aboutsummaryrefslogtreecommitdiff
path: root/manual/math.texi
blob: 39d5b968499d732b0d522d24b7f1c5c6231ba7f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
@c We need some definitions here.
@ifclear mult
@ifhtml
@set mult ·
@set infty ∞
@set pie π
@end ifhtml
@iftex
@set mult @cdot
@set infty @infty
@end iftex
@ifclear mult
@set mult *
@set infty oo
@set pie pi
@end ifclear
@macro mul
@value{mult}
@end macro
@macro infinity
@value{infty}
@end macro
@ifnottex
@macro pi
@value{pie}
@end macro
@end ifnottex
@end ifclear

@node Mathematics, Arithmetic, Syslog, Top
@c %MENU% Math functions, useful constants, random numbers
@chapter Mathematics

This chapter contains information about functions for performing
mathematical computations, such as trigonometric functions.  Most of
these functions have prototypes declared in the header file
@file{math.h}.  The complex-valued functions are defined in
@file{complex.h}.
@pindex math.h
@pindex complex.h

All mathematical functions which take a floating-point argument
have three variants, one each for @code{double}, @code{float}, and
@code{long double} arguments.  The @code{double} versions are mostly
defined in @w{ISO C89}.  The @code{float} and @code{long double}
versions are from the numeric extensions to C included in @w{ISO C99}.

Which of the three versions of a function should be used depends on the
situation.  For most calculations, the @code{float} functions are the
fastest.  On the other hand, the @code{long double} functions have the
highest precision.  @code{double} is somewhere in between.  It is
usually wise to pick the narrowest type that can accommodate your data.
Not all machines have a distinct @code{long double} type; it may be the
same as @code{double}.

On some machines, @theglibc{} also provides @code{_Float@var{N}} and
@code{_Float@var{N}x} types.  These types are defined in @w{ISO/IEC TS
18661-3}, which extends @w{ISO C} and defines floating-point types that
are not machine-dependent.  When such a type, such as @code{_Float128},
is supported by @theglibc{}, extra variants for most of the mathematical
functions provided for @code{double}, @code{float}, and @code{long
double} are also provided for the supported type.  Throughout this
manual, the @code{_Float@var{N}} and @code{_Float@var{N}x} variants of
these functions are described along with the @code{double},
@code{float}, and @code{long double} variants and they come from
@w{ISO/IEC TS 18661-3}, unless explicitly stated otherwise.

Currently, support for @code{_Float@var{N}} or @code{_Float@var{N}x}
types is only provided for @code{_Float128} on powerpc64le (PowerPC
64-bits little-endian), x86_64 and x86.

@menu
* Mathematical Constants::      Precise numeric values for often-used
                                 constants.
* Trig Functions::              Sine, cosine, tangent, and friends.
* Inverse Trig Functions::      Arcsine, arccosine, etc.
* Exponents and Logarithms::    Also pow and sqrt.
* Hyperbolic Functions::        sinh, cosh, tanh, etc.
* Special Functions::           Bessel, gamma, erf.
* Errors in Math Functions::    Known Maximum Errors in Math Functions.
* Pseudo-Random Numbers::       Functions for generating pseudo-random
				 numbers.
* FP Function Optimizations::   Fast code or small code.
@end menu

@node Mathematical Constants
@section Predefined Mathematical Constants
@cindex constants
@cindex mathematical constants

The header @file{math.h} defines several useful mathematical constants.
All values are defined as preprocessor macros starting with @code{M_}.
The values provided are:

@vtable @code
@item M_E
The base of natural logarithms.
@item M_LOG2E
The logarithm to base @code{2} of @code{M_E}.
@item M_LOG10E
The logarithm to base @code{10} of @code{M_E}.
@item M_LN2
The natural logarithm of @code{2}.
@item M_LN10
The natural logarithm of @code{10}.
@item M_PI
Pi, the ratio of a circle's circumference to its diameter.
@item M_PI_2
Pi divided by two.
@item M_PI_4
Pi divided by four.
@item M_1_PI
The reciprocal of pi (1/pi)
@item M_2_PI
Two times the reciprocal of pi.
@item M_2_SQRTPI
Two times the reciprocal of the square root of pi.
@item M_SQRT2
The square root of two.
@item M_SQRT1_2
The reciprocal of the square root of two (also the square root of 1/2).
@end vtable

These constants come from the Unix98 standard and were also available in
4.4BSD; therefore they are only defined if
@code{_XOPEN_SOURCE=500}, or a more general feature select macro, is
defined.  The default set of features includes these constants.
@xref{Feature Test Macros}.

All values are of type @code{double}.  As an extension, @theglibc{}
also defines these constants with type @code{long double}.  The
@code{long double} macros have a lowercase @samp{l} appended to their
names: @code{M_El}, @code{M_PIl}, and so forth.  These are only
available if @code{_GNU_SOURCE} is defined.

Likewise, @theglibc{} also defines these constants with the types
@code{_Float@var{N}} and @code{_Float@var{N}x} for the machines that
have support for such types enabled (@pxref{Mathematics}) and if
@code{_GNU_SOURCE} is defined.  When available, the macros names are
appended with @samp{f@var{N}} or @samp{f@var{N}x}, such as @samp{f128}
for the type @code{_Float128}.

@vindex PI
@emph{Note:} Some programs use a constant named @code{PI} which has the
same value as @code{M_PI}.  This constant is not standard; it may have
appeared in some old AT&T headers, and is mentioned in Stroustrup's book
on C++.  It infringes on the user's name space, so @theglibc{}
does not define it.  Fixing programs written to expect it is simple:
replace @code{PI} with @code{M_PI} throughout, or put @samp{-DPI=M_PI}
on the compiler command line.

@node Trig Functions
@section Trigonometric Functions
@cindex trigonometric functions

These are the familiar @code{sin}, @code{cos}, and @code{tan} functions.
The arguments to all of these functions are in units of radians; recall
that pi radians equals 180 degrees.

@cindex pi (trigonometric constant)
The math library normally defines @code{M_PI} to a @code{double}
approximation of pi.  If strict ISO and/or POSIX compliance
are requested this constant is not defined, but you can easily define it
yourself:

@smallexample
#define M_PI 3.14159265358979323846264338327
@end smallexample

@noindent
You can also compute the value of pi with the expression @code{acos
(-1.0)}.

@deftypefun double sin (double @var{x})
@deftypefunx float sinf (float @var{x})
@deftypefunx {long double} sinl (long double @var{x})
@deftypefunx _FloatN sinfN (_Float@var{N} @var{x})
@deftypefunx _FloatNx sinfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
@standardsx{sinfN, TS 18661-3:2015, math.h}
@standardsx{sinfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the sine of @var{x}, where @var{x} is given in
radians.  The return value is in the range @code{-1} to @code{1}.
@end deftypefun

@deftypefun double cos (double @var{x})
@deftypefunx float cosf (float @var{x})
@deftypefunx {long double} cosl (long double @var{x})
@deftypefunx _FloatN cosfN (_Float@var{N} @var{x})
@deftypefunx _FloatNx cosfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
@standardsx{cosfN, TS 18661-3:2015, math.h}
@standardsx{cosfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the cosine of @var{x}, where @var{x} is given in
radians.  The return value is in the range @code{-1} to @code{1}.
@end deftypefun

@deftypefun double tan (double @var{x})
@deftypefunx float tanf (float @var{x})
@deftypefunx {long double} tanl (long double @var{x})
@deftypefunx _FloatN tanfN (_Float@var{N} @var{x})
@deftypefunx _FloatNx tanfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
@standardsx{tanfN, TS 18661-3:2015, math.h}
@standardsx{tanfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the tangent of @var{x}, where @var{x} is given in
radians.

Mathematically, the tangent function has singularities at odd multiples
of pi/2.  If the argument @var{x} is too close to one of these
singularities, @code{tan} will signal overflow.
@end deftypefun

In many applications where @code{sin} and @code{cos} are used, the sine
and cosine of the same angle are needed at the same time.  It is more
efficient to compute them simultaneously, so the library provides a
function to do that.

