1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
|
/* Generate expected output for libm tests with MPFR and MPC.
Copyright (C) 2013-2017 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
/* Compile this program as:
gcc -std=gnu11 -O2 -Wall -Wextra gen-auto-libm-tests.c -lmpc -lmpfr -lgmp \
-o gen-auto-libm-tests
(use of current MPC and MPFR versions recommended) and run it as:
gen-auto-libm-tests auto-libm-test-in auto-libm-test-out
The input file auto-libm-test-in contains three kinds of lines:
Lines beginning with "#" are comments, and are ignored, as are
empty lines.
Other lines are test lines, of the form "function input1 input2
... [flag1 flag2 ...]". Inputs are either finite real numbers or
integers, depending on the function under test. Real numbers may
be in any form acceptable to mpfr_strtofr (base 0); integers in any
form acceptable to mpz_set_str (base 0). In addition, real numbers
may be certain special strings such as "pi", as listed in the
special_real_inputs array.
Each flag is a flag name possibly followed by a series of
":condition". Conditions may be any of the names of floating-point
formats in the floating_point_formats array, "long32" and "long64"
to indicate the number of bits in the "long" type, or other strings
for which libm-test.inc defines a TEST_COND_<condition> macro (with
"-"- changed to "_" in the condition name) evaluating to nonzero
when the condition is true and zero when the condition is false.
The meaning is that the flag applies to the test if all the listed
conditions are true. "flag:cond1:cond2 flag:cond3:cond4" means the
flag applies if ((cond1 && cond2) || (cond3 && cond4)).
A real number specified as an input is considered to represent the
set of real numbers arising from rounding the given number in any
direction for any supported floating-point format; any roundings
that give infinity are ignored. Each input on a test line has all
the possible roundings considered independently. Each resulting
choice of the tuple of inputs to the function is ignored if the
mathematical result of the function involves a NaN or an exact
infinity, and is otherwise considered for each floating-point
format for which all those inputs are exactly representable. Thus
tests may result in "overflow", "underflow" and "inexact"
exceptions; "invalid" may arise only when the final result type is
an integer type and it is the conversion of a mathematically
defined finite result to integer type that results in that
exception.
By default, it is assumed that "overflow" and "underflow"
exceptions should be correct, but that "inexact" exceptions should
only be correct for functions listed as exactly determined. For
such functions, "underflow" exceptions should respect whether the
machine has before-rounding or after-rounding tininess detection.
For other functions, it is considered that if the exact result is
somewhere between the greatest magnitude subnormal of a given sign
(exclusive) and the least magnitude normal of that sign
(inclusive), underflow exceptions are permitted but optional on all
machines, and they are also permitted but optional for smaller
subnormal exact results for functions that are not exactly
determined. errno setting is expected for overflow to infinity and
underflow to zero (for real functions), and for out-of-range
conversion of a finite result to integer type, and is considered
permitted but optional for all other cases where overflow
exceptions occur, and where underflow exceptions occur or are
permitted. In other cases (where no overflow or underflow is
permitted), errno is expected to be left unchanged.
The flag "no-test-inline" indicates a test is disabled for inline
function testing; "ignore-zero-inf-sign" indicates the the signs of
zero and infinite results should be ignored; "xfail" indicates the
test is disabled as expected to produce incorrect results,
"xfail-rounding" indicates the test is disabled only in rounding
modes other than round-to-nearest. Otherwise, test flags are of
the form "spurious-<exception>" and "missing-<exception>", for any
exception ("overflow", "underflow", "inexact", "invalid",
"divbyzero"), "spurious-errno" and "missing-errno", to indicate
when tests are expected to deviate from the exception and errno
settings corresponding to the mathematical results. "xfail",
"xfail-rounding", "spurious-" and "missing-" flags should be
accompanied by a comment referring to an open bug in glibc
Bugzilla.
The output file auto-libm-test-out contains the test lines from
auto-libm-test-in, and, after the line for a given test, some
number of output test lines. An output test line is of the form "=
function rounding-mode format input1 input2 ... : output1 output2
... : flags". rounding-mode is "tonearest", "towardzero", "upward"
or "downward". format is a name from the floating_point_formats
array, possibly followed by a sequence of ":flag" for flags from
"long32" and "long64". Inputs and outputs are specified as hex
floats with the required suffix for the floating-point type, or
plus_infty or minus_infty for infinite expected results, or as
integer constant expressions (not necessarily with the right type)
or IGNORE for integer inputs and outputs. Flags are
"no-test-inline", "ignore-zero-info-sign", "xfail", "<exception>",
"<exception>-ok", "errno-<value>", "errno-<value>-ok", which may be
unconditional or conditional. "<exception>" indicates that a
correct result means the given exception should be raised.
"errno-<value>" indicates that a correct result means errno should
be set to the given value. "-ok" means not to test for the given
exception or errno value (whether because it was marked as possibly
missing or spurious, or because the calculation of correct results
indicated it was optional). Conditions "before-rounding" and
"after-rounding" indicate tests where expectations for underflow
exceptions depend on how the architecture detects tininess. */
#define _GNU_SOURCE
#include <assert.h>
#include <ctype.h>
#include <errno.h>
#include <error.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gmp.h>
#include <mpfr.h>
#include <mpc.h>
#define ARRAY_SIZE(A) (sizeof (A) / sizeof ((A)[0]))
/* The supported floating-point formats. */
typedef enum
{
fp_flt_32,
fp_dbl_64,
fp_ldbl_96_intel,
fp_ldbl_96_m68k,
fp_ldbl_128,
fp_ldbl_128ibm,
fp_num_formats,
fp_first_format = 0
} fp_format;
/* Structure describing a single floating-point format. */
typedef struct
{
/* The name of the format. */
const char *name;
/* A string for the largest normal value, or NULL for IEEE formats
where this can be determined automatically. */
const char *max_string;
/* The number of mantissa bits. */
int mant_dig;
/* The least N such that 2^N overflows. */
int max_exp;
/* One more than the least N such that 2^N is normal. */
int min_exp;
/* The largest normal value. */
mpfr_t max;
/* The value 0.5ulp above the least positive normal value. */
mpfr_t min_plus_half;
/* The least positive normal value, 2^(MIN_EXP-1). */
mpfr_t min;
/* The greatest positive subnormal value. */
mpfr_t subnorm_max;
/* The least positive subnormal value, 2^(MIN_EXP-MANT_DIG). */
mpfr_t subnorm_min;
} fp_format_desc;
/* List of floating-point formats, in the same order as the fp_format
enumeration. */
static fp_format_desc fp_formats[fp_num_formats] =
{
{ "binary32", NULL, 24, 128, -125, {}, {}, {}, {}, {} },
{ "binary64", NULL, 53, 1024, -1021, {}, {}, {}, {}, {} },
{ "intel96", NULL, 64, 16384, -16381, {}, {}, {}, {}, {} },
