1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
|
#!/usr/bin/python
# Generate tests for <tgmath.h> macros.
# Copyright (C) 2017 Free Software Foundation, Inc.
# This file is part of the GNU C Library.
#
# The GNU C Library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# The GNU C Library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with the GNU C Library; if not, see
# <http://www.gnu.org/licenses/>.
# As glibc does not support decimal floating point, the types to
# consider for generic parameters are standard and binary
# floating-point types, and integer types which are treated as double.
# The corresponding complex types may also be used (including complex
# integer types, which are a GNU extension, but are currently disabled
# here because they do not work properly with tgmath.h).
# The proposed resolution to TS 18661-1 DR#9
# <http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2149.htm#dr_9>
# makes the <tgmath.h> rules for selecting a function to call
# correspond to the usual arithmetic conversions (applied successively
# to the arguments for generic parameters in order), which choose the
# type whose set of values contains that of the other type (undefined
# behavior if neither type's set of values is a superset of the
# other), with interchange types being preferred to standard types
# (long double, double, float), being preferred to extended types
# (_Float128x, _Float64x, _Float32x).
# For the standard and binary floating-point types supported by GCC 7
# on any platform, this means the resulting type is the last of the
# given types in one of the following orders, or undefined behavior if
# types with both ibm128 and binary128 representation are specified.
# If double = long double: _Float16, float, _Float32, _Float32x,
# double, long double, _Float64, _Float64x, _Float128.
# Otherwise: _Float16, float, _Float32, _Float32x, double, _Float64,
# _Float64x, long double, _Float128.
# We generate tests to verify the return type is exactly as expected.
# We also verify that the function called is real or complex as
# expected, and that it is called for the right floating-point format
# (but it is OK to call a double function instead of a long double one
# if they have the same format, for example). For all the formats
# supported on any given configuration of glibc, the MANT_DIG value
# uniquely determines the format.
import string
class Type(object):
"""A type that may be used as an argument for generic parameters."""
# All possible argument or result types.
all_types_list = []
# All argument types.
argument_types_list = []
# All real argument types.
real_argument_types_list = []
# Real argument types that correspond to a standard floating type
# (float, double or long double; not _FloatN or _FloatNx).
standard_real_argument_types_list = []
# The real floating types by their order properties (which are
# tuples giving the positions in both the possible orders above).
real_types_order = {}
# The type double.
double_type = None
# The type _Complex double.
complex_double_type = None
# The type _Float64.
float64_type = None
# The type _Float64x.
float64x_type = None
def __init__(self, name, suffix=None, mant_dig=None, condition='1',
order=None, integer=False, complex=False, real_type=None):
"""Initialize a Type object, creating any corresponding complex type
in the process."""
self.name = name
self.suffix = suffix
self.mant_dig = mant_dig
self.condition = condition
self.order = order
self.integer = integer
self.complex = complex
if complex:
self.complex_type = self
self.real_type = real_type
else:
# complex_type filled in by the caller once created.
self.complex_type = None
self.real_type = self
def register_type(self, internal):
"""Record a type in the lists of all types."""
Type.all_types_list.append(self)
if not internal:
Type.argument_types_list.append(self)
if not self.complex:
Type.real_argument_types_list.append(self)
if not self.name.startswith('_Float'):
Type.standard_real_argument_types_list.append(self)
if self.order is not None:
Type.real_types_order[self.order] = self
if self.name == 'double':
Type.double_type = self
if self.name == '_Complex double':
Type.complex_double_type = self
if self.name == '_Float64':
Type.float64_type = self
if self.name == '_Float64x':
Type.float64x_type = self
@staticmethod
def create_type(name, suffix=None, mant_dig=None, condition='1', order=None,
integer=False, complex_name=None, complex_ok=True,
internal=False):
"""Create and register a Type object for a real type, creating any
corresponding complex type in the process."""
real_type = Type(name, suffix=suffix, mant_dig=mant_dig,
condition=condition, order=order, integer=integer,
complex=False)
# Complex integer types currently disabled because of problems
# in tgmath.h.
if complex_ok and not integer:
if complex_name is None:
complex_name = '_Complex %s' % name
complex_type = Type(complex_name, condition=condition,
integer=integer, complex=True,
real_type=real_type)
else:
complex_type = None
real_type.complex_type = complex_type
real_type.register_type(internal)
if complex_type is not None:
complex_type.register_type(internal)
def floating_type(self):
"""Return the corresponding floating type."""
if self.integer:
return (Type.complex_double_type
if self.complex
else Type.double_type)
else:
return self
def real_floating_type(self):
"""Return the corresponding real floating type."""
return self.real_type.floating_type()
def __str__(self):
"""Return string representation of a type."""
return self.name
@staticmethod
def init_types():
"""Initialize all the known types."""