@deftypefun void sincos (double @var{x}, double *@var{sinx}, double *@var{cosx})
@deftypefunx void sincosf (float @var{x}, float *@var{sinx}, float *@var{cosx})
@deftypefunx void sincosl (long double @var{x}, long double *@var{sinx}, long double *@var{cosx})
@deftypefunx _FloatN sincosfN (_Float@var{N} @var{x}, _Float@var{N} *@var{sinx}, _Float@var{N} *@var{cosx})
@deftypefunx _FloatNx sincosfNx (_Float@var{N}x @var{x}, _Float@var{N}x *@var{sinx}, _Float@var{N}x *@var{cosx})
@standards{GNU, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the sine of @var{x} in @code{*@var{sinx}} and the
cosine of @var{x} in @code{*@var{cosx}}, where @var{x} is given in
radians.  Both values, @code{*@var{sinx}} and @code{*@var{cosx}}, are in
the range of @code{-1} to @code{1}.

All these functions, including the @code{_Float@var{N}} and
@code{_Float@var{N}x} variants, are GNU extensions.  Portable programs
should be prepared to cope with their absence.
@end deftypefun

@cindex complex trigonometric functions

@w{ISO C99} defines variants of the trig functions which work on
complex numbers.  @Theglibc{} provides these functions, but they
are only useful if your compiler supports the new complex types defined
by the standard.
@c XXX Change this when gcc is fixed. -zw
(As of this writing GCC supports complex numbers, but there are bugs in
the implementation.)

@deftypefun {complex double} csin (complex double @var{z})
@deftypefunx {complex float} csinf (complex float @var{z})
@deftypefunx {complex long double} csinl (complex long double @var{z})
@deftypefunx {complex _FloatN} csinfN (complex _Float@var{N} @var{z})
@deftypefunx {complex _FloatNx} csinfNx (complex _Float@var{N}x @var{z})
@standards{ISO, complex.h}
@standardsx{csinfN, TS 18661-3:2015, complex.h}
@standardsx{csinfNx, TS 18661-3:2015, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
@c There are calls to nan* that could trigger @mtslocale if they didn't get
@c empty strings.
These functions return the complex sine of @var{z}.
The mathematical definition of the complex sine is

@ifnottex
@math{sin (z) = 1/(2*i) * (exp (z*i) - exp (-z*i))}.
@end ifnottex
@tex
$$\sin(z) = {1\over 2i} (e^{zi} - e^{-zi})$$
@end tex
@end deftypefun

@deftypefun {complex double} ccos (complex double @var{z})
@deftypefunx {complex float} ccosf (complex float @var{z})
@deftypefunx {complex long double} ccosl (complex long double @var{z})
@deftypefunx {complex _FloatN} ccosfN (complex _Float@var{N} @var{z})
@deftypefunx {complex _FloatNx} ccosfNx (complex _Float@var{N}x @var{z})
@standards{ISO, complex.h}
@standardsx{ccosfN, TS 18661-3:2015, complex.h}
@standardsx{ccosfNx, TS 18661-3:2015, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the complex cosine of @var{z}.
The mathematical definition of the complex cosine is

@ifnottex
@math{cos (z) = 1/2 * (exp (z*i) + exp (-z*i))}
@end ifnottex
@tex
$$\cos(z) = {1\over 2} (e^{zi} + e^{-zi})$$
@end tex
@end deftypefun

@deftypefun {complex double} ctan (complex double @var{z})
@deftypefunx {complex float} ctanf (complex float @var{z})
@deftypefunx {complex long double} ctanl (complex long double @var{z})
@deftypefunx {complex _FloatN} ctanfN (complex _Float@var{N} @var{z})
@deftypefunx {complex _FloatNx} ctanfNx (complex _Float@var{N}x @var{z})
@standards{ISO, complex.h}
@standardsx{ctanfN, TS 18661-3:2015, complex.h}
@standardsx{ctanfNx, TS 18661-3:2015, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the complex tangent of @var{z}.
The mathematical definition of the complex tangent is

@ifnottex
@math{tan (z) = -i * (exp (z*i) - exp (-z*i)) / (exp (z*i) + exp (-z*i))}
@end ifnottex
@tex
$$\tan(z) = -i \cdot {e^{zi} - e^{-zi}\over e^{zi} + e^{-zi}}$$
@end tex

@noindent
The complex tangent has poles at @math{pi/2 + 2n}, where @math{n} is an
integer.  @code{ctan} may signal overflow if @var{z} is too close to a
pole.
@end deftypefun


@node Inverse Trig Functions
@section Inverse Trigonometric Functions
@cindex inverse trigonometric functions

These are the usual arcsine, arccosine and arctangent functions,
which are the inverses of the sine, cosine and tangent functions
respectively.

@deftypefun double asin (double @var{x})
@deftypefunx float asinf (float @var{x})
@deftypefunx {long double} asinl (long double @var{x})
@deftypefunx _FloatN asinfN (_Float@var{N} @var{x})
@deftypefunx _FloatNx asinfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
@standardsx{asinfN, TS 18661-3:2015, math.h}
@standardsx{asinfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions compute the arcsine of @var{x}---that is, the value whose
sine is @var{x}.  The value is in units of radians.  Mathematically,
there are infinitely many such values; the one actually returned is the
one between @code{-pi/2} and @code{pi/2} (inclusive).

The arcsine function is defined mathematically only
over the domain @code{-1} to @code{1}.  If @var{x} is outside the
domain, @code{asin} signals a domain error.
@end deftypefun

@deftypefun double acos (double @var{x})
@deftypefunx float acosf (float @var{x})
@deftypefunx {long double} acosl (long double @var{x})
@deftypefunx _FloatN acosfN (_Float@var{N} @var{x})
@deftypefunx _FloatNx acosfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
@standardsx{acosfN, TS 18661-3:2015, math.h}
@standardsx{acosfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions compute the arccosine of @var{x}---that is, the value
whose cosine is @var{x}.  The value is in units of radians.
Mathematically, there are infinitely many such values; the one actually
returned is the one between @code{0} and @code{pi} (inclusive).

The arccosine function is defined mathematically only
over the domain @code{-1} to @code{1}.  If @var{x} is outside the
domain, @code{acos} signals a domain error.
@end deftypefun

@deftypefun double atan (double @var{x})
@deftypefunx float atanf (float @var{x})
@deftypefunx {long double} atanl (long double @var{x})
@deftypefunx _FloatN atanfN (_Float@var{N} @var{x})
@deftypefunx _FloatNx atanfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
@standardsx{atanfN, TS 18661-3:2015, math.h}
@standardsx{atanfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions compute the arctangent of @var{x}---that is, the value
whose tangent is @var{x}.  The value is in units of radians.
Mathematically, there are infinitely many such values; the one actually
returned is the one between @code{-pi/2} and @code{pi/2} (inclusive).
@end deftypefun

@deftypefun double atan2 (double @var{y}, double @var{x})
@deftypefunx float atan2f (float @var{y}, float @var{x})
@deftypefunx {long double} atan2l (long double @var{y}, long double @var{x})
@deftypefunx _FloatN atan2fN (_Float@var{N} @var{y}, _Float@var{N} @var{x})
@deftypefunx _FloatNx atan2fNx (_Float@var{N}x @var{y}, _Float@var{N}x @var{x})
@standards{ISO, math.h}
@standardsx{atan2fN, TS 18661-3:2015, math.h}
@standardsx{atan2fNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
This function computes the arctangent of @var{y}/@var{x}, but the signs
of both arguments are used to determine the quadrant of the result, and
@var{x} is permitted to be zero.  The return value is given in radians
and is in the range @code{-pi} to @code{pi}, inclusive.

If @var{x} and @var{y} are coordinates of a point in the plane,
@code{atan2} returns the signed angle between the line from the origin
to that point and the x-axis.  Thus, @code{atan2} is useful for
converting Cartesian coordinates to polar coordinates.  (To compute the
radial coordinate, use @code{hypot}; see @ref{Exponents and
Logarithms}.)

@c This is experimentally true.  Should it be so? -zw
If both @var{x} and @var{y} are zero, @code{atan2} returns zero.
@end deftypefun

@cindex inverse complex trigonometric functions
@w{ISO C99} defines complex versions of the inverse trig functions.

@deftypefun {complex double} casin (complex double @var{z})
@deftypefunx {complex float} casinf (complex float @var{z})
@deftypefunx {complex long double} casinl (complex long double @var{z})
@deftypefunx {complex _FloatN} casinfN (complex _Float@var{N} @var{z})
@deftypefunx {complex _FloatNx} casinfNx (complex _Float@var{N}x @var{z})
@standards{ISO, complex.h}
@standardsx{casinfN, TS 18661-3:2015, complex.h}
@standardsx{casinfNx, TS 18661-3:2015, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions compute the complex arcsine of @var{z}---that is, the
value whose sine is @var{z}.  The value returned is in radians.