{ "m68k96", NULL, 64, 16384, -16382, {}, {}, {}, {}, {} },
{ "binary128", NULL, 113, 16384, -16381, {}, {}, {}, {}, {} },
{ "ibm128", "0x1.fffffffffffff7ffffffffffff8p+1023",
106, 1024, -968, {}, {}, {}, {}, {} },
};
/* The supported rounding modes. */
typedef enum
{
rm_downward,
rm_tonearest,
rm_towardzero,
rm_upward,
rm_num_modes,
rm_first_mode = 0
} rounding_mode;
/* Structure describing a single rounding mode. */
typedef struct
{
/* The name of the rounding mode. */
const char *name;
/* The MPFR rounding mode. */
mpfr_rnd_t mpfr_mode;
/* The MPC rounding mode. */
mpc_rnd_t mpc_mode;
} rounding_mode_desc;
/* List of rounding modes, in the same order as the rounding_mode
enumeration. */
static const rounding_mode_desc rounding_modes[rm_num_modes] =
{
{ "downward", MPFR_RNDD, MPC_RNDDD },
{ "tonearest", MPFR_RNDN, MPC_RNDNN },
{ "towardzero", MPFR_RNDZ, MPC_RNDZZ },
{ "upward", MPFR_RNDU, MPC_RNDUU },
};
/* The supported exceptions. */
typedef enum
{
exc_divbyzero,
exc_inexact,
exc_invalid,
exc_overflow,
exc_underflow,
exc_num_exceptions,
exc_first_exception = 0
} fp_exception;
/* List of exceptions, in the same order as the fp_exception
enumeration. */
static const char *const exceptions[exc_num_exceptions] =
{
"divbyzero",
"inexact",
"invalid",
"overflow",
"underflow",
};
/* The internal precision to use for most MPFR calculations, which
must be at least 2 more than the greatest precision of any
supported floating-point format. */
static int internal_precision;
/* A value that overflows all supported floating-point formats. */
static mpfr_t global_max;
/* A value that is at most half the least subnormal in any
floating-point format and so is rounded the same way as all
sufficiently small positive values. */
static mpfr_t global_min;
/* The maximum number of (real or integer) arguments to a function
handled by this program (complex arguments count as two real
arguments). */
#define MAX_NARGS 4
/* The maximum number of (real or integer) return values from a
function handled by this program. */
#define MAX_NRET 2
/* A type of a function argument or return value. */
typedef enum
{
/* No type (not a valid argument or return value). */
type_none,
/* A floating-point value with the type corresponding to that of
the function. */
type_fp,
/* An integer value of type int. */
type_int,
/* An integer value of type long. */
type_long,
/* An integer value of type long long. */
type_long_long,
} arg_ret_type;
/* A type of a generic real or integer value. */
typedef enum
{
/* No type. */
gtype_none,
/* Floating-point (represented with MPFR). */
gtype_fp,
/* Integer (represented with GMP). */
gtype_int,
} generic_value_type;
/* A generic value (argument or result). */
typedef struct
{
/* The type of this value. */
generic_value_type type;
/* Its value. */
union
{
mpfr_t f;
mpz_t i;
} value;
} generic_value;
/* A type of input flag. */
typedef enum
{
flag_no_test_inline,
flag_ignore_zero_inf_sign,
flag_xfail,
flag_xfail_rounding,
/* The "spurious" and "missing" flags must be in the same order as
the fp_exception enumeration. */
flag_spurious_divbyzero,
flag_spurious_inexact,
flag_spurious_invalid,
flag_spurious_overflow,
flag_spurious_underflow,
flag_spurious_errno,
flag_missing_divbyzero,
flag_missing_inexact,
flag_missing_invalid,
flag_missing_overflow,
flag_missing_underflow,
flag_missing_errno,
num_input_flag_types,
flag_first_flag = 0,
flag_spurious_first = flag_spurious_divbyzero,
flag_missing_first = flag_missing_divbyzero
} input_flag_type;
/* List of flags, in the same order as the input_flag_type
enumeration. */
static const char *const input_flags[num_input_flag_types] =
{
"no-test-inline",
"ignore-zero-inf-sign",
"xfail",
"xfail-rounding",
"spurious-divbyzero",
"spurious-inexact",
"spurious-invalid",
"spurious-overflow",
"spurious-underflow",
"spurious-errno",
"missing-divbyzero",
"missing-inexact",
"missing-invalid",
"missing-overflow",
"missing-underflow",
"missing-errno",
};
/* An input flag, possibly conditional. */
typedef struct
{
/* The type of this flag. */
input_flag_type type;
/* The conditions on this flag, as a string ":cond1:cond2..." or
NULL. */
const char *cond;
} input_flag;
/* Structure describing a single test from the input file (which may
expand into many tests in the output). The choice of function,
which implies the numbers and types of arguments and results, is
implicit rather than stored in this structure (except as part of
the source line). */
typedef struct
{
/* The text of the input line describing the test, including the
trailing newline. */
const char *line;
/* The number of combinations of interpretations of input values for
different floating-point formats and rounding modes. */
size_t num_input_cases;
/* The corresponding lists of inputs. */
generic_value **inputs;
/* The number of flags for this test. */
size_t num_flags;
/* The corresponding list of flags. */
input_flag *flags;
/* The old output for this test. */
const char *old_output;
} input_test;
/* Ways to calculate a function. */
typedef enum
{
/* MPFR function with a single argument and result. */
mpfr_f_f,
/* MPFR function with two arguments and one result. */
mpfr_ff_f,
/* MPFR function with three arguments and one result. */
mpfr_fff_f,
/* MPFR function with a single argument and floating-point and
integer results. */
mpfr_f_f1,
/* MPFR function with integer and floating-point arguments and one
result. */
mpfr_if_f,
/* MPFR function with a single argument and two floating-point
results. */
mpfr_f_11,
/* MPC function with a single complex argument and one real
result. */
mpc_c_f,
/* MPC function with a single complex argument and one complex
result. */
mpc_c_c,
/* MPC function with two complex arguments and one complex
result. */
mpc_cc_c,
} func_calc_method;
/* Description of how to calculate a function. */
typedef struct
{
/* Which method is used to calculate the function. */
func_calc_method method;
/* The specific function called. */
union
{
int (*mpfr_f_f) (mpfr_t, const mpfr_t, mpfr_rnd_t);
int (*mpfr_ff_f) (mpfr_t, const mpfr_t, const mpfr_t, mpfr_rnd_t);
int (*mpfr_fff_f) (mpfr_t, const mpfr_t, const mpfr_t, const mpfr_t,
mpfr_rnd_t);
int (*mpfr_f_f1) (mpfr_t, int *, const mpfr_t, mpfr_rnd_t);
int (*mpfr_if_f) (mpfr_t, long, const mpfr_t, mpfr_rnd_t);
int (*mpfr_f_11) (mpfr_t, mpfr_t, const mpfr_t, mpfr_rnd_t);
int (*mpc_c_f) (mpfr_t, const mpc_t, mpfr_rnd_t);
int (*mpc_c_c) (mpc_t, const mpc_t, mpc_rnd_t);
int (*mpc_cc_c) (mpc_t, const mpc_t, const mpc_t, mpc_rnd_t);
} func;
} func_calc_desc;
/* Structure describing a function handled by this program. */
typedef struct
{
/* The name of the function. */
const char *name;
/* The number of arguments. */
size_t num_args;
/* The types of the arguments. */
arg_ret_type arg_types[MAX_NARGS];
/* The number of return values. */
size_t num_ret;
/* The types of the return values. */
arg_ret_type ret_types[MAX_NRET];
/* Whether the function has exactly determined results and
exceptions. */
bool exact;
/* Whether the function is a complex function, so errno setting is
optional. */
bool complex_fn;
/* Whether to treat arguments given as floating-point constants as
exact only, rather than rounding them up and down to all
formats. */
bool exact_args;
/* How to calculate this function. */
func_calc_desc calc;
/* The number of tests allocated for this function. */
size_t num_tests_alloc;
/* The number of tests for this function. */
size_t num_tests;
/* The tests themselves. */
input_test *tests;
} test_function;
