1;
    }
  else
    {
      set->nelem = 2;
      if (elem1 < elem2)
        {
          set->elems[0] = elem1;
          set->elems[1] = elem2;
        }
      else
        {
          set->elems[0] = elem2;
          set->elems[1] = elem1;
        }
    }
  return REG_NOERROR;
}

static reg_errcode_t
re_node_set_init_copy (dest, src)
     re_node_set *dest;
     const re_node_set *src;
{
  dest->nelem = src->nelem;
  if (src->nelem > 0)
    {
      dest->alloc = dest->nelem;
      dest->elems = re_malloc (int, dest->alloc);
      if (BE (dest->elems == NULL, 0))
        return REG_ESPACE;
      memcpy (dest->elems, src->elems, src->nelem * sizeof (int));
    }
  else
    re_node_set_init_empty (dest);
  return REG_NOERROR;
}

/* Calculate the intersection of the sets SRC1 and SRC2. And store it in
   DEST. Return value indicate the error code or REG_NOERROR if succeeded.
   Note: We assume dest->elems is NULL, when dest->alloc is 0.  */

static reg_errcode_t
re_node_set_intersect (dest, src1, src2)
     re_node_set *dest;
     const re_node_set *src1, *src2;
{
  int i1, i2, id;
  if (src1->nelem > 0 && src2->nelem > 0)
    {
      if (src1->nelem + src2->nelem > dest->alloc)
        {
          dest->alloc = src1->nelem + src2->nelem;
          dest->elems = re_realloc (dest->elems, int, dest->alloc);
          if (BE (dest->elems == NULL, 0))
            return REG_ESPACE;
        }
    }
  else
    {
      /* The intersection of empty sets is also empty set.  */
      dest->nelem = 0;
      return REG_NOERROR;
    }

  for (i1 = i2 = id = 0; i1 < src1->nelem && i2 < src2->nelem; )
    {
      if (src1->elems[i1] > src2->elems[i2])
        {
          ++i2;
          continue;
        }
      /* The intersection must have the elements which are in both of
         SRC1 and SRC2.  */
      if (src1->elems[i1] == src2->elems[i2])
        dest->elems[id++] = src2->elems[i2++];
      ++i1;
    }
  dest->nelem = id;
  return REG_NOERROR;
}

/* Calculate the intersection of the sets SRC1 and SRC2. And merge it to
   DEST. Return value indicate the error code or REG_NOERROR if succeeded.
   Note: We assume dest->elems is NULL, when dest->alloc is 0.  */

static reg_errcode_t
re_node_set_add_intersect (dest, src1, src2)
     re_node_set *dest;
     const re_node_set *src1, *src2;
{
  int i1, i2, id;
  if (src1->nelem > 0 && src2->nelem > 0)
    {
      if (src1->nelem + src2->nelem + dest->nelem > dest->alloc)
        {
          dest->alloc = src1->nelem + src2->nelem + dest->nelem;
          dest->elems = re_realloc (dest->elems, int, dest->alloc);
          if (BE (dest->elems == NULL, 0))
            return REG_ESPACE;
        }
    }
  else
    return REG_NOERROR;

  for (i1 = i2 = id = 0 ; i1 < src1->nelem && i2 < src2->nelem ;)
    {
      if (src1->elems[i1] > src2->elems[i2])
        {
          ++i2;
          continue;
        }
      if (src1->elems[i1] == src2->elems[i2])
        {
          while (id < dest->nelem && dest->elems[id] < src2->elems[i2])
            ++id;
          if (id < dest->nelem && dest->elems[id] == src2->elems[i2])
            ++id;
          else
            {
              memmove (dest->elems + id + 1, dest->elems + id,
                       sizeof (int) * (dest->nelem - id));
              dest->elems[id++] = src2->elems[i2++];
              ++dest->nelem;
            }
        }
      ++i1;
    }
  return REG_NOERROR;
}