Unlike the real-valued functions, @code{casin} is defined for all
values of @var{z}.
@end deftypefun

@deftypefun {complex double} cacos (complex double @var{z})
@deftypefunx {complex float} cacosf (complex float @var{z})
@deftypefunx {complex long double} cacosl (complex long double @var{z})
@deftypefunx {complex _FloatN} cacosfN (complex _Float@var{N} @var{z})
@deftypefunx {complex _FloatNx} cacosfNx (complex _Float@var{N}x @var{z})
@standards{ISO, complex.h}
@standardsx{cacosfN, TS 18661-3:2015, complex.h}
@standardsx{cacosfNx, TS 18661-3:2015, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions compute the complex arccosine of @var{z}---that is, the
value whose cosine is @var{z}.  The value returned is in radians.

Unlike the real-valued functions, @code{cacos} is defined for all
values of @var{z}.
@end deftypefun


@deftypefun {complex double} catan (complex double @var{z})
@deftypefunx {complex float} catanf (complex float @var{z})
@deftypefunx {complex long double} catanl (complex long double @var{z})
@deftypefunx {complex _FloatN} catanfN (complex _Float@var{N} @var{z})
@deftypefunx {complex _FloatNx} catanfNx (complex _Float@var{N}x @var{z})
@standards{ISO, complex.h}
@standardsx{catanfN, TS 18661-3:2015, complex.h}
@standardsx{catanfNx, TS 18661-3:2015, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions compute the complex arctangent of @var{z}---that is,
the value whose tangent is @var{z}.  The value is in units of radians.
@end deftypefun


@node Exponents and Logarithms
@section Exponentiation and Logarithms
@cindex exponentiation functions
@cindex power functions
@cindex logarithm functions

@deftypefun double exp (double @var{x})
@deftypefunx float expf (float @var{x})
@deftypefunx {long double} expl (long double @var{x})
@deftypefunx _FloatN expfN (_Float@var{N} @var{x})
@deftypefunx _FloatNx expfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
@standardsx{expfN, TS 18661-3:2015, math.h}
@standardsx{expfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions compute @code{e} (the base of natural logarithms) raised
to the power @var{x}.

If the magnitude of the result is too large to be representable,
@code{exp} signals overflow.
@end deftypefun

@deftypefun double exp2 (double @var{x})
@deftypefunx float exp2f (float @var{x})
@deftypefunx {long double} exp2l (long double @var{x})
@deftypefunx _FloatN exp2fN (_Float@var{N} @var{x})
@deftypefunx _FloatNx exp2fNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
@standardsx{exp2fN, TS 18661-3:2015, math.h}
@standardsx{exp2fNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions compute @code{2} raised to the power @var{x}.
Mathematically, @code{exp2 (x)} is the same as @code{exp (x * log (2))}.
@end deftypefun

@deftypefun double exp10 (double @var{x})
@deftypefunx float exp10f (float @var{x})
@deftypefunx {long double} exp10l (long double @var{x})
@deftypefunx _FloatN exp10fN (_Float@var{N} @var{x})
@deftypefunx _FloatNx exp10fNx (_Float@var{N}x @var{x})
@deftypefunx double pow10 (double @var{x})
@deftypefunx float pow10f (float @var{x})
@deftypefunx {long double} pow10l (long double @var{x})
@standards{ISO, math.h}
@standardsx{exp10fN, TS 18661-4:2015, math.h}
@standardsx{exp10fNx, TS 18661-4:2015, math.h}
@standardsx{pow10, GNU, math.h}
@standardsx{pow10f, GNU, math.h}
@standardsx{pow10l, GNU, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions compute @code{10} raised to the power @var{x}.
Mathematically, @code{exp10 (x)} is the same as @code{exp (x * log (10))}.

The @code{exp10} functions are from TS 18661-4:2015; the @code{pow10}
names are GNU extensions.  The name @code{exp10} is
preferred, since it is analogous to @code{exp} and @code{exp2}.
@end deftypefun


@deftypefun double log (double @var{x})
@deftypefunx float logf (float @var{x})
@deftypefunx {long double} logl (long double @var{x})
@deftypefunx _FloatN logfN (_Float@var{N} @var{x})
@deftypefunx _FloatNx logfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
@standardsx{logfN, TS 18661-3:2015, math.h}
@standardsx{logfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions compute the natural logarithm of @var{x}.  @code{exp (log
(@var{x}))} equals @var{x}, exactly in mathematics and approximately in
C.

If @var{x} is negative, @code{log} signals a domain error.  If @var{x}
is zero, it returns negative infinity; if @var{x} is too close to zero,
it may signal overflow.
@end deftypefun

@deftypefun double log10 (double @var{x})
@deftypefunx float log10f (float @var{x})
@deftypefunx {long double} log10l (long double @var{x})
@deftypefunx _FloatN log10fN (_Float@var{N} @var{x})
@deftypefunx _FloatNx log10fNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
@standardsx{log10fN, TS 18661-3:2015, math.h}
@standardsx{log10fNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the base-10 logarithm of @var{x}.
@code{log10 (@var{x})} equals @code{log (@var{x}) / log (10)}.

@end deftypefun

@deftypefun double log2 (double @var{x})
@deftypefunx float log2f (float @var{x})
@deftypefunx {long double} log2l (long double @var{x})
@deftypefunx _FloatN log2fN (_Float@var{N} @var{x})
@deftypefunx _FloatNx log2fNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
@standardsx{log2fN, TS 18661-3:2015, math.h}
@standardsx{log2fNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the base-2 logarithm of @var{x}.
@code{log2 (@var{x})} equals @code{log (@var{x}) / log (2)}.
@end deftypefun

@deftypefun double logb (double @var{x})
@deftypefunx float logbf (float @var{x})
@deftypefunx {long double} logbl (long double @var{x})
@deftypefunx _FloatN logbfN (_Float@var{N} @var{x})
@deftypefunx _FloatNx logbfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
@standardsx{logbfN, TS 18661-3:2015, math.h}
@standardsx{logbfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions extract the exponent of @var{x} and return it as a
floating-point value.  If @code{FLT_RADIX} is two, @code{logb} is equal
to @code{floor (log2 (x))}, except it's probably faster.

If @var{x} is de-normalized, @code{logb} returns the exponent @var{x}
would have if it were normalized.  If @var{x} is infinity (positive or
negative), @code{logb} returns @math{@infinity{}}.  If @var{x} is zero,
@code{logb} returns @math{@infinity{}}.  It does not signal.
@end deftypefun

@deftypefun int ilogb (double @var{x})
@deftypefunx int ilogbf (float @var{x})
@deftypefunx int ilogbl (long double @var{x})
@deftypefunx int ilogbfN (_Float@var{N} @var{x})
@deftypefunx int ilogbfNx (_Float@var{N}x @var{x})
@deftypefunx {long int} llogb (double @var{x})
@deftypefunx {long int} llogbf (float @var{x})
@deftypefunx {long int} llogbl (long double @var{x})
@deftypefunx {long int} llogbfN (_Float@var{N} @var{x})
@deftypefunx {long int} llogbfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
@standardsx{ilogbfN, TS 18661-3:2015, math.h}
@standardsx{ilogbfNx, TS 18661-3:2015, math.h}
@standardsx{llogbfN, TS 18661-3:2015, math.h}
@standardsx{llogbfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions are equivalent to the corresponding @code{logb}
functions except that they return signed integer values.  The
@code{ilogb}, @code{ilogbf}, and @code{ilogbl} functions are from ISO
C99; the @code{llogb}, @code{llogbf}, @code{llogbl} functions are from
TS 18661-1:2014; the @code{ilogbfN}, @code{ilogbfNx}, @code{llogbfN},
and @code{llogbfNx} functions are from TS 18661-3:2015.
@end deftypefun

@noindent
Since integers cannot represent infinity and NaN, @code{ilogb} instead
returns an integer that can't be the exponent of a normal floating-point
number.  @file{math.h} defines constants so you can check for this.

@deftypevr Macro int FP_ILOGB0
@standards{ISO, math.h}
@code{ilogb} returns this value if its argument is @code{0}.  The
numeric value is either @code{INT_MIN} or @code{-INT_MAX}.