#define ARGS1(T1) 1, { T1 }
#define ARGS2(T1, T2) 2, { T1, T2 }
#define ARGS3(T1, T2, T3) 3, { T1, T2, T3 }
#define ARGS4(T1, T2, T3, T4) 4, { T1, T2, T3, T4 }
#define RET1(T1) 1, { T1 }
#define RET2(T1, T2) 2, { T1, T2 }
#define CALC(TYPE, FN) { TYPE, { .TYPE = FN } }
#define FUNC(NAME, ARGS, RET, EXACT, COMPLEX_FN, EXACT_ARGS, CALC) \
{ \
NAME, ARGS, RET, EXACT, COMPLEX_FN, EXACT_ARGS, CALC, 0, 0, NULL \
}
#define FUNC_mpfr_f_f(NAME, MPFR_FUNC, EXACT) \
FUNC (NAME, ARGS1 (type_fp), RET1 (type_fp), EXACT, false, false, \
CALC (mpfr_f_f, MPFR_FUNC))
#define FUNC_mpfr_ff_f(NAME, MPFR_FUNC, EXACT) \
FUNC (NAME, ARGS2 (type_fp, type_fp), RET1 (type_fp), EXACT, false, \
false, CALC (mpfr_ff_f, MPFR_FUNC))
#define FUNC_mpfr_if_f(NAME, MPFR_FUNC, EXACT) \
FUNC (NAME, ARGS2 (type_int, type_fp), RET1 (type_fp), EXACT, false, \
false, CALC (mpfr_if_f, MPFR_FUNC))
#define FUNC_mpc_c_f(NAME, MPFR_FUNC, EXACT) \
FUNC (NAME, ARGS2 (type_fp, type_fp), RET1 (type_fp), EXACT, true, \
false, CALC (mpc_c_f, MPFR_FUNC))
#define FUNC_mpc_c_c(NAME, MPFR_FUNC, EXACT) \
FUNC (NAME, ARGS2 (type_fp, type_fp), RET2 (type_fp, type_fp), EXACT, \
true, false, CALC (mpc_c_c, MPFR_FUNC))
/* List of functions handled by this program. */
static test_function test_functions[] =
{
FUNC_mpfr_f_f ("acos", mpfr_acos, false),
FUNC_mpfr_f_f ("acosh", mpfr_acosh, false),
FUNC_mpfr_f_f ("asin", mpfr_asin, false),
FUNC_mpfr_f_f ("asinh", mpfr_asinh, false),
FUNC_mpfr_f_f ("atan", mpfr_atan, false),
FUNC_mpfr_ff_f ("atan2", mpfr_atan2, false),
FUNC_mpfr_f_f ("atanh", mpfr_atanh, false),
FUNC_mpc_c_f ("cabs", mpc_abs, false),
FUNC_mpc_c_c ("cacos", mpc_acos, false),
FUNC_mpc_c_c ("cacosh", mpc_acosh, false),
FUNC_mpc_c_f ("carg", mpc_arg, false),
FUNC_mpc_c_c ("casin", mpc_asin, false),
FUNC_mpc_c_c ("casinh", mpc_asinh, false),
FUNC_mpc_c_c ("catan", mpc_atan, false),
FUNC_mpc_c_c ("catanh", mpc_atanh, false),
FUNC_mpfr_f_f ("cbrt", mpfr_cbrt, false),
FUNC_mpc_c_c ("ccos", mpc_cos, false),
FUNC_mpc_c_c ("ccosh", mpc_cosh, false),
FUNC_mpc_c_c ("cexp", mpc_exp, false),
FUNC_mpc_c_c ("clog", mpc_log, false),
FUNC_mpc_c_c ("clog10", mpc_log10, false),
FUNC_mpfr_f_f ("cos", mpfr_cos, false),
FUNC_mpfr_f_f ("cosh", mpfr_cosh, false),
FUNC ("cpow", ARGS4 (type_fp, type_fp, type_fp, type_fp),
RET2 (type_fp, type_fp), false, true, false,
CALC (mpc_cc_c, mpc_pow)),
FUNC_mpc_c_c ("csin", mpc_sin, false),
FUNC_mpc_c_c ("csinh", mpc_sinh, false),
FUNC_mpc_c_c ("csqrt", mpc_sqrt, false),
FUNC_mpc_c_c ("ctan", mpc_tan, false),
FUNC_mpc_c_c ("ctanh", mpc_tanh, false),
FUNC_mpfr_f_f ("erf", mpfr_erf, false),
FUNC_mpfr_f_f ("erfc", mpfr_erfc, false),
FUNC_mpfr_f_f ("exp", mpfr_exp, false),
FUNC_mpfr_f_f ("exp10", mpfr_exp10, false),
FUNC_mpfr_f_f ("exp2", mpfr_exp2, false),
FUNC_mpfr_f_f ("expm1", mpfr_expm1, false),
FUNC ("fma", ARGS3 (type_fp, type_fp, type_fp), RET1 (type_fp),
true, false, true, CALC (mpfr_fff_f, mpfr_fma)),
FUNC_mpfr_ff_f ("hypot", mpfr_hypot, false),
FUNC_mpfr_f_f ("j0", mpfr_j0, false),
FUNC_mpfr_f_f ("j1", mpfr_j1, false),
FUNC_mpfr_if_f ("jn", mpfr_jn, false),
FUNC ("lgamma", ARGS1 (type_fp), RET2 (type_fp, type_int), false, false,
false, CALC (mpfr_f_f1, mpfr_lgamma)),
FUNC_mpfr_f_f ("log", mpfr_log, false),
FUNC_mpfr_f_f ("log10", mpfr_log10, false),
FUNC_mpfr_f_f ("log1p", mpfr_log1p, false),
FUNC_mpfr_f_f ("log2", mpfr_log2, false),
FUNC_mpfr_ff_f ("pow", mpfr_pow, false),
FUNC_mpfr_f_f ("sin", mpfr_sin, false),
FUNC ("sincos", ARGS1 (type_fp), RET2 (type_fp, type_fp), false, false,
false, CALC (mpfr_f_11, mpfr_sin_cos)),
FUNC_mpfr_f_f ("sinh", mpfr_sinh, false),
FUNC_mpfr_f_f ("sqrt", mpfr_sqrt, true),
FUNC_mpfr_f_f ("tan", mpfr_tan, false),
FUNC_mpfr_f_f ("tanh", mpfr_tanh, false),
FUNC_mpfr_f_f ("tgamma", mpfr_gamma, false),
FUNC_mpfr_f_f ("y0", mpfr_y0, false),
FUNC_mpfr_f_f ("y1", mpfr_y1, false),
FUNC_mpfr_if_f ("yn", mpfr_yn, false),
};
/* Allocate memory, with error checking. */
static void *
xmalloc (size_t n)
{
void *p = malloc (n);
if (p == NULL)
error (EXIT_FAILURE, errno, "xmalloc failed");
return p;
}
static void *
xrealloc (void *p, size_t n)
{
p = realloc (p, n);
if (p == NULL)
error (EXIT_FAILURE, errno, "xrealloc failed");
return p;
}
static char *
xstrdup (const char *s)
{
char *p = strdup (s);
if (p == NULL)
error (EXIT_FAILURE, errno, "xstrdup failed");
return p;
}
/* Assert that the result of an MPFR operation was exact; that is,
that the returned ternary value was 0. */
static void
assert_exact (int i)
{
assert (i == 0);
}
/* Return the generic type of an argument or return value type T. */
static generic_value_type
generic_arg_ret_type (arg_ret_type t)
{
switch (t)
{
case type_fp:
return gtype_fp;
case type_int:
case type_long:
case type_long_long:
return gtype_int;
default:
abort ();
}
}
/* Free a generic_value *V. */
static void
generic_value_free (generic_value *v)
{
switch (v->type)
{
case gtype_fp:
mpfr_clear (v->value.f);
break;
case gtype_int:
mpz_clear (v->value.i);
break;
default:
abort ();
}
}
/* Copy a generic_value *SRC to *DEST. */
static void
generic_value_copy (generic_value *dest, const generic_value *src)
{
dest->type = src->type;
switch (src->type)
{
case gtype_fp:
mpfr_init (dest->value.f);
assert_exact (mpfr_set (dest->value.f, src->value.f, MPFR_RNDN));
break;
case gtype_int:
mpz_init (dest->value.i);
mpz_set (dest->value.i, src->value.i);
break;
default:
abort ();
}
}
/* Initialize data for floating-point formats. */
static void
init_fp_formats (void)
{
int global_max_exp = 0, global_min_subnorm_exp = 0;
for (fp_format f = fp_first_format; f < fp_num_formats; f++)
{
if (fp_formats[f].mant_dig + 2 > internal_precision)
internal_precision = fp_formats[f].mant_dig + 2;
if (fp_formats[f].max_exp > global_max_exp)
global_max_exp = fp_formats[f].max_exp;
int min_subnorm_exp = fp_formats[f].min_exp - fp_formats[f].mant_dig;
if (min_subnorm_exp < global_min_subnorm_exp)
global_min_subnorm_exp = min_subnorm_exp;
mpfr_init2 (fp_formats[f].max, fp_formats[f].mant_dig);
if (fp_formats[f].max_string != NULL)
{
char *ep = NULL;
assert_exact (mpfr_strtofr (fp_formats[f].max,
fp_formats[f].max_string,
&ep, 0, MPFR_RNDN));
assert (*ep == 0);
}
else
{
assert_exact (mpfr_set_ui_2exp (fp_formats[f].max, 1,
fp_formats[f].max_exp,
MPFR_RNDN));
mpfr_nextbelow (fp_formats[f].max);
}
mpfr_init2 (fp_formats[f].min, fp_formats[f].mant_dig);
assert_exact (mpfr_set_ui_2exp (fp_formats[f].min, 1,
fp_formats[f].min_exp - 1,
MPFR_RNDN));
mpfr_init2 (fp_formats[f].min_plus_half, fp_formats[f].mant_dig + 1);
assert_exact (mpfr_set (fp_formats[f].min_plus_half,
fp_formats[f].min, MPFR_RNDN));
mpfr_nextabove (fp_formats[f].min_plus_half);
mpfr_init2 (fp_formats[f].subnorm_max, fp_formats[f].mant_dig);
assert_exact (mpfr_set (fp_formats[f].subnorm_max, fp_formats[f].min,
MPFR_RNDN));
mpfr_nextbelow (fp_formats[f].subnorm_max);
mpfr_nextbelow (fp_formats[f].subnorm_max);
mpfr_init2 (fp_formats[f].subnorm_min, fp_formats[f].mant_dig);
assert_exact (mpfr_set_ui_2exp (fp_formats[f].subnorm_min, 1,
min_subnorm_exp, MPFR_RNDN));
}
mpfr_set_default_prec (internal_precision);
mpfr_init (global_max);
assert_exact (mpfr_set_ui_2exp (global_max, 1, global_max_exp, MPFR_RNDN));
mpfr_init (global_min);
assert_exact (mpfr_set_ui_2exp (global_min, 1, global_min_subnorm_exp - 1,
MPFR_RNDN));
}
/* Fill in mpfr_t values for special strings in input arguments. */
static size_t
special_fill_max (mpfr_t res0, mpfr_t res1 __attribute__ ((unused)),
fp_format format)
{
mpfr_init2 (res0, fp_formats[format].mant_dig);