Type.create_type('_Float16', 'f16', 'FLT16_MANT_DIG',
complex_name='__CFLOAT16',
condition='defined HUGE_VAL_F16', order=(0, 0))
Type.create_type('float', 'f', 'FLT_MANT_DIG', order=(1, 1))
Type.create_type('_Float32', 'f32', 'FLT32_MANT_DIG',
complex_name='__CFLOAT32',
condition='defined HUGE_VAL_F32', order=(2, 2))
Type.create_type('_Float32x', 'f32x', 'FLT32X_MANT_DIG',
complex_name='__CFLOAT32X',
condition='defined HUGE_VAL_F32X', order=(3, 3))
Type.create_type('double', '', 'DBL_MANT_DIG', order=(4, 4))
Type.create_type('long double', 'l', 'LDBL_MANT_DIG', order=(5, 7))
Type.create_type('_Float64', 'f64', 'FLT64_MANT_DIG',
complex_name='__CFLOAT64',
condition='defined HUGE_VAL_F64', order=(6, 5))
Type.create_type('_Float64x', 'f64x', 'FLT64X_MANT_DIG',
complex_name='__CFLOAT64X',
condition='defined HUGE_VAL_F64X', order=(7, 6))
Type.create_type('_Float128', 'f128', 'FLT128_MANT_DIG',
complex_name='__CFLOAT128',
condition='defined HUGE_VAL_F128', order=(8, 8))
Type.create_type('char', integer=True)
Type.create_type('signed char', integer=True)
Type.create_type('unsigned char', integer=True)
Type.create_type('short int', integer=True)
Type.create_type('unsigned short int', integer=True)
Type.create_type('int', integer=True)
Type.create_type('unsigned int', integer=True)
Type.create_type('long int', integer=True)
Type.create_type('unsigned long int', integer=True)
Type.create_type('long long int', integer=True)
Type.create_type('unsigned long long int', integer=True)
Type.create_type('__int128', integer=True,
condition='defined __SIZEOF_INT128__')
Type.create_type('unsigned __int128', integer=True,
condition='defined __SIZEOF_INT128__')
Type.create_type('enum e', integer=True, complex_ok=False)
Type.create_type('_Bool', integer=True, complex_ok=False)
Type.create_type('bit_field', integer=True, complex_ok=False)
# Internal types represent the combination of long double with
# _Float64 or _Float64x, for which the ordering depends on
# whether long double has the same format as double.
Type.create_type('long_double_Float64', 'LDBL_MANT_DIG',
complex_name='complex_long_double_Float64',
condition='defined HUGE_VAL_F64', order=(6, 7),
internal=True)
Type.create_type('long_double_Float64x', 'FLT64X_MANT_DIG',
complex_name='complex_long_double_Float64x',
condition='defined HUGE_VAL_F64X', order=(7, 7),
internal=True)
@staticmethod
def can_combine_types(types):
"""Return a C preprocessor conditional for whether the given list of
types can be used together as type-generic macro arguments."""
have_long_double = False
have_float128 = False
for t in types:
t = t.real_floating_type()
if t.name == 'long double':
have_long_double = True
if t.name == '_Float128' or t.name == '_Float64x':
have_float128 = True
if have_long_double and have_float128:
# If ibm128 format is in use for long double, both
# _Float64x and _Float128 are binary128 and the types
# cannot be combined.
return '(LDBL_MANT_DIG != 106)'
return '1'
@staticmethod
def combine_types(types):
"""Return the result of combining a set of types."""
have_complex = False
combined = None
for t in types:
if t.complex:
have_complex = True
t = t.real_floating_type()
if combined is None:
combined = t
else:
order = (max(combined.order[0], t.order[0]),
max(combined.order[1], t.order[1]))
combined = Type.real_types_order[order]
return combined.complex_type if have_complex else combined
def list_product_initial(initial, lists):
"""Return a list of lists, with an initial sequence from the first
argument (a list of lists) followed by each sequence of one
element from each successive element of the second argument."""
if not lists:
return initial
return list_product_initial([a + [b] for a in initial for b in lists[0]],
lists[1:])
def list_product(lists):
"""Return a list of lists, with each sequence of one element from each
successive element of the argument."""
return list_product_initial([[]], lists)
try:
trans_id = str.maketrans(' *', '_p')
except AttributeError:
trans_id = string.maketrans(' *', '_p')
def var_for_type(name):
"""Return the name of a variable with a given type (name)."""