This macro is defined in @w{ISO C99}.
@end deftypevr

@deftypevr Macro {long int} FP_LLOGB0
@standards{ISO, math.h}
@code{llogb} returns this value if its argument is @code{0}.  The
numeric value is either @code{LONG_MIN} or @code{-LONG_MAX}.

This macro is defined in TS 18661-1:2014.
@end deftypevr

@deftypevr Macro int FP_ILOGBNAN
@standards{ISO, math.h}
@code{ilogb} returns this value if its argument is @code{NaN}.  The
numeric value is either @code{INT_MIN} or @code{INT_MAX}.

This macro is defined in @w{ISO C99}.
@end deftypevr

@deftypevr Macro {long int} FP_LLOGBNAN
@standards{ISO, math.h}
@code{llogb} returns this value if its argument is @code{NaN}.  The
numeric value is either @code{LONG_MIN} or @code{LONG_MAX}.

This macro is defined in TS 18661-1:2014.
@end deftypevr

These values are system specific.  They might even be the same.  The
proper way to test the result of @code{ilogb} is as follows:

@smallexample
i = ilogb (f);
if (i == FP_ILOGB0 || i == FP_ILOGBNAN)
  @{
    if (isnan (f))
      @{
        /* @r{Handle NaN.}  */
      @}
    else if (f  == 0.0)
      @{
        /* @r{Handle 0.0.}  */
      @}
    else
      @{
        /* @r{Some other value with large exponent,}
           @r{perhaps +Inf.}  */
      @}
  @}
@end smallexample

@deftypefun double pow (double @var{base}, double @var{power})
@deftypefunx float powf (float @var{base}, float @var{power})
@deftypefunx {long double} powl (long double @var{base}, long double @var{power})
@deftypefunx _FloatN powfN (_Float@var{N} @var{base}, _Float@var{N} @var{power})
@deftypefunx _FloatNx powfNx (_Float@var{N}x @var{base}, _Float@var{N}x @var{power})
@standards{ISO, math.h}
@standardsx{powfN, TS 18661-3:2015, math.h}
@standardsx{powfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These are general exponentiation functions, returning @var{base} raised
to @var{power}.

Mathematically, @code{pow} would return a complex number when @var{base}
is negative and @var{power} is not an integral value.  @code{pow} can't
do that, so instead it signals a domain error. @code{pow} may also
underflow or overflow the destination type.
@end deftypefun

@cindex square root function
@deftypefun double sqrt (double @var{x})
@deftypefunx float sqrtf (float @var{x})
@deftypefunx {long double} sqrtl (long double @var{x})
@deftypefunx _FloatN sqrtfN (_Float@var{N} @var{x})
@deftypefunx _FloatNx sqrtfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
@standardsx{sqrtfN, TS 18661-3:2015, math.h}
@standardsx{sqrtfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the nonnegative square root of @var{x}.

If @var{x} is negative, @code{sqrt} signals a domain error.
Mathematically, it should return a complex number.
@end deftypefun

@cindex cube root function
@deftypefun double cbrt (double @var{x})
@deftypefunx float cbrtf (float @var{x})
@deftypefunx {long double} cbrtl (long double @var{x})
@deftypefunx _FloatN cbrtfN (_Float@var{N} @var{x})
@deftypefunx _FloatNx cbrtfNx (_Float@var{N}x @var{x})
@standards{BSD, math.h}
@standardsx{cbrtfN, TS 18661-3:2015, math.h}
@standardsx{cbrtfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the cube root of @var{x}.  They cannot
fail; every representable real value has a representable real cube root.
@end deftypefun

@deftypefun double hypot (double @var{x}, double @var{y})
@deftypefunx float hypotf (float @var{x}, float @var{y})
@deftypefunx {long double} hypotl (long double @var{x}, long double @var{y})
@deftypefunx _FloatN hypotfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
@deftypefunx _FloatNx hypotfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
@standards{ISO, math.h}
@standardsx{hypotfN, TS 18661-3:2015, math.h}
@standardsx{hypotfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return @code{sqrt (@var{x}*@var{x} +
@var{y}*@var{y})}.  This is the length of the hypotenuse of a right
triangle with sides of length @var{x} and @var{y}, or the distance
of the point (@var{x}, @var{y}) from the origin.  Using this function
instead of the direct formula is wise, since the error is
much smaller.  See also the function @code{cabs} in @ref{Absolute Value}.
@end deftypefun

@deftypefun double expm1 (double @var{x})
@deftypefunx float expm1f (float @var{x})
@deftypefunx {long double} expm1l (long double @var{x})
@deftypefunx _FloatN expm1fN (_Float@var{N} @var{x})
@deftypefunx _FloatNx expm1fNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
@standardsx{expm1fN, TS 18661-3:2015, math.h}
@standardsx{expm1fNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return a value equivalent to @code{exp (@var{x}) - 1}.
They are computed in a way that is accurate even if @var{x} is
near zero---a case where @code{exp (@var{x}) - 1} would be inaccurate owing
to subtraction of two numbers that are nearly equal.
@end deftypefun

@deftypefun double log1p (double @var{x})
@deftypefunx float log1pf (float @var{x})
@deftypefunx {long double} log1pl (long double @var{x})
@deftypefunx _FloatN log1pfN (_Float@var{N} @var{x})
@deftypefunx _FloatNx log1pfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
@standardsx{log1pfN, TS 18661-3:2015, math.h}
@standardsx{log1pfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return a value equivalent to @w{@code{log (1 + @var{x})}}.
They are computed in a way that is accurate even if @var{x} is
near zero.
@end deftypefun

@cindex complex exponentiation functions
@cindex complex logarithm functions

@w{ISO C99} defines complex variants of some of the exponentiation and
logarithm functions.

@deftypefun {complex double} cexp (complex double @var{z})
@deftypefunx {complex float} cexpf (complex float @var{z})
@deftypefunx {complex long double} cexpl (complex long double @var{z})
@deftypefunx {complex _FloatN} cexpfN (complex _Float@var{N} @var{z})
@deftypefunx {complex _FloatNx} cexpfNx (complex _Float@var{N}x @var{z})
@standards{ISO, complex.h}
@standardsx{cexpfN, TS 18661-3:2015, complex.h}
@standardsx{cexpfNx, TS 18661-3:2015, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return @code{e} (the base of natural
logarithms) raised to the power of @var{z}.
Mathematically, this corresponds to the value

@ifnottex
@math{exp (z) = exp (creal (z)) * (cos (cimag (z)) + I * sin (cimag (z)))}
@end ifnottex
@tex
$$\exp(z) = e^z = e^{{\rm Re}\,z} (\cos ({\rm Im}\,z) + i \sin ({\rm Im}\,z))$$
@end tex
@end deftypefun

@deftypefun {complex double} clog (complex double @var{z})
@deftypefunx {complex float} clogf (complex float @var{z})
@deftypefunx {complex long double} clogl (complex long double @var{z})
@deftypefunx {complex _FloatN} clogfN (complex _Float@var{N} @var{z})
@deftypefunx {complex _FloatNx} clogfNx (complex _Float@var{N}x @var{z})
@standards{ISO, complex.h}
@standardsx{clogfN, TS 18661-3:2015, complex.h}
@standardsx{clogfNx, TS 18661-3:2015, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the natural logarithm of @var{z}.
Mathematically, this corresponds to the value

@ifnottex
@math{log (z) = log (cabs (z)) + I * carg (z)}
@end ifnottex
@tex
$$\log(z) = \log |z| + i \arg z$$
@end tex

@noindent
@code{clog} has a pole at 0, and will signal overflow if @var{z} equals
or is very close to 0.  It is well-defined for all other values of
@var{z}.
@end deftypefun


@deftypefun {complex double} clog10 (complex double @var{z})
@deftypefunx {complex float} clog10f (complex float @var{z})
@deftypefunx {complex long double} clog10l (complex long double @var{z})
@deftypefunx {complex _FloatN} clog10fN (complex _Float@var{N} @var{z})
@deftypefunx {complex _FloatNx} clog10fNx (complex _Float@var{N}x @var{z})
@standards{GNU, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the base 10 logarithm of the complex value
@var{z}.  Mathematically, this corresponds to the value

@ifnottex
@math{log10 (z) = log10 (cabs (z)) + I * carg (z) / log (10)}
@end ifnottex
@tex
$$\log_{10}(z) = \log_{10}|z| + i \arg z / \log (10)$$
@end tex