assert_exact (mpfr_set (res0, fp_formats[format].max, MPFR_RNDN));
return 1;
}
static size_t
special_fill_minus_max (mpfr_t res0, mpfr_t res1 __attribute__ ((unused)),
fp_format format)
{
mpfr_init2 (res0, fp_formats[format].mant_dig);
assert_exact (mpfr_neg (res0, fp_formats[format].max, MPFR_RNDN));
return 1;
}
static size_t
special_fill_min (mpfr_t res0, mpfr_t res1 __attribute__ ((unused)),
fp_format format)
{
mpfr_init2 (res0, fp_formats[format].mant_dig);
assert_exact (mpfr_set (res0, fp_formats[format].min, MPFR_RNDN));
return 1;
}
static size_t
special_fill_minus_min (mpfr_t res0, mpfr_t res1 __attribute__ ((unused)),
fp_format format)
{
mpfr_init2 (res0, fp_formats[format].mant_dig);
assert_exact (mpfr_neg (res0, fp_formats[format].min, MPFR_RNDN));
return 1;
}
static size_t
special_fill_min_subnorm (mpfr_t res0, mpfr_t res1 __attribute__ ((unused)),
fp_format format)
{
mpfr_init2 (res0, fp_formats[format].mant_dig);
assert_exact (mpfr_set (res0, fp_formats[format].subnorm_min, MPFR_RNDN));
return 1;
}
static size_t
special_fill_minus_min_subnorm (mpfr_t res0,
mpfr_t res1 __attribute__ ((unused)),
fp_format format)
{
mpfr_init2 (res0, fp_formats[format].mant_dig);
assert_exact (mpfr_neg (res0, fp_formats[format].subnorm_min, MPFR_RNDN));
return 1;
}
static size_t
special_fill_min_subnorm_p120 (mpfr_t res0,
mpfr_t res1 __attribute__ ((unused)),
fp_format format)
{
mpfr_init2 (res0, fp_formats[format].mant_dig);
assert_exact (mpfr_mul_2ui (res0, fp_formats[format].subnorm_min,
120, MPFR_RNDN));
return 1;
}
static size_t
special_fill_pi (mpfr_t res0, mpfr_t res1, fp_format format)
{
mpfr_init2 (res0, fp_formats[format].mant_dig);
mpfr_const_pi (res0, MPFR_RNDU);
mpfr_init2 (res1, fp_formats[format].mant_dig);
mpfr_const_pi (res1, MPFR_RNDD);
return 2;
}
static size_t
special_fill_minus_pi (mpfr_t res0, mpfr_t res1, fp_format format)
{
mpfr_init2 (res0, fp_formats[format].mant_dig);
mpfr_const_pi (res0, MPFR_RNDU);
assert_exact (mpfr_neg (res0, res0, MPFR_RNDN));
mpfr_init2 (res1, fp_formats[format].mant_dig);
mpfr_const_pi (res1, MPFR_RNDD);
assert_exact (mpfr_neg (res1, res1, MPFR_RNDN));
return 2;
}
static size_t
special_fill_pi_2 (mpfr_t res0, mpfr_t res1, fp_format format)
{
mpfr_init2 (res0, fp_formats[format].mant_dig);
mpfr_const_pi (res0, MPFR_RNDU);
assert_exact (mpfr_div_ui (res0, res0, 2, MPFR_RNDN));
mpfr_init2 (res1, fp_formats[format].mant_dig);
mpfr_const_pi (res1, MPFR_RNDD);
assert_exact (mpfr_div_ui (res1, res1, 2, MPFR_RNDN));
return 2;
}
static size_t
special_fill_minus_pi_2 (mpfr_t res0, mpfr_t res1, fp_format format)
{
mpfr_init2 (res0, fp_formats[format].mant_dig);
mpfr_const_pi (res0, MPFR_RNDU);
assert_exact (mpfr_div_ui (res0, res0, 2, MPFR_RNDN));
assert_exact (mpfr_neg (res0, res0, MPFR_RNDN));
mpfr_init2 (res1, fp_formats[format].mant_dig);
mpfr_const_pi (res1, MPFR_RNDD);
assert_exact (mpfr_div_ui (res1, res1, 2, MPFR_RNDN));
assert_exact (mpfr_neg (res1, res1, MPFR_RNDN));
return 2;
}
static size_t
special_fill_pi_4 (mpfr_t res0, mpfr_t res1, fp_format format)
{
mpfr_init2 (res0, fp_formats[format].mant_dig);
assert_exact (mpfr_set_si (res0, 1, MPFR_RNDN));
mpfr_atan (res0, res0, MPFR_RNDU);
mpfr_init2 (res1, fp_formats[format].mant_dig);
assert_exact (mpfr_set_si (res1, 1, MPFR_RNDN));
mpfr_atan (res1, res1, MPFR_RNDD);
return 2;
}
static size_t
special_fill_pi_6 (mpfr_t res0, mpfr_t res1, fp_format format)
{
mpfr_init2 (res0, fp_formats[format].mant_dig);
assert_exact (mpfr_set_si_2exp (res0, 1, -1, MPFR_RNDN));
mpfr_asin (res0, res0, MPFR_RNDU);
mpfr_init2 (res1, fp_formats[format].mant_dig);
assert_exact (mpfr_set_si_2exp (res1, 1, -1, MPFR_RNDN));
mpfr_asin (res1, res1, MPFR_RNDD);
return 2;
}
static size_t
special_fill_minus_pi_6 (mpfr_t res0, mpfr_t res1, fp_format format)
{
mpfr_init2 (res0, fp_formats[format].mant_dig);
assert_exact (mpfr_set_si_2exp (res0, -1, -1, MPFR_RNDN));
mpfr_asin (res0, res0, MPFR_RNDU);
mpfr_init2 (res1, fp_formats[format].mant_dig);
assert_exact (mpfr_set_si_2exp (res1, -1, -1, MPFR_RNDN));
mpfr_asin (res1, res1, MPFR_RNDD);
return 2;
}
static size_t
special_fill_pi_3 (mpfr_t res0, mpfr_t res1, fp_format format)
{
mpfr_init2 (res0, fp_formats[format].mant_dig);
assert_exact (mpfr_set_si_2exp (res0, 1, -1, MPFR_RNDN));
mpfr_acos (res0, res0, MPFR_RNDU);
mpfr_init2 (res1, fp_formats[format].mant_dig);
assert_exact (mpfr_set_si_2exp (res1, 1, -1, MPFR_RNDN));
mpfr_acos (res1, res1, MPFR_RNDD);
return 2;
}
static size_t
special_fill_2pi_3 (mpfr_t res0, mpfr_t res1, fp_format format)
{
mpfr_init2 (res0, fp_formats[format].mant_dig);
assert_exact (mpfr_set_si_2exp (res0, -1, -1, MPFR_RNDN));
mpfr_acos (res0, res0, MPFR_RNDU);
mpfr_init2 (res1, fp_formats[format].mant_dig);
assert_exact (mpfr_set_si_2exp (res1, -1, -1, MPFR_RNDN));
mpfr_acos (res1, res1, MPFR_RNDD);
return 2;
}
static size_t
special_fill_2pi (mpfr_t res0, mpfr_t res1, fp_format format)
{
mpfr_init2 (res0, fp_formats[format].mant_dig);
mpfr_const_pi (res0, MPFR_RNDU);
assert_exact (mpfr_mul_ui (res0, res0, 2, MPFR_RNDN));
mpfr_init2 (res1, fp_formats[format].mant_dig);
mpfr_const_pi (res1, MPFR_RNDD);
assert_exact (mpfr_mul_ui (res1, res1, 2, MPFR_RNDN));
return 2;
}
static size_t
special_fill_e (mpfr_t res0, mpfr_t res1, fp_format format)
{
mpfr_init2 (res0, fp_formats[format].mant_dig);
assert_exact (mpfr_set_si (res0, 1, MPFR_RNDN));
mpfr_exp (res0, res0, MPFR_RNDU);
mpfr_init2 (res1, fp_formats[format].mant_dig);
assert_exact (mpfr_set_si (res1, 1, MPFR_RNDN));
mpfr_exp (res1, res1, MPFR_RNDD);
return 2;
}
static size_t
special_fill_1_e (mpfr_t res0, mpfr_t res1, fp_format format)
{
mpfr_init2 (res0, fp_formats[format].mant_dig);
assert_exact (mpfr_set_si (res0, -1, MPFR_RNDN));
mpfr_exp (res0, res0, MPFR_RNDU);
mpfr_init2 (res1, fp_formats[format].mant_dig);
assert_exact (mpfr_set_si (res1, -1, MPFR_RNDN));
mpfr_exp (res1, res1, MPFR_RNDD);
return 2;
}
static size_t
special_fill_e_minus_1 (mpfr_t res0, mpfr_t res1, fp_format format)
{
mpfr_init2 (res0, fp_formats[format].mant_dig);
assert_exact (mpfr_set_si (res0, 1, MPFR_RNDN));
mpfr_expm1 (res0, res0, MPFR_RNDU);
mpfr_init2 (res1, fp_formats[format].mant_dig);
assert_exact (mpfr_set_si (res1, 1, MPFR_RNDN));
mpfr_expm1 (res1, res1, MPFR_RNDD);
return 2;
}
/* A special string accepted in input arguments. */
typedef struct
{
/* The string. */
const char *str;
/* The function that interprets it for a given floating-point
format, filling in up to two mpfr_t values and returning the
number of values filled. */
size_t (*func) (mpfr_t, mpfr_t, fp_format);
} special_real_input;
/* List of special strings accepted in input arguments. */
static const special_real_input special_real_inputs[] =
{
{ "max", special_fill_max },
{ "-max", special_fill_minus_max },
{ "min", special_fill_min },
{ "-min", special_fill_minus_min },
{ "min_subnorm", special_fill_min_subnorm },
{ "-min_subnorm", special_fill_minus_min_subnorm },
{ "min_subnorm_p120", special_fill_min_subnorm_p120 },
{ "pi", special_fill_pi },
{ "-pi", special_fill_minus_pi },
{ "pi/2", special_fill_pi_2 },
{ "-pi/2", special_fill_minus_pi_2 },
{ "pi/4", special_fill_pi_4 },
{ "pi/6", special_fill_pi_6 },
{ "-pi/6", special_fill_minus_pi_6 },
{ "pi/3", special_fill_pi_3 },
{ "2pi/3", special_fill_2pi_3 },
{ "2pi", special_fill_2pi },
{ "e", special_fill_e },
{ "1/e", special_fill_1_e },
{ "e-1", special_fill_e_minus_1 },
};
/* Given a real number R computed in round-to-zero mode, set the