return 'var_%s' % name.translate(trans_id)
def vol_var_for_type(name):
"""Return the name of a variable with a given volatile type (name)."""
return 'vol_var_%s' % name.translate(trans_id)
def define_vars_for_type(name):
"""Return the definitions of variables with a given type (name)."""
if name == 'bit_field':
struct_vars = define_vars_for_type('struct s');
return '%s#define %s %s.bf\n' % (struct_vars,
vol_var_for_type(name),
vol_var_for_type('struct s'))
return ('%s %s __attribute__ ((unused));\n'
'%s volatile %s __attribute__ ((unused));\n'
% (name, var_for_type(name), name, vol_var_for_type(name)))
def if_cond_text(conds, text):
"""Return the result of making some text conditional under #if. The
text ends with a newline, as does the return value if not empty."""
if '0' in conds:
return ''
conds = [c for c in conds if c != '1']
conds = sorted(set(conds))
if not conds:
return text
return '#if %s\n%s#endif\n' % (' && '.join(conds), text)
class Tests(object):
"""The state associated with testcase generation."""
def __init__(self):
"""Initialize a Tests object."""
self.header_list = ['#define __STDC_WANT_IEC_60559_TYPES_EXT__\n'
'#include <float.h>\n'
'#include <stdbool.h>\n'
'#include <stdint.h>\n'
'#include <stdio.h>\n'
'#include <string.h>\n'
'#include <tgmath.h>\n'
'\n'
'struct test\n'
' {\n'
' void (*func) (void);\n'
' const char *func_name;\n'
' const char *test_name;\n'
' int mant_dig;\n'
' };\n'
'int num_pass, num_fail;\n'
'volatile int called_mant_dig;\n'
'const char *volatile called_func_name;\n'
'enum e { E, F };\n'
'struct s\n'
' {\n'
' int bf:2;\n'
' };\n']
float64_text = ('# if LDBL_MANT_DIG == DBL_MANT_DIG\n'
'typedef _Float64 long_double_Float64;\n'
'typedef __CFLOAT64 complex_long_double_Float64;\n'
'# else\n'
'typedef long double long_double_Float64;\n'
'typedef _Complex long double '
'complex_long_double_Float64;\n'
'# endif\n')
float64_text = if_cond_text([Type.float64_type.condition],
float64_text)
float64x_text = ('# if LDBL_MANT_DIG == DBL_MANT_DIG\n'
'typedef _Float64x long_double_Float64x;\n'
'typedef __CFLOAT64X complex_long_double_Float64x;\n'
'# else\n'
'typedef long double long_double_Float64x;\n'
'typedef _Complex long double '
'complex_long_double_Float64x;\n'
'# endif\n')
float64x_text = if_cond_text([Type.float64x_type.condition],
float64x_text)
self.header_list.append(float64_text)
self.header_list.append(float64x_text)
self.types_seen = set()
for t in Type.all_types_list:
self.add_type_var(t.name, t.condition)
self.test_text_list = []
self.test_array_list = []
def add_type_var(self, name, cond):
"""Add declarations of variables for a type."""
if name in self.types_seen:
return
t_vars = define_vars_for_type(name)
self.header_list.append(if_cond_text([cond], t_vars))
self.types_seen.add(name)
def add_tests(self, macro, ret, args, complex_func=None):
"""Add tests for a given tgmath.h macro."""
# 'c' means the function argument or return type is
# type-generic and complex only (a complex function argument
# may still have a real macro argument). 'g' means it is
# type-generic and may be real or complex; 'r' means it is
# type-generic and may only be real; 's' means the same as
# 'r', but restricted to float, double and long double.
have_complex = False
func = macro
if ret == 'c' or 'c' in args:
# Complex-only.
have_complex = True
complex_func = func
func = None
elif ret == 'g' or 'g' in args:
# Real and complex.
have_complex = True
if complex_func == None:
complex_func = 'c%s' % func
types = [ret] + args
for t in types:
if t != 'c' and t != 'g' and t != 'r' and t != 's':
self.add_type_var(t, '1')
for t in Type.argument_types_list:
if t.integer:
continue
if t.complex and not have_complex:
continue
if func == None and not t.complex:
continue
if ret == 's' and t.name.startswith('_Float'):
continue
if ret == 'c':
ret_name = t.complex_type.name
elif ret == 'g':
ret_name = t.name
elif ret == 'r' or ret == 's':
ret_name = t.real_type.name
else:
ret_name = ret
dummy_func_name = complex_func if t.complex else func
arg_list = []
arg_num = 0
for a in args:
if a == 'c':
arg_name = t.complex_type.name
elif a == 'g':
arg_name = t.name
elif a == 'r' or a == 's':
arg_name = t.real_type.name
else:
arg_name = a
arg_list.append('%s arg%d __attribute__ ((unused))'
% (arg_name, arg_num))
arg_num += 1
dummy_func = ('%s\n'
'(%s%s) (%s)\n'
'{\n'
' called_mant_dig = %s;\n'
' called_func_name = "%s";\n'
' return 0;\n'
'}\n' % (ret_name, dummy_func_name,
t.real_type.suffix, ', '.join(arg_list),
t.real_type.mant_dig, dummy_func_name))
dummy_func = if_cond_text([t.condition], dummy_func)
self.test_text_list.append(dummy_func)
arg_types = []
for t in args:
if t == 'g' or t == 'c':
arg_types.append(Type.argument_types_list)
elif t == 'r':
arg_types.append(Type.real_argument_types_list)
elif t == 's':
arg_types.append(Type.standard_real_argument_types_list)
arg_types_product = list_product(arg_types)
test_num = 0
for this_args in arg_types_product:
comb_type = Type.combine_types(this_args)
can_comb = Type.can_combine_types(this_args)
all_conds = [t.condition for t in this_args]
all_conds.append(can_comb)
any_complex = func == None
for t in this_args:
if t.complex:
any_complex = True
func_name = complex_func if any_complex else func
test_name = '%s (%s)' % (macro,
', '.join([t.name for t in this_args]))
test_func_name = 'test_%s_%d' % (macro, test_num)
test_num += 1
mant_dig = comb_type.real_type.mant_dig
test_text = '%s, "%s", "%s", %s' % (test_func_name, func_name,
test_name, mant_dig)
test_text = ' { %s },\n' % test_text
test_text = if_cond_text(all_conds, test_text)
self.test_array_list.append(test_text)
call_args = []
call_arg_pos = 0
for t in args:
if t == 'g' or t == 'c' or t == 'r' or t == 's':
type = this_args[call_arg_pos].name
call_arg_pos += 1
else:
type = t
call_args.append(vol_var_for_type(type))
call_args_text = ', '.join(call_args)
if ret == 'g':
ret_type = comb_type.name
elif ret == 'r' or ret == 's':
ret_type = comb_type.real_type.name
elif ret == 'c':
ret_type = comb_type.complex_type.name
else:
ret_type = ret
call_text = '%s (%s)' % (macro, call_args_text)
test_func_text = ('static void\n'
'%s (void)\n'
'{\n'
' extern typeof (%s) %s '
'__attribute__ ((unused));\n'
' %s = %s;\n'
'}\n' % (test_func_name, call_text,
var_for_type(ret_type),
vol_var_for_type(ret_type), call_text))
test_func_text = if_cond_text(all_conds, test_func_text)
self.test_text_list.append(test_func_text)
def add_all_tests(self):
"""Add tests for all tgmath.h macros."""
# C99/C11 real-only functions.
self.add_tests('atan2', 'r', ['r', 'r'])
self.add_tests('cbrt', 'r', ['r'])
self.add_tests('ceil', 'r', ['r'])
self.add_tests('copysign', 'r', ['r', 'r'])
self.add_tests('erf', 'r', ['r'])
self.add_tests('erfc', 'r', ['r'])
self.add_tests('exp2', 'r', ['r'])
self.add_tests('expm1', 'r', ['r'])
self.add_tests('fdim', 'r', ['r', 'r'])
self.add_tests('floor', 'r', ['r'])
self.add_tests('fma', 'r', ['r', 'r', 'r'])
self.add_tests('fmax', 'r', ['r', 'r'])
self.add_tests('fmin', 'r', ['r', 'r'])
self.add_tests('fmod', 'r', ['r', 'r'])
self.add_tests('frexp', 'r', ['r', 'int *'])
self.add_tests('hypot', 'r', ['r', 'r'])
self.add_tests('ilogb', 'int', ['r'])
self.add_tests('ldexp', 'r', ['r', 'int'])
self.add_tests('lgamma', 'r', ['r'])
self.add_tests('llrint', 'long long int', ['r'])
self.add_tests('llround', 'long long int', ['r'])