All these functions, including the @code{_Float@var{N}} and
@code{_Float@var{N}x} variants, are GNU extensions.
@end deftypefun

@deftypefun {complex double} csqrt (complex double @var{z})
@deftypefunx {complex float} csqrtf (complex float @var{z})
@deftypefunx {complex long double} csqrtl (complex long double @var{z})
@deftypefunx {complex _FloatN} csqrtfN (_Float@var{N} @var{z})
@deftypefunx {complex _FloatNx} csqrtfNx (complex _Float@var{N}x @var{z})
@standards{ISO, complex.h}
@standardsx{csqrtfN, TS 18661-3:2015, complex.h}
@standardsx{csqrtfNx, TS 18661-3:2015, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the complex square root of the argument @var{z}.  Unlike
the real-valued functions, they are defined for all values of @var{z}.
@end deftypefun

@deftypefun {complex double} cpow (complex double @var{base}, complex double @var{power})
@deftypefunx {complex float} cpowf (complex float @var{base}, complex float @var{power})
@deftypefunx {complex long double} cpowl (complex long double @var{base}, complex long double @var{power})
@deftypefunx {complex _FloatN} cpowfN (complex _Float@var{N} @var{base}, complex _Float@var{N} @var{power})
@deftypefunx {complex _FloatNx} cpowfNx (complex _Float@var{N}x @var{base}, complex _Float@var{N}x @var{power})
@standards{ISO, complex.h}
@standardsx{cpowfN, TS 18661-3:2015, complex.h}
@standardsx{cpowfNx, TS 18661-3:2015, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return @var{base} raised to the power of
@var{power}.  This is equivalent to @w{@code{cexp (y * clog (x))}}
@end deftypefun

@node Hyperbolic Functions
@section Hyperbolic Functions
@cindex hyperbolic functions

The functions in this section are related to the exponential functions;
see @ref{Exponents and Logarithms}.

@deftypefun double sinh (double @var{x})
@deftypefunx float sinhf (float @var{x})
@deftypefunx {long double} sinhl (long double @var{x})
@deftypefunx _FloatN sinhfN (_Float@var{N} @var{x})
@deftypefunx _FloatNx sinhfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
@standardsx{sinhfN, TS 18661-3:2015, math.h}
@standardsx{sinhfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the hyperbolic sine of @var{x}, defined
mathematically as @w{@code{(exp (@var{x}) - exp (-@var{x})) / 2}}.  They
may signal overflow if @var{x} is too large.
@end deftypefun

@deftypefun double cosh (double @var{x})
@deftypefunx float coshf (float @var{x})
@deftypefunx {long double} coshl (long double @var{x})
@deftypefunx _FloatN coshfN (_Float@var{N} @var{x})
@deftypefunx _FloatNx coshfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
@standardsx{coshfN, TS 18661-3:2015, math.h}
@standardsx{coshfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the hyperbolic cosine of @var{x},
defined mathematically as @w{@code{(exp (@var{x}) + exp (-@var{x})) / 2}}.
They may signal overflow if @var{x} is too large.
@end deftypefun

@deftypefun double tanh (double @var{x})
@deftypefunx float tanhf (float @var{x})
@deftypefunx {long double} tanhl (long double @var{x})
@deftypefunx _FloatN tanhfN (_Float@var{N} @var{x})
@deftypefunx _FloatNx tanhfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
@standardsx{tanhfN, TS 18661-3:2015, math.h}
@standardsx{tanhfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the hyperbolic tangent of @var{x},
defined mathematically as @w{@code{sinh (@var{x}) / cosh (@var{x})}}.
They may signal overflow if @var{x} is too large.
@end deftypefun

@cindex hyperbolic functions

There are counterparts for the hyperbolic functions which take
complex arguments.

@deftypefun {complex double} csinh (complex double @var{z})
@deftypefunx {complex float} csinhf (complex float @var{z})
@deftypefunx {complex long double} csinhl (complex long double @var{z})
@deftypefunx {complex _FloatN} csinhfN (complex _Float@var{N} @var{z})
@deftypefunx {complex _FloatNx} csinhfNx (complex _Float@var{N}x @var{z})
@standards{ISO, complex.h}
@standardsx{csinhfN, TS 18661-3:2015, complex.h}
@standardsx{csinhfNx, TS 18661-3:2015, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the complex hyperbolic sine of @var{z}, defined
mathematically as @w{@code{(exp (@var{z}) - exp (-@var{z})) / 2}}.
@end deftypefun

@deftypefun {complex double} ccosh (complex double @var{z})
@deftypefunx {complex float} ccoshf (complex float @var{z})
@deftypefunx {complex long double} ccoshl (complex long double @var{z})
@deftypefunx {complex _FloatN} ccoshfN (complex _Float@var{N} @var{z})
@deftypefunx {complex _FloatNx} ccoshfNx (complex _Float@var{N}x @var{z})
@standards{ISO, complex.h}
@standardsx{ccoshfN, TS 18661-3:2015, complex.h}
@standardsx{ccoshfNx, TS 18661-3:2015, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the complex hyperbolic cosine of @var{z}, defined
mathematically as @w{@code{(exp (@var{z}) + exp (-@var{z})) / 2}}.
@end deftypefun

@deftypefun {complex double} ctanh (complex double @var{z})
@deftypefunx {complex float} ctanhf (complex float @var{z})
@deftypefunx {complex long double} ctanhl (complex long double @var{z})
@deftypefunx {complex _FloatN} ctanhfN (complex _Float@var{N} @var{z})
@deftypefunx {complex _FloatNx} ctanhfNx (complex _Float@var{N}x @var{z})
@standards{ISO, complex.h}
@standardsx{ctanhfN, TS 18661-3:2015, complex.h}
@standardsx{ctanhfNx, TS 18661-3:2015, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the complex hyperbolic tangent of @var{z},
defined mathematically as @w{@code{csinh (@var{z}) / ccosh (@var{z})}}.
@end deftypefun


@cindex inverse hyperbolic functions

@deftypefun double asinh (double @var{x})
@deftypefunx float asinhf (float @var{x})
@deftypefunx {long double} asinhl (long double @var{x})
@deftypefunx _FloatN asinhfN (_Float@var{N} @var{x})
@deftypefunx _FloatNx asinhfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
@standardsx{asinhfN, TS 18661-3:2015, math.h}
@standardsx{asinhfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the inverse hyperbolic sine of @var{x}---the
value whose hyperbolic sine is @var{x}.
@end deftypefun

@deftypefun double acosh (double @var{x})
@deftypefunx float acoshf (float @var{x})
@deftypefunx {long double} acoshl (long double @var{x})
@deftypefunx _FloatN acoshfN (_Float@var{N} @var{x})
@deftypefunx _FloatNx acoshfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
@standardsx{acoshfN, TS 18661-3:2015, math.h}
@standardsx{acoshfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the inverse hyperbolic cosine of @var{x}---the
value whose hyperbolic cosine is @var{x}.  If @var{x} is less than
@code{1}, @code{acosh} signals a domain error.
@end deftypefun

@deftypefun double atanh (double @var{x})
@deftypefunx float atanhf (float @var{x})
@deftypefunx {long double} atanhl (long double @var{x})
@deftypefunx _FloatN atanhfN (_Float@var{N} @var{x})
@deftypefunx _FloatNx atanhfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
@standardsx{atanhfN, TS 18661-3:2015, math.h}
@standardsx{atanhfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the inverse hyperbolic tangent of @var{x}---the
value whose hyperbolic tangent is @var{x}.  If the absolute value of
@var{x} is greater than @code{1}, @code{atanh} signals a domain error;
if it is equal to 1, @code{atanh} returns infinity.
@end deftypefun

@cindex inverse complex hyperbolic functions

@deftypefun {complex double} casinh (complex double @var{z})
@deftypefunx {complex float} casinhf (complex float @var{z})
@deftypefunx {complex long double} casinhl (complex long double @var{z})
@deftypefunx {complex _FloatN} casinhfN (complex _Float@var{N} @var{z})
@deftypefunx {complex _FloatNx} casinhfNx (complex _Float@var{N}x @var{z})
@standards{ISO, complex.h}
@standardsx{casinhfN, TS 18661-3:2015, complex.h}
@standardsx{casinhfNx, TS 18661-3:2015, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the inverse complex hyperbolic sine of
@var{z}---the value whose complex hyperbolic sine is @var{z}.
@end deftypefun