lowest bit as a sticky bit if INEXACT, and saturate the exponent
range for very large or small values. */
static void
adjust_real (mpfr_t r, bool inexact)
{
if (!inexact)
return;
/* NaNs are exact, as are infinities in round-to-zero mode. */
assert (mpfr_number_p (r));
if (mpfr_cmpabs (r, global_min) < 0)
assert_exact (mpfr_copysign (r, global_min, r, MPFR_RNDN));
else if (mpfr_cmpabs (r, global_max) > 0)
assert_exact (mpfr_copysign (r, global_max, r, MPFR_RNDN));
else
{
mpz_t tmp;
mpz_init (tmp);
mpfr_exp_t e = mpfr_get_z_2exp (tmp, r);
if (mpz_sgn (tmp) < 0)
{
mpz_neg (tmp, tmp);
mpz_setbit (tmp, 0);
mpz_neg (tmp, tmp);
}
else
mpz_setbit (tmp, 0);
assert_exact (mpfr_set_z_2exp (r, tmp, e, MPFR_RNDN));
mpz_clear (tmp);
}
}
/* Given a finite real number R with sticky bit, compute the roundings
to FORMAT in each rounding mode, storing the results in RES, the
before-rounding exceptions in EXC_BEFORE and the after-rounding
exceptions in EXC_AFTER. */
static void
round_real (mpfr_t res[rm_num_modes],
unsigned int exc_before[rm_num_modes],
unsigned int exc_after[rm_num_modes],
mpfr_t r, fp_format format)
{
assert (mpfr_number_p (r));
for (rounding_mode m = rm_first_mode; m < rm_num_modes; m++)
{
mpfr_init2 (res[m], fp_formats[format].mant_dig);
exc_before[m] = exc_after[m] = 0;
bool inexact = mpfr_set (res[m], r, rounding_modes[m].mpfr_mode);
if (mpfr_cmpabs (res[m], fp_formats[format].max) > 0)
{
inexact = true;
exc_before[m] |= 1U << exc_overflow;
exc_after[m] |= 1U << exc_overflow;
bool overflow_inf;
switch (m)
{
case rm_tonearest:
overflow_inf = true;
break;
case rm_towardzero:
overflow_inf = false;
break;
case rm_downward:
overflow_inf = mpfr_signbit (res[m]);
break;
case rm_upward:
overflow_inf = !mpfr_signbit (res[m]);
break;
default:
abort ();
}
if (overflow_inf)
mpfr_set_inf (res[m], mpfr_signbit (res[m]) ? -1 : 1);
else
assert_exact (mpfr_copysign (res[m], fp_formats[format].max,
res[m], MPFR_RNDN));
}
if (mpfr_cmpabs (r, fp_formats[format].min) < 0)
{
/* Tiny before rounding; may or may not be tiny after
rounding, and underflow applies only if also inexact
around rounding to a possibly subnormal value. */
bool tiny_after_rounding
= mpfr_cmpabs (res[m], fp_formats[format].min) < 0;
/* To round to a possibly subnormal value, and determine
inexactness as a subnormal in the process, scale up and
round to integer, then scale back down. */
mpfr_t tmp;
mpfr_init (tmp);
assert_exact (mpfr_mul_2si (tmp, r, (fp_formats[format].mant_dig
- fp_formats[format].min_exp),
MPFR_RNDN));
int rint_res = mpfr_rint (tmp, tmp, rounding_modes[m].mpfr_mode);
/* The integer must be representable. */
assert (rint_res == 0 || rint_res == 2 || rint_res == -2);
/* If rounding to full precision was inexact, so must
rounding to subnormal precision be inexact. */
if (inexact)
assert (rint_res != 0);
else
inexact = rint_res != 0;
assert_exact (mpfr_mul_2si (res[m], tmp,
(fp_formats[format].min_exp
- fp_formats[format].mant_dig),
MPFR_RNDN));
mpfr_clear (tmp);
if (inexact)
{
exc_before[m] |= 1U << exc_underflow;
if (tiny_after_rounding)
exc_after[m] |= 1U << exc_underflow;
}
}
if (inexact)
{
exc_before[m] |= 1U << exc_inexact;
exc_after[m] |= 1U << exc_inexact;
}
}
}
/* Handle the input argument at ARG (NUL-terminated), updating the
lists of test inputs in IT accordingly. NUM_PREV_ARGS arguments
are already in those lists. If EXACT_ARGS, interpret a value given
as a floating-point constant exactly (it must be exact for some
supported format) rather than rounding up and down. The argument,
of type GTYPE, comes from file FILENAME, line LINENO. */
static void
handle_input_arg (const char *arg, input_test *it, size_t num_prev_args,
generic_value_type gtype, bool exact_args,
const char *filename, unsigned int lineno)
{
size_t num_values = 0;
generic_value values[2 * fp_num_formats];
bool check_empty_list = false;
switch (gtype)
{
case gtype_fp:
for (fp_format f = fp_first_format; f < fp_num_formats; f++)
{
mpfr_t extra_values[2];
size_t num_extra_values = 0;
for (size_t i = 0; i < ARRAY_SIZE (special_real_inputs); i++)
{
if (strcmp (arg, special_real_inputs[i].str) == 0)
{
num_extra_values
= special_real_inputs[i].func (extra_values[0],
extra_values[1], f);
assert (num_extra_values > 0
&& num_extra_values <= ARRAY_SIZE (extra_values));
break;
}
}
if (num_extra_values == 0)
{
mpfr_t tmp;
char *ep;
if (exact_args)
check_empty_list = true;
mpfr_init (tmp);
bool inexact = mpfr_strtofr (tmp, arg, &ep, 0, MPFR_RNDZ);
if (*ep != 0 || !mpfr_number_p (tmp))
error_at_line (EXIT_FAILURE, 0, filename, lineno,
"bad floating-point argument: '%s'", arg);
adjust_real (tmp, inexact);
mpfr_t rounded[rm_num_modes];
unsigned int exc_before[rm_num_modes];
unsigned int exc_after[rm_num_modes];
round_real (rounded, exc_before, exc_after, tmp, f);
mpfr_clear (tmp);
if (mpfr_number_p (rounded[rm_upward])
&& (!exact_args || mpfr_equal_p (rounded[rm_upward],
rounded[rm_downward])))
{
mpfr_init2 (extra_values[num_extra_values],
fp_formats[f].mant_dig);
assert_exact (mpfr_set (extra_values[num_extra_values],
rounded[rm_upward], MPFR_RNDN));
num_extra_values++;
}
if (mpfr_number_p (rounded[rm_downward]) && !exact_args)
{
mpfr_init2 (extra_values[num_extra_values],
fp_formats[f].mant_dig);
assert_exact (mpfr_set (extra_values[num_extra_values],
rounded[rm_downward], MPFR_RNDN));
num_extra_values++;
}
for (rounding_mode m = rm_first_mode; m < rm_num_modes; m++)
mpfr_clear (rounded[m]);
}
for (size_t i = 0; i < num_extra_values; i++)
{
bool found = false;
for (size_t j = 0; j < num_values; j++)
{
if (mpfr_equal_p (values[j].value.f, extra_values[i])
&& ((mpfr_signbit (values[j].value.f) != 0)
== (mpfr_signbit (extra_values[i]) != 0)))
{
found = true;
break;
}
}
if (!found)
{
assert (num_values < ARRAY_SIZE (values));
values[num_values].type = gtype_fp;
mpfr_init2 (values[num_values].value.f,
fp_formats[f].mant_dig);
assert_exact (mpfr_set (values[num_values].value.f,
extra_values[i], MPFR_RNDN));
num_values++;
}
mpfr_clear (extra_values[i]);
}
}
break;
case gtype_int:
num_values = 1;
values[0].type = gtype_int;
int ret = mpz_init_set_str (values[0].value.i, arg, 0);
if (ret != 0)
error_at_line (EXIT_FAILURE, 0, filename, lineno,
"bad integer argument: '%s'", arg);
break;
default:
abort ();
}
if (check_empty_list && num_values == 0)
error_at_line (EXIT_FAILURE, 0, filename, lineno,
"floating-point argument not exact for any format: '%s'",
arg);
assert (num_values > 0 && num_values <= ARRAY_SIZE (values));
if (it->num_input_cases >= SIZE_MAX / num_values)
error_at_line (EXIT_FAILURE, 0, filename, lineno, "too many input cases");
generic_value **old_inputs = it->inputs;
size_t new_num_input_cases = it->num_input_cases * num_values;
generic_value **new_inputs = xmalloc (new_num_input_cases
* sizeof (new_inputs[0]));
for (size_t i = 0; i < it->num_input_cases; i++)
{
for (size_t j = 0; j < num_values; j++)
{
size_t idx = i * num_values + j;
new_inputs[idx] = xmalloc ((num_prev_args + 1)
* sizeof (new_inputs[idx][0]));
for (size_t k = 0; k < num_prev_args; k++)
generic_value_copy (&new_inputs[idx][k], &old_inputs[i][k]);
generic_value_copy (&new_inputs[idx][num_prev_args], &values[j]);
}
for (size_t j = 0; j < num_prev_args; j++)
generic_value_free (&old_inputs[i][j]);
free (old_inputs[i]);
}
free (old_inputs);
for (size_t i = 0; i < num_values; i++)
generic_value_free (&values[i]);
it->inputs = new_inputs;
it->num_input_cases = new_num_input_cases;
}
/* Handle the input flag ARG (NUL-terminated), storing it in *FLAG.