# log10 is real-only in ISO C, but supports complex arguments
# as a GNU extension.
self.add_tests('log10', 'g', ['g'])
self.add_tests('log1p', 'r', ['r'])
self.add_tests('log2', 'r', ['r'])
self.add_tests('logb', 'r', ['r'])
self.add_tests('lrint', 'long int', ['r'])
self.add_tests('lround', 'long int', ['r'])
self.add_tests('nearbyint', 'r', ['r'])
self.add_tests('nextafter', 'r', ['r', 'r'])
self.add_tests('nexttoward', 's', ['s', 'long double'])
self.add_tests('remainder', 'r', ['r', 'r'])
self.add_tests('remquo', 'r', ['r', 'r', 'int *'])
self.add_tests('rint', 'r', ['r'])
self.add_tests('round', 'r', ['r'])
self.add_tests('scalbn', 'r', ['r', 'int'])
self.add_tests('scalbln', 'r', ['r', 'long int'])
self.add_tests('tgamma', 'r', ['r'])
self.add_tests('trunc', 'r', ['r'])
# C99/C11 real-and-complex functions.
self.add_tests('acos', 'g', ['g'])
self.add_tests('asin', 'g', ['g'])
self.add_tests('atan', 'g', ['g'])
self.add_tests('acosh', 'g', ['g'])
self.add_tests('asinh', 'g', ['g'])
self.add_tests('atanh', 'g', ['g'])
self.add_tests('cos', 'g', ['g'])
self.add_tests('sin', 'g', ['g'])
self.add_tests('tan', 'g', ['g'])
self.add_tests('cosh', 'g', ['g'])
self.add_tests('sinh', 'g', ['g'])
self.add_tests('tanh', 'g', ['g'])
self.add_tests('exp', 'g', ['g'])
self.add_tests('log', 'g', ['g'])
self.add_tests('pow', 'g', ['g', 'g'])
self.add_tests('sqrt', 'g', ['g'])
self.add_tests('fabs', 'r', ['g'], 'cabs')
# C99/C11 complex-only functions.
self.add_tests('carg', 'r', ['c'])
self.add_tests('cimag', 'r', ['c'])
self.add_tests('conj', 'c', ['c'])
self.add_tests('cproj', 'c', ['c'])
self.add_tests('creal', 'r', ['c'])
# TS 18661-1 functions.
self.add_tests('roundeven', 'r', ['r'])
self.add_tests('nextup', 'r', ['r'])
self.add_tests('nextdown', 'r', ['r'])
self.add_tests('fminmag', 'r', ['r', 'r'])
self.add_tests('fmaxmag', 'r', ['r', 'r'])
self.add_tests('llogb', 'long int', ['r'])
self.add_tests('fromfp', 'intmax_t', ['r', 'int', 'unsigned int'])
self.add_tests('fromfpx', 'intmax_t', ['r', 'int', 'unsigned int'])
self.add_tests('ufromfp', 'uintmax_t', ['r', 'int', 'unsigned int'])
self.add_tests('ufromfpx', 'uintmax_t', ['r', 'int', 'unsigned int'])
self.add_tests('totalorder', 'int', ['r', 'r'])
self.add_tests('totalordermag', 'int', ['r', 'r'])
# The functions that round their result to a narrower type,
# and the associated type-generic macros, are not yet
# supported by this script or by glibc.
# Miscellaneous functions.
self.add_tests('scalb', 's', ['s', 's'])
def tests_text(self):
"""Return the text of the generated testcase."""
test_list = [''.join(self.test_text_list),
'static const struct test tests[] =\n'
' {\n',
''.join(self.test_array_list),
' };\n']
footer_list = ['static int\n'
'do_test (void)\n'
'{\n'
' for (size_t i = 0;\n'
' i < sizeof (tests) / sizeof (tests[0]);\n'
' i++)\n'
' {\n'
' called_mant_dig = 0;\n'
' called_func_name = "";\n'
' tests[i].func ();\n'
' if (called_mant_dig == tests[i].mant_dig\n'
' && strcmp (called_func_name,\n'
' tests[i].func_name) == 0)\n'
' num_pass++;\n'
' else\n'
' {\n'
' num_fail++;\n'
' printf ("Test %zu (%s):\\n"\n'
' " Expected: %s precision %d\\n"\n'
' " Actual: %s precision %d\\n\\n",\n'
' i, tests[i].test_name,\n'
' tests[i].func_name,\n'
' tests[i].mant_dig,\n'
' called_func_name, called_mant_dig);\n'
' }\n'
' }\n'
' printf ("%d pass, %d fail\\n", num_pass, num_fail);\n'
' return num_fail != 0;\n'
'}\n'
'\n'
'#include <support/test-driver.c>']
return ''.join(self.header_list + test_list + footer_list)
def main():
"""The main entry point."""
Type.init_types()
t = Tests()
t.add_all_tests()
print(t.tests_text())
if __name__ == '__main__':
main()
|