/* Calculate the union set of the sets SRC1 and SRC2. And store it to
   DEST. Return value indicate the error code or REG_NOERROR if succeeded.  */

static reg_errcode_t
re_node_set_init_union (dest, src1, src2)
     re_node_set *dest;
     const re_node_set *src1, *src2;
{
  int i1, i2, id;
  if (src1 != NULL && src1->nelem > 0 && src2 != NULL && src2->nelem > 0)
    {
      dest->alloc = src1->nelem + src2->nelem;
      dest->elems = re_malloc (int, dest->alloc);
      if (BE (dest->elems == NULL, 0))
        return REG_ESPACE;
    }
  else
    {
      if (src1 != NULL && src1->nelem > 0)
        return re_node_set_init_copy (dest, src1);
      else if (src2 != NULL && src2->nelem > 0)
        return re_node_set_init_copy (dest, src2);
      else
        re_node_set_init_empty (dest);
      return REG_NOERROR;
    }
  for (i1 = i2 = id = 0 ; i1 < src1->nelem && i2 < src2->nelem ;)
    {
      if (src1->elems[i1] > src2->elems[i2])
        {
          dest->elems[id++] = src2->elems[i2++];
          continue;
        }
      if (src1->elems[i1] == src2->elems[i2])
        ++i2;
      dest->elems[id++] = src1->elems[i1++];
    }
  if (i1 < src1->nelem)
    {
      memcpy (dest->elems + id, src1->elems + i1,
             (src1->nelem - i1) * sizeof (int));
      id += src1->nelem - i1;
    }
  else if (i2 < src2->nelem)
    {
      memcpy (dest->elems + id, src2->elems + i2,
             (src2->nelem - i2) * sizeof (int));
      id += src2->nelem - i2;
    }
  dest->nelem = id;
  return REG_NOERROR;
}

/* Calculate the union set of the sets DEST and SRC. And store it to
   DEST. Return value indicate the error code or REG_NOERROR if succeeded.  */

static reg_errcode_t
re_node_set_merge (dest, src)
     re_node_set *dest;
     const re_node_set *src;
{
  int si, di;
  if (src == NULL || src->nelem == 0)
    return REG_NOERROR;
  if (dest->alloc < src->nelem + dest->nelem)
    {
      dest->alloc = 2 * (src->nelem + dest->alloc);
      dest->elems = re_realloc (dest->elems, int, dest->alloc);
      if (BE (dest->elems == NULL, 0))
        return REG_ESPACE;
    }

  for (si = 0, di = 0 ; si < src->nelem && di < dest->nelem ;)
    {
      int cp_from, ncp, mid, right, src_elem = src->elems[si];
      /* Binary search the spot we will add the new element.  */
      right = dest->nelem;
      while (di < right)
        {
          mid = (di + right) / 2;
          if (dest->elems[mid] < src_elem)
            di = mid + 1;
          else
            right = mid;
        }
      if (di >= dest->nelem)
        break;

      if (dest->elems[di] == src_elem)
        {
          /* Skip since, DEST already has the element.  */
          ++di;
          ++si;
          continue;
        }

      /* Skip the src elements which are less than dest->elems[di].  */
      cp_from = si;
      while (si < src->nelem && src->elems[si] < dest->elems[di])
        ++si;
      /* Copy these src elements.  */
      ncp = si - cp_from;
      memmove (dest->elems + di + ncp, dest->elems + di,
               sizeof (int) * (dest->nelem - di));
      memcpy (dest->elems + di, src->elems + cp_from,
              sizeof (int) * ncp);
      /* Update counters.  */
      di += ncp;
      dest->nelem += ncp;
    }

  /* Copy remaining src elements.  */
  if (si < src->nelem)
    {
      memcpy (dest->elems + di, src->elems + si,
              sizeof (int) * (src->nelem - si));
      dest->nelem += src->nelem - si;
    }
  return REG_NOERROR;
}

/* Insert the new element ELEM to the re_node_set* SET.
   return 0 if SET already has ELEM,
   return -1 if an error is occured, return 1 otherwise.  */

static int
re_node_set_insert (set, elem)
     re_node_set *set;
     int elem;
{
  int idx, right, mid;
  /* In case of the set is empty.  */
  if (set->elems == NULL || set->alloc == 0)
    {
      if (BE (re_node_set_init_1 (set, elem) == REG_NOERROR, 1))
        return 1;
      else
        return -1;
    }

  /* Binary search the spot we will add the new element.  */
  idx = 0;
  right = set->nelem;
  while (idx < right)
    {
      mid = (idx + right) / 2;
      if (set->elems[mid] < elem)
        idx = mid + 1;
      else
        right = mid;
    }