@deftypefun {complex double} cacosh (complex double @var{z})
@deftypefunx {complex float} cacoshf (complex float @var{z})
@deftypefunx {complex long double} cacoshl (complex long double @var{z})
@deftypefunx {complex _FloatN} cacoshfN (complex _Float@var{N} @var{z})
@deftypefunx {complex _FloatNx} cacoshfNx (complex _Float@var{N}x @var{z})
@standards{ISO, complex.h}
@standardsx{cacoshfN, TS 18661-3:2015, complex.h}
@standardsx{cacoshfNx, TS 18661-3:2015, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the inverse complex hyperbolic cosine of
@var{z}---the value whose complex hyperbolic cosine is @var{z}.  Unlike
the real-valued functions, there are no restrictions on the value of @var{z}.
@end deftypefun

@deftypefun {complex double} catanh (complex double @var{z})
@deftypefunx {complex float} catanhf (complex float @var{z})
@deftypefunx {complex long double} catanhl (complex long double @var{z})
@deftypefunx {complex _FloatN} catanhfN (complex _Float@var{N} @var{z})
@deftypefunx {complex _FloatNx} catanhfNx (complex _Float@var{N}x @var{z})
@standards{ISO, complex.h}
@standardsx{catanhfN, TS 18661-3:2015, complex.h}
@standardsx{catanhfNx, TS 18661-3:2015, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the inverse complex hyperbolic tangent of
@var{z}---the value whose complex hyperbolic tangent is @var{z}.  Unlike
the real-valued functions, there are no restrictions on the value of
@var{z}.
@end deftypefun

@node Special Functions
@section Special Functions
@cindex special functions
@cindex Bessel functions
@cindex gamma function

These are some more exotic mathematical functions which are sometimes
useful.  Currently they only have real-valued versions.

@deftypefun double erf (double @var{x})
@deftypefunx float erff (float @var{x})
@deftypefunx {long double} erfl (long double @var{x})
@deftypefunx _FloatN erffN (_Float@var{N} @var{x})
@deftypefunx _FloatNx erffNx (_Float@var{N}x @var{x})
@standards{SVID, math.h}
@standardsx{erffN, TS 18661-3:2015, math.h}
@standardsx{erffNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
@code{erf} returns the error function of @var{x}.  The error
function is defined as
@tex
$$\hbox{erf}(x) = {2\over\sqrt{\pi}}\cdot\int_0^x e^{-t^2} \hbox{d}t$$
@end tex
@ifnottex
@smallexample
erf (x) = 2/sqrt(pi) * integral from 0 to x of exp(-t^2) dt
@end smallexample
@end ifnottex
@end deftypefun

@deftypefun double erfc (double @var{x})
@deftypefunx float erfcf (float @var{x})
@deftypefunx {long double} erfcl (long double @var{x})
@deftypefunx _FloatN erfcfN (_Float@var{N} @var{x})
@deftypefunx _FloatNx erfcfNx (_Float@var{N}x @var{x})
@standards{SVID, math.h}
@standardsx{erfcfN, TS 18661-3:2015, math.h}
@standardsx{erfcfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
@code{erfc} returns @code{1.0 - erf(@var{x})}, but computed in a
fashion that avoids round-off error when @var{x} is large.
@end deftypefun

@deftypefun double lgamma (double @var{x})
@deftypefunx float lgammaf (float @var{x})
@deftypefunx {long double} lgammal (long double @var{x})
@deftypefunx _FloatN lgammafN (_Float@var{N} @var{x})
@deftypefunx _FloatNx lgammafNx (_Float@var{N}x @var{x})
@standards{SVID, math.h}
@standardsx{lgammafN, TS 18661-3:2015, math.h}
@standardsx{lgammafNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtunsafe{@mtasurace{:signgam}}@asunsafe{}@acsafe{}}
@code{lgamma} returns the natural logarithm of the absolute value of
the gamma function of @var{x}.  The gamma function is defined as
@tex
$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \hbox{d}t$$
@end tex
@ifnottex
@smallexample
gamma (x) = integral from 0 to @infinity{} of t^(x-1) e^-t dt
@end smallexample
@end ifnottex

@vindex signgam
The sign of the gamma function is stored in the global variable
@var{signgam}, which is declared in @file{math.h}.  It is @code{1} if
the intermediate result was positive or zero, or @code{-1} if it was
negative.

To compute the real gamma function you can use the @code{tgamma}
function or you can compute the values as follows:
@smallexample
lgam = lgamma(x);
gam  = signgam*exp(lgam);
@end smallexample

The gamma function has singularities at the non-positive integers.
@code{lgamma} will raise the zero divide exception if evaluated at a
singularity.
@end deftypefun

@deftypefun double lgamma_r (double @var{x}, int *@var{signp})
@deftypefunx float lgammaf_r (float @var{x}, int *@var{signp})
@deftypefunx {long double} lgammal_r (long double @var{x}, int *@var{signp})
@deftypefunx _FloatN lgammafN_r (_Float@var{N} @var{x}, int *@var{signp})
@deftypefunx _FloatNx lgammafNx_r (_Float@var{N}x @var{x}, int *@var{signp})
@standards{XPG, math.h}
@standardsx{lgammafN_r, GNU, math.h}
@standardsx{lgammafNx_r, GNU, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
@code{lgamma_r} is just like @code{lgamma}, but it stores the sign of
the intermediate result in the variable pointed to by @var{signp}
instead of in the @var{signgam} global.  This means it is reentrant.

The @code{lgammaf@var{N}_r} and @code{lgammaf@var{N}x_r} functions are
GNU extensions.
@end deftypefun

@deftypefun double gamma (double @var{x})
@deftypefunx float gammaf (float @var{x})
@deftypefunx {long double} gammal (long double @var{x})
@standards{SVID, math.h}
@safety{@prelim{}@mtunsafe{@mtasurace{:signgam}}@asunsafe{}@acsafe{}}
These functions exist for compatibility reasons.  They are equivalent to
@code{lgamma} etc.  It is better to use @code{lgamma} since for one the
name reflects better the actual computation, and moreover @code{lgamma} is
standardized in @w{ISO C99} while @code{gamma} is not.
@end deftypefun

@deftypefun double tgamma (double @var{x})
@deftypefunx float tgammaf (float @var{x})
@deftypefunx {long double} tgammal (long double @var{x})
@deftypefunx _FloatN tgammafN (_Float@var{N} @var{x})
@deftypefunx _FloatNx tgammafNx (_Float@var{N}x @var{x})
@standardsx{tgamma, XPG, math.h}
@standardsx{tgamma, ISO, math.h}
@standardsx{tgammaf, XPG, math.h}
@standardsx{tgammaf, ISO, math.h}
@standardsx{tgammal, XPG, math.h}
@standardsx{tgammal, ISO, math.h}
@standardsx{tgammafN, TS 18661-3:2015, math.h}
@standardsx{tgammafNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
@code{tgamma} applies the gamma function to @var{x}.  The gamma
function is defined as
@tex
$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \hbox{d}t$$
@end tex
@ifnottex
@smallexample
gamma (x) = integral from 0 to @infinity{} of t^(x-1) e^-t dt
@end smallexample
@end ifnottex

This function was introduced in @w{ISO C99}.  The @code{_Float@var{N}}
and @code{_Float@var{N}x} variants were introduced in @w{ISO/IEC TS
18661-3}.
@end deftypefun

@deftypefun double j0 (double @var{x})
@deftypefunx float j0f (float @var{x})
@deftypefunx {long double} j0l (long double @var{x})
@deftypefunx _FloatN j0fN (_Float@var{N} @var{x})
@deftypefunx _FloatNx j0fNx (_Float@var{N}x @var{x})
@standards{SVID, math.h}
@standardsx{j0fN, GNU, math.h}
@standardsx{j0fNx, GNU, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
@code{j0} returns the Bessel function of the first kind of order 0 of
@var{x}.  It may signal underflow if @var{x} is too large.

The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
extensions.
@end deftypefun

@deftypefun double j1 (double @var{x})
@deftypefunx float j1f (float @var{x})
@deftypefunx {long double} j1l (long double @var{x})
@deftypefunx _FloatN j1fN (_Float@var{N} @var{x})
@deftypefunx _FloatNx j1fNx (_Float@var{N}x @var{x})
@standards{SVID, math.h}
@standardsx{j1fN, GNU, math.h}
@standardsx{j1fNx, GNU, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
@code{j1} returns the Bessel function of the first kind of order 1 of
@var{x}.  It may signal underflow if @var{x} is too large.