The flag comes from file FILENAME, line LINENO. */
static void
handle_input_flag (char *arg, input_flag *flag,
const char *filename, unsigned int lineno)
{
char *ep = strchr (arg, ':');
if (ep == NULL)
{
ep = strchr (arg, 0);
assert (ep != NULL);
}
char c = *ep;
*ep = 0;
bool found = false;
for (input_flag_type i = flag_first_flag; i <= num_input_flag_types; i++)
{
if (strcmp (arg, input_flags[i]) == 0)
{
found = true;
flag->type = i;
break;
}
}
if (!found)
error_at_line (EXIT_FAILURE, 0, filename, lineno, "unknown flag: '%s'",
arg);
*ep = c;
if (c == 0)
flag->cond = NULL;
else
flag->cond = xstrdup (ep);
}
/* Add the test LINE (file FILENAME, line LINENO) to the test
data. */
static void
add_test (char *line, const char *filename, unsigned int lineno)
{
size_t num_tokens = 1;
char *p = line;
while ((p = strchr (p, ' ')) != NULL)
{
num_tokens++;
p++;
}
if (num_tokens < 2)
error_at_line (EXIT_FAILURE, 0, filename, lineno,
"line too short: '%s'", line);
p = strchr (line, ' ');
size_t func_name_len = p - line;
for (size_t i = 0; i < ARRAY_SIZE (test_functions); i++)
{
if (func_name_len == strlen (test_functions[i].name)
&& strncmp (line, test_functions[i].name, func_name_len) == 0)
{
test_function *tf = &test_functions[i];
if (num_tokens < 1 + tf->num_args)
error_at_line (EXIT_FAILURE, 0, filename, lineno,
"line too short: '%s'", line);
if (tf->num_tests == tf->num_tests_alloc)
{
tf->num_tests_alloc = 2 * tf->num_tests_alloc + 16;
tf->tests
= xrealloc (tf->tests,
tf->num_tests_alloc * sizeof (tf->tests[0]));
}
input_test *it = &tf->tests[tf->num_tests];
it->line = line;
it->num_input_cases = 1;
it->inputs = xmalloc (sizeof (it->inputs[0]));
it->inputs[0] = NULL;
it->old_output = NULL;
p++;
for (size_t j = 0; j < tf->num_args; j++)
{
char *ep = strchr (p, ' ');
if (ep == NULL)
{
ep = strchr (p, '\n');
assert (ep != NULL);
}
if (ep == p)
error_at_line (EXIT_FAILURE, 0, filename, lineno,
"empty token in line: '%s'", line);
for (char *t = p; t < ep; t++)
if (isspace ((unsigned char) *t))
error_at_line (EXIT_FAILURE, 0, filename, lineno,
"whitespace in token in line: '%s'", line);
char c = *ep;
*ep = 0;
handle_input_arg (p, it, j,
generic_arg_ret_type (tf->arg_types[j]),
tf->exact_args, filename, lineno);
*ep = c;
p = ep + 1;
}
it->num_flags = num_tokens - 1 - tf->num_args;
it->flags = xmalloc (it->num_flags * sizeof (it->flags[0]));
for (size_t j = 0; j < it->num_flags; j++)
{
char *ep = strchr (p, ' ');
if (ep == NULL)
{
ep = strchr (p, '\n');
assert (ep != NULL);
}
if (ep == p)
error_at_line (EXIT_FAILURE, 0, filename, lineno,
"empty token in line: '%s'", line);
for (char *t = p; t < ep; t++)
if (isspace ((unsigned char) *t))
error_at_line (EXIT_FAILURE, 0, filename, lineno,
"whitespace in token in line: '%s'", line);
char c = *ep;
*ep = 0;
handle_input_flag (p, &it->flags[j], filename, lineno);
*ep = c;
p = ep + 1;
}
assert (*p == 0);
tf->num_tests++;
return;
}
}
error_at_line (EXIT_FAILURE, 0, filename, lineno,
"unknown function in line: '%s'", line);
}
/* Read in the test input data from FILENAME. */
static void
read_input (const char *filename)
{
FILE *fp = fopen (filename, "r");
if (fp == NULL)
error (EXIT_FAILURE, errno, "open '%s'", filename);
unsigned int lineno = 0;
for (;;)
{
size_t size = 0;
char *line = NULL;
ssize_t ret = getline (&line, &size, fp);
if (ret == -1)
break;
lineno++;
if (line[0] == '#' || line[0] == '\n')
continue;
add_test (line, filename, lineno);
}
if (ferror (fp))
error (EXIT_FAILURE, errno, "read from '%s'", filename);
if (fclose (fp) != 0)
error (EXIT_FAILURE, errno, "close '%s'", filename);
}
/* Calculate the generic results (round-to-zero with sticky bit) for
the function described by CALC, with inputs INPUTS, if MODE is
rm_towardzero; for other modes, calculate results in that mode,
which must be exact zero results. */
static void
calc_generic_results (generic_value *outputs, generic_value *inputs,
const func_calc_desc *calc, rounding_mode mode)
{
bool inexact;
int mpc_ternary;
mpc_t ci1, ci2, co;
mpfr_rnd_t mode_mpfr = rounding_modes[mode].mpfr_mode;
mpc_rnd_t mode_mpc = rounding_modes[mode].mpc_mode;
switch (calc->method)
{
case mpfr_f_f:
assert (inputs[0].type == gtype_fp);
outputs[0].type = gtype_fp;
mpfr_init (outputs[0].value.f);
inexact = calc->func.mpfr_f_f (outputs[0].value.f, inputs[0].value.f,
mode_mpfr);
if (mode != rm_towardzero)
assert (!inexact && mpfr_zero_p (outputs[0].value.f));
adjust_real (outputs[0].value.f, inexact);
break;
case mpfr_ff_f:
assert (inputs[0].type == gtype_fp);
assert (inputs[1].type == gtype_fp);
outputs[0].type = gtype_fp;
mpfr_init (outputs[0].value.f);
inexact = calc->func.mpfr_ff_f (outputs[0].value.f, inputs[0].value.f,
inputs[1].value.f, mode_mpfr);
if (mode != rm_towardzero)
assert (!inexact && mpfr_zero_p (outputs[0].value.f));
adjust_real (outputs[0].value.f, inexact);
break;
case mpfr_fff_f:
assert (inputs[0].type == gtype_fp);
assert (inputs[1].type == gtype_fp);
assert (inputs[2].type == gtype_fp);
outputs[0].type = gtype_fp;
mpfr_init (outputs[0].value.f);
inexact = calc->func.mpfr_fff_f (outputs[0].value.f, inputs[0].value.f,
inputs[1].value.f, inputs[2].value.f,
mode_mpfr);
if (mode != rm_towardzero)
assert (!inexact && mpfr_zero_p (outputs[0].value.f));
adjust_real (outputs[0].value.f, inexact);
break;
case mpfr_f_f1:
assert (inputs[0].type == gtype_fp);
outputs[0].type = gtype_fp;
outputs[1].type = gtype_int;
mpfr_init (outputs[0].value.f);
int i = 0;
inexact = calc->func.mpfr_f_f1 (outputs[0].value.f, &i,
inputs[0].value.f, mode_mpfr);
if (mode != rm_towardzero)
assert (!inexact && mpfr_zero_p (outputs[0].value.f));
adjust_real (outputs[0].value.f, inexact);
mpz_init_set_si (outputs[1].value.i, i);
break;
case mpfr_if_f:
assert (inputs[0].type == gtype_int);
assert (inputs[1].type == gtype_fp);
outputs[0].type = gtype_fp;
mpfr_init (outputs[0].value.f);
assert (mpz_fits_slong_p (inputs[0].value.i));
long l = mpz_get_si (inputs[0].value.i);
inexact = calc->func.mpfr_if_f (outputs[0].value.f, l,
inputs[1].value.f, mode_mpfr);
if (mode != rm_towardzero)
assert (!inexact && mpfr_zero_p (outputs[0].value.f));
adjust_real (outputs[0].value.f, inexact);
break;
case mpfr_f_11:
assert (inputs[0].type == gtype_fp);
outputs[0].type = gtype_fp;
mpfr_init (outputs[0].value.f);
outputs[1].type = gtype_fp;
mpfr_init (outputs[1].value.f);
int comb_ternary = calc->func.mpfr_f_11 (outputs[0].value.f,
outputs[1].value.f,
inputs[0].value.f,
mode_mpfr);
if (mode != rm_towardzero)
assert (((comb_ternary & 0x3) == 0
&& mpfr_zero_p (outputs[0].value.f))
|| ((comb_ternary & 0xc) == 0
&& mpfr_zero_p (outputs[1].value.f)));
adjust_real (outputs[0].value.f, (comb_ternary & 0x3) != 0);
adjust_real (outputs[1].value.f, (comb_ternary & 0xc) != 0);
break;
case mpc_c_f:
assert (inputs[0].type == gtype_fp);
assert (inputs[1].type == gtype_fp);
outputs[0].type = gtype_fp;
mpfr_init (outputs[0].value.f);
mpc_init2 (ci1, internal_precision);
assert_exact (mpc_set_fr_fr (ci1, inputs[0].value.f, inputs[1].value.f,
MPC_RNDNN));
inexact = calc->func.mpc_c_f (outputs[0].value.f, ci1, mode_mpfr);
if (mode != rm_towardzero)
assert (!inexact && mpfr_zero_p (outputs[0].value.f));
adjust_real (outputs[0].value.f, inexact);
mpc_clear (ci1);
break;
case mpc_c_c:
assert (inputs[0].type == gtype_fp);
assert (inputs[1].type == gtype_fp);
outputs[0].type = gtype_fp;
mpfr_init (outputs[0].value.f);
outputs[1].type = gtype_fp;
mpfr_init (outputs[1].value.f);
mpc_init2 (ci1, internal_precision);
mpc_init2 (co, internal_precision);
assert_exact (mpc_set_fr_fr (ci1, inputs[0].value.f, inputs[1].value.f,
MPC_RNDNN));
mpc_ternary = calc->func.mpc_c_c (co, ci1, mode_mpc);
if (mode != rm_towardzero)
assert ((!MPC_INEX_RE (mpc_ternary)
&& mpfr_zero_p (mpc_realref (co)))
|| (!MPC_INEX_IM (mpc_ternary)
&& mpfr_zero_p (mpc_imagref (co))));