  /* Realloc if we need.  */
  if (set->alloc < set->nelem + 1)
    {
      int *new_array;
      set->alloc = set->alloc * 2;
      new_array = re_malloc (int, set->alloc);
      if (BE (new_array == NULL, 0))
        return -1;
      /* Copy the elements they are followed by the new element.  */
      if (idx > 0)
        memcpy (new_array, set->elems, sizeof (int) * (idx));
      /* Copy the elements which follows the new element.  */
      if (set->nelem - idx > 0)
        memcpy (new_array + idx + 1, set->elems + idx,
		sizeof (int) * (set->nelem - idx));
      re_free (set->elems);
      set->elems = new_array;
    }
  else
    {
      /* Move the elements which follows the new element.  */
      if (set->nelem - idx > 0)
        memmove (set->elems + idx + 1, set->elems + idx,
                 sizeof (int) * (set->nelem - idx));
    }
  /* Insert the new element.  */
  set->elems[idx] = elem;
  ++set->nelem;
  return 1;
}

/* Compare two node sets SET1 and SET2.
   return 1 if SET1 and SET2 are equivalent, retrun 0 otherwise.  */

static int
re_node_set_compare (set1, set2)
     const re_node_set *set1, *set2;
{
  int i;
  if (set1 == NULL || set2 == NULL || set1->nelem != set2->nelem)
    return 0;
  for (i = 0 ; i < set1->nelem ; i++)
    if (set1->elems[i] != set2->elems[i])
      return 0;
  return 1;
}

/* Return 1 if SET contains the element ELEM, return 0 otherwise.  */

static int
re_node_set_contains (set, elem)
     const re_node_set *set;
     int elem;
{
  int idx, right, mid;
  if (set->nelem <= 0)
    return 0;

  /* Binary search the element.  */
  idx = 0;
  right = set->nelem - 1;
  while (idx < right)
    {
      mid = (idx + right) / 2;
      if (set->elems[mid] < elem)
        idx = mid + 1;
      else
        right = mid;
    }
  return set->elems[idx] == elem;
}

static void
re_node_set_remove_at (set, idx)
     re_node_set *set;
     int idx;
{
  if (idx < 0 || idx >= set->nelem)
    return;
  if (idx < set->nelem - 1)
    memmove (set->elems + idx, set->elems + idx + 1,
             sizeof (int) * (set->nelem - idx - 1));
  --set->nelem;
}


/* Add the token TOKEN to dfa->nodes, and return the index of the token.
   Or return -1, if an error will be occured.  */

static int
re_dfa_add_node (dfa, token, mode)
     re_dfa_t *dfa;
     re_token_t token;
     int mode;
{
  if (dfa->nodes_len >= dfa->nodes_alloc)
    {
      re_token_t *new_array;
      dfa->nodes_alloc *= 2;
      new_array = re_realloc (dfa->nodes, re_token_t, dfa->nodes_alloc);
      if (BE (new_array == NULL, 0))
        return -1;
      else
        dfa->nodes = new_array;
      if (mode)
        {
          int *new_firsts, *new_nexts;
          re_node_set *new_edests, *new_eclosures, *new_inveclosures;

          new_firsts = re_realloc (dfa->firsts, int, dfa->nodes_alloc);
          new_nexts = re_realloc (dfa->nexts, int, dfa->nodes_alloc);
          new_edests = re_realloc (dfa->edests, re_node_set, dfa->nodes_alloc);
          new_eclosures = re_realloc (dfa->eclosures, re_node_set,
                                      dfa->nodes_alloc);
          new_inveclosures = re_realloc (dfa->inveclosures, re_node_set,
                                         dfa->nodes_alloc);
          if (BE (new_firsts == NULL || new_nexts == NULL || new_edests == NULL
                  || new_eclosures == NULL || new_inveclosures == NULL, 0))
            return -1;
          dfa->firsts = new_firsts;
          dfa->nexts = new_nexts;
          dfa->edests = new_edests;
          dfa->eclosures = new_eclosures;
          dfa->inveclosures = new_inveclosures;
        }
    }
  dfa->nodes[dfa->nodes_len] = token;
  dfa->nodes[dfa->nodes_len].duplicated = 0;
  return dfa->nodes_len++;
}

static unsigned int inline
calc_state_hash (nodes, context)
     const re_node_set *nodes;
     unsigned int context;
{
  unsigned int hash = nodes->nelem + context;
  int i;
  for (i = 0 ; i < nodes->nelem ; i++)
    hash += nodes->elems[i];
  return hash;
}