The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
extensions.
@end deftypefun

@deftypefun double jn (int @var{n}, double @var{x})
@deftypefunx float jnf (int @var{n}, float @var{x})
@deftypefunx {long double} jnl (int @var{n}, long double @var{x})
@deftypefunx _FloatN jnfN (int @var{n}, _Float@var{N} @var{x})
@deftypefunx _FloatNx jnfNx (int @var{n}, _Float@var{N}x @var{x})
@standards{SVID, math.h}
@standardsx{jnfN, GNU, math.h}
@standardsx{jnfNx, GNU, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
@code{jn} returns the Bessel function of the first kind of order
@var{n} of @var{x}.  It may signal underflow if @var{x} is too large.

The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
extensions.
@end deftypefun

@deftypefun double y0 (double @var{x})
@deftypefunx float y0f (float @var{x})
@deftypefunx {long double} y0l (long double @var{x})
@deftypefunx _FloatN y0fN (_Float@var{N} @var{x})
@deftypefunx _FloatNx y0fNx (_Float@var{N}x @var{x})
@standards{SVID, math.h}
@standardsx{y0fN, GNU, math.h}
@standardsx{y0fNx, GNU, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
@code{y0} returns the Bessel function of the second kind of order 0 of
@var{x}.  It may signal underflow if @var{x} is too large.  If @var{x}
is negative, @code{y0} signals a domain error; if it is zero,
@code{y0} signals overflow and returns @math{-@infinity}.

The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
extensions.
@end deftypefun

@deftypefun double y1 (double @var{x})
@deftypefunx float y1f (float @var{x})
@deftypefunx {long double} y1l (long double @var{x})
@deftypefunx _FloatN y1fN (_Float@var{N} @var{x})
@deftypefunx _FloatNx y1fNx (_Float@var{N}x @var{x})
@standards{SVID, math.h}
@standardsx{y1fN, GNU, math.h}
@standardsx{y1fNx, GNU, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
@code{y1} returns the Bessel function of the second kind of order 1 of
@var{x}.  It may signal underflow if @var{x} is too large.  If @var{x}
is negative, @code{y1} signals a domain error; if it is zero,
@code{y1} signals overflow and returns @math{-@infinity}.

The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
extensions.
@end deftypefun

@deftypefun double yn (int @var{n}, double @var{x})
@deftypefunx float ynf (int @var{n}, float @var{x})
@deftypefunx {long double} ynl (int @var{n}, long double @var{x})
@deftypefunx _FloatN ynfN (int @var{n}, _Float@var{N} @var{x})
@deftypefunx _FloatNx ynfNx (int @var{n}, _Float@var{N}x @var{x})
@standards{SVID, math.h}
@standardsx{ynfN, GNU, math.h}
@standardsx{ynfNx, GNU, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
@code{yn} returns the Bessel function of the second kind of order @var{n} of
@var{x}.  It may signal underflow if @var{x} is too large.  If @var{x}
is negative, @code{yn} signals a domain error; if it is zero,
@code{yn} signals overflow and returns @math{-@infinity}.

The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
extensions.
@end deftypefun

@node Errors in Math Functions
@section Known Maximum Errors in Math Functions
@cindex math errors
@cindex ulps

This section lists the known errors of the functions in the math
library.  Errors are measured in ``units of the last place''.  This is a
measure for the relative error.  For a number @math{z} with the
representation @math{d.d@dots{}d@mul{}2^e} (we assume IEEE
floating-point numbers with base 2) the ULP is represented by

@tex
$${|d.d\dots d - (z/2^e)|}\over {2^{p-1}}$$
@end tex
@ifnottex
@smallexample
|d.d...d - (z / 2^e)| / 2^(p - 1)
@end smallexample
@end ifnottex

@noindent
where @math{p} is the number of bits in the mantissa of the
floating-point number representation.  Ideally the error for all
functions is always less than 0.5ulps in round-to-nearest mode.  Using
rounding bits this is also
possible and normally implemented for the basic operations.  Except
for certain functions such as @code{sqrt}, @code{fma} and @code{rint}
whose results are fully specified by reference to corresponding IEEE
754 floating-point operations, and conversions between strings and
floating point, @theglibc{} does not aim for correctly rounded results
for functions in the math library, and does not aim for correctness in
whether ``inexact'' exceptions are raised.  Instead, the goals for
accuracy of functions without fully specified results are as follows;
some functions have bugs meaning they do not meet these goals in all
cases.  In the future, @theglibc{} may provide some other correctly
rounding functions under the names such as @code{crsin} proposed for
an extension to ISO C.

@itemize @bullet

@item
Each function with a floating-point result behaves as if it computes
an infinite-precision result that is within a few ulp (in both real
and complex parts, for functions with complex results) of the
mathematically correct value of the function (interpreted together
with ISO C or POSIX semantics for the function in question) at the
exact value passed as the input.  Exceptions are raised appropriately
for this value and in accordance with IEEE 754 / ISO C / POSIX
semantics, and it is then rounded according to the current rounding
direction to the result that is returned to the user.  @code{errno}
may also be set (@pxref{Math Error Reporting}).  (The ``inexact''
exception may be raised, or not raised, even if this is inconsistent
with the infinite-precision value.)

@item
For the IBM @code{long double} format, as used on PowerPC GNU/Linux,
the accuracy goal is weaker for input values not exactly representable
in 106 bits of precision; it is as if the input value is some value
within 0.5ulp of the value actually passed, where ``ulp'' is
interpreted in terms of a fixed-precision 106-bit mantissa, but not
necessarily the exact value actually passed with discontiguous
mantissa bits.

@item
For the IBM @code{long double} format, functions whose results are
fully specified by reference to corresponding IEEE 754 floating-point
operations have the same accuracy goals as other functions, but with
the error bound being the same as that for division (3ulp).
Furthermore, ``inexact'' and ``underflow'' exceptions may be raised
for all functions for any inputs, even where such exceptions are
inconsistent with the returned value, since the underlying
floating-point arithmetic has that property.

@item
Functions behave as if the infinite-precision result computed is zero,
infinity or NaN if and only if that is the mathematically correct
infinite-precision result.  They behave as if the infinite-precision
result computed always has the same sign as the mathematically correct
result.

@item
If the mathematical result is more than a few ulp above the overflow
threshold for the current rounding direction, the value returned is
the appropriate overflow value for the current rounding direction,
with the overflow exception raised.

@item
If the mathematical result has magnitude well below half the least
subnormal magnitude, the returned value is either zero or the least
subnormal (in each case, with the correct sign), according to the
current rounding direction and with the underflow exception raised.

@item
Where the mathematical result underflows (before rounding) and is not
exactly representable as a floating-point value, the function does not
behave as if the computed infinite-precision result is an exact value
in the subnormal range.  This means that the underflow exception is
raised other than possibly for cases where the mathematical result is
very close to the underflow threshold and the function behaves as if
it computes an infinite-precision result that does not underflow.  (So
there may be spurious underflow exceptions in cases where the
underflowing result is exact, but not missing underflow exceptions in
cases where it is inexact.)

@item
@Theglibc{} does not aim for functions to satisfy other properties of
the underlying mathematical function, such as monotonicity, where not
implied by the above goals.

@item
All the above applies to both real and complex parts, for complex
functions.

@end itemize

Therefore many of the functions in the math library have errors.  The
table lists the maximum error for each function which is exposed by one
of the existing tests in the test suite.  The table tries to cover as much
as possible and list the actual maximum error (or at least a ballpark
figure) but this is often not achieved due to the large search space.

The table lists the ULP values for different architectures.  Different
architectures have different results since their hardware support for
floating-point operations varies and also the existing hardware support
is different.  Only the round-to-nearest rounding mode is covered by
this table, and vector versions of functions are not covered.
Functions not listed do not have known errors.

@page
@c This multitable does not fit on a single page
@include libm-err.texi

@node Pseudo-Random Numbers
@section Pseudo-Random Numbers
@cindex random numbers
@cindex pseudo-random numbers
@cindex seed (for random numbers)

This section describes the GNU facilities for generating a series of
pseudo-random numbers.  The numbers generated are not truly random;
typically, they form a sequence that repeats periodically, with a period
so large that you can ignore it for ordinary purposes.  The random
number generator works by remembering a @dfn{seed} value which it uses
to compute the next random number and also to compute a new seed.