assert_exact (mpfr_set (outputs[0].value.f, mpc_realref (co),
MPFR_RNDN));
assert_exact (mpfr_set (outputs[1].value.f, mpc_imagref (co),
MPFR_RNDN));
adjust_real (outputs[0].value.f, MPC_INEX_RE (mpc_ternary));
adjust_real (outputs[1].value.f, MPC_INEX_IM (mpc_ternary));
mpc_clear (ci1);
mpc_clear (co);
break;
case mpc_cc_c:
assert (inputs[0].type == gtype_fp);
assert (inputs[1].type == gtype_fp);
assert (inputs[2].type == gtype_fp);
assert (inputs[3].type == gtype_fp);
outputs[0].type = gtype_fp;
mpfr_init (outputs[0].value.f);
outputs[1].type = gtype_fp;
mpfr_init (outputs[1].value.f);
mpc_init2 (ci1, internal_precision);
mpc_init2 (ci2, internal_precision);
mpc_init2 (co, internal_precision);
assert_exact (mpc_set_fr_fr (ci1, inputs[0].value.f, inputs[1].value.f,
MPC_RNDNN));
assert_exact (mpc_set_fr_fr (ci2, inputs[2].value.f, inputs[3].value.f,
MPC_RNDNN));
mpc_ternary = calc->func.mpc_cc_c (co, ci1, ci2, mode_mpc);
if (mode != rm_towardzero)
assert ((!MPC_INEX_RE (mpc_ternary)
&& mpfr_zero_p (mpc_realref (co)))
|| (!MPC_INEX_IM (mpc_ternary)
&& mpfr_zero_p (mpc_imagref (co))));
assert_exact (mpfr_set (outputs[0].value.f, mpc_realref (co),
MPFR_RNDN));
assert_exact (mpfr_set (outputs[1].value.f, mpc_imagref (co),
MPFR_RNDN));
adjust_real (outputs[0].value.f, MPC_INEX_RE (mpc_ternary));
adjust_real (outputs[1].value.f, MPC_INEX_IM (mpc_ternary));
mpc_clear (ci1);
mpc_clear (ci2);
mpc_clear (co);
break;
default:
abort ();
}
}
/* Return the number of bits for integer type TYPE, where "long" has
LONG_BITS bits (32 or 64). */
static int
int_type_bits (arg_ret_type type, int long_bits)
{
assert (long_bits == 32 || long_bits == 64);
switch (type)
{
case type_int:
return 32;
break;
case type_long:
return long_bits;
break;
case type_long_long:
return 64;
break;
default:
abort ();
}
}
/* Check whether an integer Z fits a given type TYPE, where "long" has
LONG_BITS bits (32 or 64). */
static bool
int_fits_type (mpz_t z, arg_ret_type type, int long_bits)
{
int bits = int_type_bits (type, long_bits);
bool ret = true;
mpz_t t;
mpz_init (t);
mpz_ui_pow_ui (t, 2, bits - 1);
if (mpz_cmp (z, t) >= 0)
ret = false;
mpz_neg (t, t);
if (mpz_cmp (z, t) < 0)
ret = false;
mpz_clear (t);
return ret;
}
/* Print a generic value V to FP (name FILENAME), preceded by a space,
for type TYPE, LONG_BITS bits per long, printing " IGNORE" instead
if IGNORE. */
static void
output_generic_value (FILE *fp, const char *filename, const generic_value *v,
bool ignore, arg_ret_type type, int long_bits)
{
if (ignore)
{
if (fputs (" IGNORE", fp) < 0)
error (EXIT_FAILURE, errno, "write to '%s'", filename);
return;
}
assert (v->type == generic_arg_ret_type (type));
const char *suffix;
switch (type)
{
case type_fp:
suffix = "";
break;
case type_int:
suffix = "";
break;
case type_long:
suffix = "L";
break;
case type_long_long:
suffix = "LL";
break;
default:
abort ();
}
switch (v->type)
{
case gtype_fp:
if (mpfr_inf_p (v->value.f))
{
if (fputs ((mpfr_signbit (v->value.f)
? " minus_infty" : " plus_infty"), fp) < 0)
error (EXIT_FAILURE, errno, "write to '%s'", filename);
}
else
{
assert (mpfr_number_p (v->value.f));
if (mpfr_fprintf (fp, " %Ra%s", v->value.f, suffix) < 0)
error (EXIT_FAILURE, errno, "mpfr_fprintf to '%s'", filename);
}
break;
case gtype_int: ;
int bits = int_type_bits (type, long_bits);
mpz_t tmp;
mpz_init (tmp);
mpz_ui_pow_ui (tmp, 2, bits - 1);
mpz_neg (tmp, tmp);
if (mpz_cmp (v->value.i, tmp) == 0)
{
mpz_add_ui (tmp, tmp, 1);
if (mpfr_fprintf (fp, " (%Zd%s-1)", tmp, suffix) < 0)
error (EXIT_FAILURE, errno, "mpfr_fprintf to '%s'", filename);
}
else
{
if (mpfr_fprintf (fp, " %Zd%s", v->value.i, suffix) < 0)
error (EXIT_FAILURE, errno, "mpfr_fprintf to '%s'", filename);
}
mpz_clear (tmp);
break;
default:
abort ();
}
}
/* Generate test output to FP (name FILENAME) for test function TF,
input test IT, choice of input values INPUTS. */
static void
output_for_one_input_case (FILE *fp, const char *filename, test_function *tf,
input_test *it, generic_value *inputs)
{
bool long_bits_matters = false;
bool fits_long32 = true;
for (size_t i = 0; i < tf->num_args; i++)
{
generic_value_type gtype = generic_arg_ret_type (tf->arg_types[i]);
assert (inputs[i].type == gtype);
if (gtype == gtype_int)
{
bool fits_64 = int_fits_type (inputs[i].value.i, tf->arg_types[i],
64);
if (!fits_64)
return;
if (tf->arg_types[i] == type_long
&& !int_fits_type (inputs[i].value.i, tf->arg_types[i], 32))
{
long_bits_matters = true;
fits_long32 = false;
}
}
}
generic_value generic_outputs[MAX_NRET];
calc_generic_results (generic_outputs, inputs, &tf->calc, rm_towardzero);
bool ignore_output_long32[MAX_NRET] = { false };
bool ignore_output_long64[MAX_NRET] = { false };
for (size_t i = 0; i < tf->num_ret; i++)
{
assert (generic_outputs[i].type
== generic_arg_ret_type (tf->ret_types[i]));
switch (generic_outputs[i].type)
{
case gtype_fp:
if (!mpfr_number_p (generic_outputs[i].value.f))
goto out; /* Result is NaN or exact infinity. */
break;
case gtype_int:
ignore_output_long32[i] = !int_fits_type (generic_outputs[i].value.i,
tf->ret_types[i], 32);
ignore_output_long64[i] = !int_fits_type (generic_outputs[i].value.i,
tf->ret_types[i], 64);
if (ignore_output_long32[i] != ignore_output_long64[i])
long_bits_matters = true;
break;
default:
abort ();
}
}
/* Iterate over relevant sizes of long and floating-point formats. */
for (int long_bits = 32; long_bits <= 64; long_bits += 32)
{
if (long_bits == 32 && !fits_long32)
continue;
if (long_bits == 64 && !long_bits_matters)
continue;
const char *long_cond;
if (long_bits_matters)
long_cond = (long_bits == 32 ? ":long32" : ":long64");
else
long_cond = "";
bool *ignore_output = (long_bits == 32
? ignore_output_long32
: ignore_output_long64);
for (fp_format f = fp_first_format; f < fp_num_formats; f++)
{
bool fits = true;
mpfr_t res[rm_num_modes];
unsigned int exc_before[rm_num_modes];
unsigned int exc_after[rm_num_modes];
for (size_t i = 0; i < tf->num_args; i++)
{
if (inputs[i].type == gtype_fp)
{
round_real (res, exc_before, exc_after, inputs[i].value.f,
f);
if (!mpfr_equal_p (res[rm_tonearest], inputs[i].value.f))
fits = false;
for (rounding_mode m = rm_first_mode; m < rm_num_modes; m++)
mpfr_clear (res[m]);
if (!fits)
break;
}
}
if (!fits)
continue;
/* The inputs fit this type, so compute the ideal outputs
and exceptions. */
mpfr_t all_res[MAX_NRET][rm_num_modes];
unsigned int all_exc_before[MAX_NRET][rm_num_modes];
unsigned int all_exc_after[MAX_NRET][rm_num_modes];
unsigned int merged_exc_before[rm_num_modes] = { 0 };
unsigned int merged_exc_after[rm_num_modes] = { 0 };
/* For functions not exactly determined, track whether
underflow is required (some result is inexact, and
magnitude does not exceed the greatest magnitude
subnormal), and permitted (not an exact zero, and
magnitude does not exceed the least magnitude
normal). */
bool must_underflow = false;
bool may_underflow = false;
for (size_t i = 0; i < tf->num_ret; i++)
{
switch (generic_outputs[i].type)
{
case gtype_fp:
round_real (all_res[i], all_exc_before[i], all_exc_after[i],
generic_outputs[i].value.f, f);
for (rounding_mode m = rm_first_mode; m < rm_num_modes; m++)
{
merged_exc_before[m] |= all_exc_before[i][m];
merged_exc_after[m] |= all_exc_after[i][m];
if (!tf->exact)
{
must_underflow
|= ((all_exc_before[i][m]
& (1U << exc_inexact)) != 0
&& (mpfr_cmpabs (generic_outputs[i].value.f,
fp_formats[f].subnorm_max)
<= 0));
may_underflow
|= (!mpfr_zero_p (generic_outputs[i].value.f)
&& (mpfr_cmpabs (generic_outputs[i].value.f,
fp_formats[f].min_plus_half)
<= 0));
}
/* If the result is an exact zero, the sign may
depend on the rounding mode, so recompute it
directly in that mode. */
if (mpfr_zero_p (all_res[i][m])
&& (all_exc_before[i][m] & (1U << exc_inexact)) == 0)
{
generic_value outputs_rm[MAX_NRET];
calc_generic_results (outputs_rm, inputs,
&tf->calc, m);