/* Search for the state whose node_set is equivalent to NODES.
   Return the pointer to the state, if we found it in the DFA.
   Otherwise create the new one and return it.  In case of an error
   return NULL and set the error code in ERR.
   Note: - We assume NULL as the invalid state, then it is possible that
           return value is NULL and ERR is REG_NOERROR.
         - We never return non-NULL value in case of any errors, it is for
           optimization.  */

static re_dfastate_t*
re_acquire_state (err, dfa, nodes)
     reg_errcode_t *err;
     re_dfa_t *dfa;
     const re_node_set *nodes;
{
  unsigned int hash;
  re_dfastate_t *new_state;
  struct re_state_table_entry *spot;
  int i;
  if (BE (nodes->nelem == 0, 0))
    {
      *err = REG_NOERROR;
      return NULL;
    }
  hash = calc_state_hash (nodes, 0);
  spot = dfa->state_table + (hash & dfa->state_hash_mask);

  for (i = 0 ; i < spot->num ; i++)
    {
      re_dfastate_t *state = spot->array[i];
      if (hash != state->hash)
        continue;
      if (re_node_set_compare (&state->nodes, nodes))
        return state;
    }

  /* There are no appropriate state in the dfa, create the new one.  */
  new_state = create_ci_newstate (dfa, nodes, hash);
  if (BE (new_state != NULL, 1))
    return new_state;
  else
    {
      *err = REG_ESPACE;
      return NULL;
    }
}

/* Search for the state whose node_set is equivalent to NODES and
   whose context is equivalent to CONTEXT.
   Return the pointer to the state, if we found it in the DFA.
   Otherwise create the new one and return it.  In case of an error
   return NULL and set the error code in ERR.
   Note: - We assume NULL as the invalid state, then it is possible that
           return value is NULL and ERR is REG_NOERROR.
         - We never return non-NULL value in case of any errors, it is for
           optimization.  */

static re_dfastate_t*
re_acquire_state_context (err, dfa, nodes, context)
     reg_errcode_t *err;
     re_dfa_t *dfa;
     const re_node_set *nodes;
     unsigned int context;
{
  unsigned int hash;
  re_dfastate_t *new_state;
  struct re_state_table_entry *spot;
  int i;
  if (nodes->nelem == 0)
    {
      *err = REG_NOERROR;
      return NULL;
    }
  hash = calc_state_hash (nodes, context);
  spot = dfa->state_table + (hash & dfa->state_hash_mask);

  for (i = 0 ; i < spot->num ; i++)
    {
      re_dfastate_t *state = spot->array[i];
      if (hash != state->hash)
        continue;
      if (re_node_set_compare (state->entrance_nodes, nodes)
          && state->context == context)
        return state;
    }
  /* There are no appropriate state in `dfa', create the new one.  */
  new_state = create_cd_newstate (dfa, nodes, context, hash);
  if (BE (new_state != NULL, 1))
    return new_state;
  else
    {
      *err = REG_ESPACE;
      return NULL;
    }
}

/* Allocate memory for DFA state and initialize common properties.
   Return the new state if succeeded, otherwise return NULL.  */

static re_dfastate_t *
create_newstate_common (dfa, nodes, hash)
     re_dfa_t *dfa;
     const re_node_set *nodes;
     unsigned int hash;
{
  re_dfastate_t *newstate;
  newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1);
  if (BE (newstate == NULL, 0))
    return NULL;
  re_node_set_init_copy (&newstate->nodes, nodes);
  newstate->trtable = NULL;
  newstate->trtable_search = NULL;
  newstate->hash = hash;
  return newstate;
}

/* Store the new state NEWSTATE whose hash value is HASH in appropriate
   position.  Return value indicate the error code if failed.  */

static reg_errcode_t
register_state (dfa, newstate, hash)
     re_dfa_t *dfa;
     re_dfastate_t *newstate;
     unsigned int hash;
{
  struct re_state_table_entry *spot;
  spot = dfa->state_table + (hash & dfa->state_hash_mask);

  if (spot->alloc <= spot->num)
    {
      spot->alloc = 2 * spot->num + 2;
      spot->array = re_realloc (spot->array, re_dfastate_t *, spot->alloc);
      if (BE (spot->array == NULL, 0))
        return REG_ESPACE;
    }
  spot->array[spot->num++] = newstate;
  return REG_NOERROR;
}

/* Create the new state which is independ of contexts.
   Return the new state if succeeded, otherwise return NULL.  */

static re_dfastate_t *
create_ci_newstate (dfa, nodes, hash)
     re_dfa_t *dfa;
     const re_node_set *nodes;
     unsigned int hash;
{
  int i;
  reg_errcode_t err;
  re_dfastate_t *newstate;
  newstate = create_newstate_common (dfa, nodes, hash);
  if (BE (newstate == NULL, 0))
    return NULL;
  newstate->entrance_nodes = &newstate->nodes;

  for (i = 0 ; i < nodes->nelem ; i++)
    {
      re_token_t *node = dfa->nodes + nodes->elems[i];
      re_token_type_t type = node->type;
      if (type == CHARACTER)
        continue;

      /* If the state has the halt node, the state is a halt state.  */
      else if (type == END_OF_RE)
        newstate->halt = 1;
#ifdef RE_ENABLE_I18N
      else if (type == COMPLEX_BRACKET
               || (type == OP_PERIOD && MB_CUR_MAX > 1))
        newstate->accept_mb = 1;
#endif /* RE_ENABLE_I18N */
      else if (type == OP_BACK_REF)
        newstate->has_backref = 1;
      else if (type == ANCHOR || OP_CONTEXT_NODE)
        {
          newstate->has_constraint = 1;
          if (type == OP_CONTEXT_NODE
              && dfa->nodes[node->opr.ctx_info->entity].type == END_OF_RE)
            newstate->halt = 1;
        }
    }
  err = register_state (dfa, newstate, hash);
  return (err != REG_NOERROR) ? NULL : newstate;
}

/* Create the new state which is depend on the context CONTEXT.
   Return the new state if succeeded, otherwise return NULL.  */

static re_dfastate_t *
create_cd_newstate (dfa, nodes, context, hash)
     re_dfa_t *dfa;
     const re_node_set *nodes;
     unsigned int context, hash;
{
  int i, nctx_nodes = 0;
  reg_errcode_t err;
  re_dfastate_t *newstate;

  newstate = create_newstate_common (dfa, nodes, hash);
  if (BE (newstate == NULL, 0))
    return NULL;
  newstate->context = context;
  newstate->entrance_nodes = &newstate->nodes;

  for (i = 0 ; i < nodes->nelem ; i++)
    {
      unsigned int constraint = 0;
      re_token_t *node = dfa->nodes + nodes->elems[i];
      re_token_type_t type = node->type;
      if (type == CHARACTER)
        continue;

      /* If the state has the halt node, the state is a halt state.  */
      else if (type == END_OF_RE)
        newstate->halt = 1;
#ifdef RE_ENABLE_I18N
      else if (type == COMPLEX_BRACKET
               || (type == OP_PERIOD && MB_CUR_MAX > 1))
        newstate->accept_mb = 1;
#endif /* RE_ENABLE_I18N */
      else if (type == OP_BACK_REF)
        newstate->has_backref = 1;
      else if (type == ANCHOR)
        constraint = node->opr.ctx_type;
      else if (type == OP_CONTEXT_NODE)
        {
          re_token_type_t ctype = dfa->nodes[node->opr.ctx_info->entity].type;
          constraint = node->constraint;
          if (ctype == END_OF_RE)
            newstate->halt = 1;
          else if (ctype == OP_BACK_REF)
            newstate->has_backref = 1;
#ifdef RE_ENABLE_I18N
          else if (ctype == COMPLEX_BRACKET
                   || (type == OP_PERIOD && MB_CUR_MAX > 1))
            newstate->accept_mb = 1;
#endif /* RE_ENABLE_I18N */
        }

      if (constraint)
        {
          if (newstate->entrance_nodes == &newstate->nodes)
            {
              newstate->entrance_nodes = re_malloc (re_node_set, 1);
	      if (BE (newstate->entrance_nodes == NULL, 0))
		return NULL;
              re_node_set_init_copy (newstate->entrance_nodes, nodes);
              nctx_nodes = 0;
              newstate->has_constraint = 1;
            }

          if (NOT_SATISFY_PREV_CONSTRAINT (constraint,context))
            {
              re_node_set_remove_at (&newstate->nodes, i - nctx_nodes);
              ++nctx_nodes;
            }
        }
    }
  err = register_state (dfa, newstate, hash);
  return (err != REG_NOERROR) ? NULL : newstate;
}