assert_exact (mpfr_set (all_res[i][m],
outputs_rm[i].value.f,
MPFR_RNDN));
for (size_t j = 0; j < tf->num_ret; j++)
generic_value_free (&outputs_rm[j]);
}
}
break;
case gtype_int:
if (ignore_output[i])
for (rounding_mode m = rm_first_mode;
m < rm_num_modes;
m++)
{
merged_exc_before[m] |= 1U << exc_invalid;
merged_exc_after[m] |= 1U << exc_invalid;
}
break;
default:
abort ();
}
}
assert (may_underflow || !must_underflow);
for (rounding_mode m = rm_first_mode; m < rm_num_modes; m++)
{
bool before_after_matters
= tf->exact && merged_exc_before[m] != merged_exc_after[m];
if (before_after_matters)
{
assert ((merged_exc_before[m] ^ merged_exc_after[m])
== (1U << exc_underflow));
assert ((merged_exc_before[m] & (1U << exc_underflow)) != 0);
}
unsigned int merged_exc = merged_exc_before[m];
if (fprintf (fp, "= %s %s %s%s", tf->name,
rounding_modes[m].name, fp_formats[f].name,
long_cond) < 0)
error (EXIT_FAILURE, errno, "write to '%s'", filename);
/* Print inputs. */
for (size_t i = 0; i < tf->num_args; i++)
output_generic_value (fp, filename, &inputs[i], false,
tf->arg_types[i], long_bits);
if (fputs (" :", fp) < 0)
error (EXIT_FAILURE, errno, "write to '%s'", filename);
/* Print outputs. */
bool must_erange = false;
bool some_underflow_zero = false;
for (size_t i = 0; i < tf->num_ret; i++)
{
generic_value g;
g.type = generic_outputs[i].type;
switch (g.type)
{
case gtype_fp:
if (mpfr_inf_p (all_res[i][m])
&& (all_exc_before[i][m]
& (1U << exc_overflow)) != 0)
must_erange = true;
if (mpfr_zero_p (all_res[i][m])
&& (tf->exact
|| mpfr_zero_p (all_res[i][rm_tonearest]))
&& (all_exc_before[i][m]
& (1U << exc_underflow)) != 0)
must_erange = true;
if (mpfr_zero_p (all_res[i][rm_towardzero])
&& (all_exc_before[i][m]
& (1U << exc_underflow)) != 0)
some_underflow_zero = true;
mpfr_init2 (g.value.f, fp_formats[f].mant_dig);
assert_exact (mpfr_set (g.value.f, all_res[i][m],
MPFR_RNDN));
break;
case gtype_int:
mpz_init (g.value.i);
mpz_set (g.value.i, generic_outputs[i].value.i);
break;
default:
abort ();
}
output_generic_value (fp, filename, &g, ignore_output[i],
tf->ret_types[i], long_bits);
generic_value_free (&g);
}
if (fputs (" :", fp) < 0)
error (EXIT_FAILURE, errno, "write to '%s'", filename);
/* Print miscellaneous flags (passed through from
input). */
for (size_t i = 0; i < it->num_flags; i++)
switch (it->flags[i].type)
{
case flag_no_test_inline:
case flag_ignore_zero_inf_sign:
case flag_xfail:
if (fprintf (fp, " %s%s",
input_flags[it->flags[i].type],
(it->flags[i].cond
? it->flags[i].cond
: "")) < 0)
error (EXIT_FAILURE, errno, "write to '%s'",
filename);
break;
case flag_xfail_rounding:
if (m != rm_tonearest)
if (fprintf (fp, " xfail%s",
(it->flags[i].cond
? it->flags[i].cond
: "")) < 0)
error (EXIT_FAILURE, errno, "write to '%s'",
filename);
break;
default:
break;
}
/* For the ibm128 format, expect incorrect overflowing
results in rounding modes other than to nearest;
likewise incorrect results where the result may
underflow to 0. */
if (f == fp_ldbl_128ibm
&& m != rm_tonearest
&& (some_underflow_zero
|| (merged_exc_before[m] & (1U << exc_overflow)) != 0))
if (fputs (" xfail:ibm128-libgcc", fp) < 0)
error (EXIT_FAILURE, errno, "write to '%s'", filename);
/* Print exception flags and compute errno
expectations where not already computed. */
bool may_edom = false;
bool must_edom = false;
bool may_erange = must_erange || may_underflow;
for (fp_exception e = exc_first_exception;
e < exc_num_exceptions;
e++)
{
bool expect_e = (merged_exc & (1U << e)) != 0;
bool e_optional = false;
switch (e)
{
case exc_divbyzero:
if (expect_e)
may_erange = must_erange = true;
break;
case exc_inexact:
if (!tf->exact)
e_optional = true;
break;
case exc_invalid:
if (expect_e)
may_edom = must_edom = true;
break;
case exc_overflow:
if (expect_e)
may_erange = true;
break;
case exc_underflow:
if (expect_e)
may_erange = true;
if (must_underflow)
assert (expect_e);
if (may_underflow && !must_underflow)
e_optional = true;
break;
default:
abort ();
}
if (e_optional)
{
assert (!before_after_matters);
if (fprintf (fp, " %s-ok", exceptions[e]) < 0)
error (EXIT_FAILURE, errno, "write to '%s'",
filename);
}
else
{
if (expect_e)
if (fprintf (fp, " %s", exceptions[e]) < 0)
error (EXIT_FAILURE, errno, "write to '%s'",
filename);
if (before_after_matters && e == exc_underflow)
if (fputs (":before-rounding", fp) < 0)
error (EXIT_FAILURE, errno, "write to '%s'",
filename);
for (int after = 0; after <= 1; after++)
{
bool expect_e_here = expect_e;
if (after == 1 && (!before_after_matters
|| e != exc_underflow))
continue;
const char *after_cond;
if (before_after_matters && e == exc_underflow)
{
after_cond = (after
? ":after-rounding"
: ":before-rounding");
expect_e_here = !after;
}
else
after_cond = "";
input_flag_type okflag;
okflag = (expect_e_here
? flag_missing_first
: flag_spurious_first) + e;
for (size_t i = 0; i < it->num_flags; i++)
if (it->flags[i].type == okflag)
if (fprintf (fp, " %s-ok%s%s",
exceptions[e],
(it->flags[i].cond
? it->flags[i].cond
: ""), after_cond) < 0)
error (EXIT_FAILURE, errno, "write to '%s'",
filename);
}
}
}
/* Print errno expectations. */
if (tf->complex_fn)
{
must_edom = false;
must_erange = false;
}
if (may_edom && !must_edom)
{
if (fputs (" errno-edom-ok", fp) < 0)
error (EXIT_FAILURE, errno, "write to '%s'",
filename);
}
else
{
if (must_edom)
if (fputs (" errno-edom", fp) < 0)
error (EXIT_FAILURE, errno, "write to '%s'",
filename);
input_flag_type okflag = (must_edom
? flag_missing_errno
: flag_spurious_errno);
for (size_t i = 0; i < it->num_flags; i++)
if (it->flags[i].type == okflag)
if (fprintf (fp, " errno-edom-ok%s",
(it->flags[i].cond
? it->flags[i].cond
: "")) < 0)
error (EXIT_FAILURE, errno, "write to '%s'",
filename);
}
if (before_after_matters)
assert (may_erange && !must_erange);
if (may_erange && !must_erange)
{
if (fprintf (fp, " errno-erange-ok%s",
(before_after_matters
? ":before-rounding"
: "")) < 0)
error (EXIT_FAILURE, errno, "write to '%s'",
filename);
}
if (before_after_matters || !(may_erange && !must_erange))
{
if (must_erange)
if (fputs (" errno-erange", fp) < 0)
error (EXIT_FAILURE, errno, "write to '%s'",
filename);
input_flag_type okflag = (must_erange
? flag_missing_errno
: flag_spurious_errno);
for (size_t i = 0; i < it->num_flags; i++)
if (it->flags[i].type == okflag)
if (fprintf (fp, " errno-erange-ok%s%s",
(it->flags[i].cond
? it->flags[i].cond
: ""),
(before_after_matters
? ":after-rounding"
: "")) < 0)
error (EXIT_FAILURE, errno, "write to '%s'",
filename);
}
if (putc ('\n', fp) < 0)
error (EXIT_FAILURE, errno, "write to '%s'", filename);
}
for (size_t i = 0; i < tf->num_ret; i++)
{
if (generic_outputs[i].type == gtype_fp)
for (rounding_mode m = rm_first_mode; m < rm_num_modes; m++)
mpfr_clear (all_res[i][m]);
}
}
}
out:
for (size_t i = 0; i < tf->num_ret; i++)
generic_value_free (&generic_outputs[i]);
}
/* Generate test output data to FILENAME. */
static void
generate_output (const char *filename)
{
FILE *fp = fopen (filename, "w");
if (fp == NULL)
error (EXIT_FAILURE, errno, "open '%s'", filename);
for (size_t i = 0; i < ARRAY_SIZE (test_functions); i++)
{
test_function *tf = &test_functions[i];
for (size_t j = 0; j < tf->num_tests; j++)
{
input_test *it = &tf->tests[j];
if (fputs (it->line, fp) < 0)
error (EXIT_FAILURE, errno, "write to '%s'", filename);
for (size_t k = 0; k < it->num_input_cases; k++)
output_for_one_input_case (fp, filename, tf, it, it->inputs[k]);
}
}
if (fclose (fp) != 0)
error (EXIT_FAILURE, errno, "close '%s'", filename);
}
int
main (int argc, char **argv)
{
if (argc != 3)
error (EXIT_FAILURE, 0, "usage: gen-auto-libm-tests <input> <output>");
const char *input_filename = argv[1];
const char *output_filename = argv[2];
init_fp_formats ();
read_input (input_filename);
generate_output (output_filename);
exit (EXIT_SUCCESS);
}
|