Although the generated numbers look unpredictable within one run of a
program, the sequence of numbers is @emph{exactly the same} from one run
to the next.  This is because the initial seed is always the same.  This
is convenient when you are debugging a program, but it is unhelpful if
you want the program to behave unpredictably.  If you want a different
pseudo-random series each time your program runs, you must specify a
different seed each time.  For ordinary purposes, basing the seed on the
current time works well.  For random numbers in cryptography,
@pxref{Unpredictable Bytes}.

You can obtain repeatable sequences of numbers on a particular machine type
by specifying the same initial seed value for the random number
generator.  There is no standard meaning for a particular seed value;
the same seed, used in different C libraries or on different CPU types,
will give you different random numbers.

@Theglibc{} supports the standard @w{ISO C} random number functions
plus two other sets derived from BSD and SVID.  The BSD and @w{ISO C}
functions provide identical, somewhat limited functionality.  If only a
small number of random bits are required, we recommend you use the
@w{ISO C} interface, @code{rand} and @code{srand}.  The SVID functions
provide a more flexible interface, which allows better random number
generator algorithms, provides more random bits (up to 48) per call, and
can provide random floating-point numbers.  These functions are required
by the XPG standard and therefore will be present in all modern Unix
systems.

@menu
* ISO Random::                  @code{rand} and friends.
* BSD Random::                  @code{random} and friends.
* SVID Random::                 @code{drand48} and friends.
@end menu

@node ISO Random
@subsection ISO C Random Number Functions

This section describes the random number functions that are part of
the @w{ISO C} standard.

To use these facilities, you should include the header file
@file{stdlib.h} in your program.
@pindex stdlib.h

@deftypevr Macro int RAND_MAX
@standards{ISO, stdlib.h}
The value of this macro is an integer constant representing the largest
value the @code{rand} function can return.  In @theglibc{}, it is
@code{2147483647}, which is the largest signed integer representable in
32 bits.  In other libraries, it may be as low as @code{32767}.
@end deftypevr

@deftypefun int rand (void)
@standards{ISO, stdlib.h}
@safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
@c Just calls random.
The @code{rand} function returns the next pseudo-random number in the
series.  The value ranges from @code{0} to @code{RAND_MAX}.
@end deftypefun

@deftypefun void srand (unsigned int @var{seed})
@standards{ISO, stdlib.h}
@safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
@c Alias to srandom.
This function establishes @var{seed} as the seed for a new series of
pseudo-random numbers.  If you call @code{rand} before a seed has been
established with @code{srand}, it uses the value @code{1} as a default
seed.

To produce a different pseudo-random series each time your program is
run, do @code{srand (time (0))}.
@end deftypefun

POSIX.1 extended the C standard functions to support reproducible random
numbers in multi-threaded programs.  However, the extension is badly
designed and unsuitable for serious work.

@deftypefun int rand_r (unsigned int *@var{seed})
@standards{POSIX.1, stdlib.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
This function returns a random number in the range 0 to @code{RAND_MAX}
just as @code{rand} does.  However, all its state is stored in the
@var{seed} argument.  This means the RNG's state can only have as many
bits as the type @code{unsigned int} has.  This is far too few to
provide a good RNG.

If your program requires a reentrant RNG, we recommend you use the
reentrant GNU extensions to the SVID random number generator.  The
POSIX.1 interface should only be used when the GNU extensions are not
available.
@end deftypefun


@node BSD Random
@subsection BSD Random Number Functions

This section describes a set of random number generation functions that
are derived from BSD.  There is no advantage to using these functions
with @theglibc{}; we support them for BSD compatibility only.

The prototypes for these functions are in @file{stdlib.h}.
@pindex stdlib.h

@deftypefun {long int} random (void)
@standards{BSD, stdlib.h}
@safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
@c Takes a lock and calls random_r with an automatic variable and the
@c global state, while holding a lock.
This function returns the next pseudo-random number in the sequence.
The value returned ranges from @code{0} to @code{2147483647}.

@strong{NB:} Temporarily this function was defined to return a
@code{int32_t} value to indicate that the return value always contains
32 bits even if @code{long int} is wider.  The standard demands it
differently.  Users must always be aware of the 32-bit limitation,
though.
@end deftypefun

@deftypefun void srandom (unsigned int @var{seed})
@standards{BSD, stdlib.h}
@safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
@c Takes a lock and calls srandom_r with an automatic variable and a
@c static buffer.  There's no MT-safety issue because the static buffer
@c is internally protected by a lock, although other threads may modify
@c the set state before it is used.
The @code{srandom} function sets the state of the random number
generator based on the integer @var{seed}.  If you supply a @var{seed} value
of @code{1}, this will cause @code{random} to reproduce the default set
of random numbers.

To produce a different set of pseudo-random numbers each time your
program runs, do @code{srandom (time (0))}.
@end deftypefun

@deftypefun {char *} initstate (unsigned int @var{seed}, char *@var{state}, size_t @var{size})
@standards{BSD, stdlib.h}
@safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
The @code{initstate} function is used to initialize the random number
generator state.  The argument @var{state} is an array of @var{size}
bytes, used to hold the state information.  It is initialized based on
@var{seed}.  The size must be between 8 and 256 bytes, and should be a
power of two.  The bigger the @var{state} array, the better.

The return value is the previous value of the state information array.
You can use this value later as an argument to @code{setstate} to
restore that state.
@end deftypefun

@deftypefun {char *} setstate (char *@var{state})
@standards{BSD, stdlib.h}
@safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
The @code{setstate} function restores the random number state
information @var{state}.  The argument must have been the result of
a previous call to @var{initstate} or @var{setstate}.

The return value is the previous value of the state information array.
You can use this value later as an argument to @code{setstate} to
restore that state.

If the function fails the return value is @code{NULL}.
@end deftypefun

The four functions described so far in this section all work on a state
which is shared by all threads.  The state is not directly accessible to
the user and can only be modified by these functions.  This makes it
hard to deal with situations where each thread should have its own
pseudo-random number generator.

@Theglibc{} contains four additional functions which contain the
state as an explicit parameter and therefore make it possible to handle
thread-local PRNGs.  Besides this there is no difference.  In fact, the
four functions already discussed are implemented internally using the
following interfaces.

The @file{stdlib.h} header contains a definition of the following type:

@deftp {Data Type} {struct random_data}
@standards{GNU, stdlib.h}

Objects of type @code{struct random_data} contain the information
necessary to represent the state of the PRNG.  Although a complete
definition of the type is present the type should be treated as opaque.
@end deftp

The functions modifying the state follow exactly the already described
functions.

@deftypefun int random_r (struct random_data *restrict @var{buf}, int32_t *restrict @var{result})
@standards{GNU, stdlib.h}
@safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
The @code{random_r} function behaves exactly like the @code{random}
function except that it uses and modifies the state in the object
pointed to by the first parameter instead of the global state.
@end deftypefun

@deftypefun int srandom_r (unsigned int @var{seed}, struct random_data *@var{buf})
@standards{GNU, stdlib.h}
@safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
The @code{srandom_r} function behaves exactly like the @code{srandom}
function except that it uses and modifies the state in the object
pointed to by the second parameter instead of the global state.
@end deftypefun

@deftypefun int initstate_r (unsigned int @var{seed}, char *restrict @var{statebuf}, size_t @var{statelen}, struct random_data *restrict @var{buf})
@standards{GNU, stdlib.h}
@safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
The @code{initstate_r} function behaves exactly like the @code{initstate}
function except that it uses and modifies the state in the object
pointed to by the fourth parameter instead of the global state.
@end deftypefun

@deftypefun int setstate_r (char *restrict @var{statebuf}, struct random_data *restrict @var{buf})
@standards{GNU, stdlib.h}
@safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
The @code{setstate_r} function behaves exactly like the @code{setstate}
function except that it uses and modifies the state in the object
pointed to by the first parameter instead of the global state.
@end deftypefun

@node SVID Random
@subsection SVID Random Number Function

The C library on SVID systems contains yet another kind of random number
generator functions.  They use a state of 48 bits of data.  The user can
choose among a collection of functions which return the random bits
in different forms.

Generally there are two kinds of function.  The first uses a state of
the random number generator which is shared among several functions and
by all threads of the process.  The second requires the user to handle
the state.

All functions have in common that they use the same congruential
formula with the same constants.  The formula is

@smallexample
Y = (a * X + c) mod m
@end smallexample

@noindent
where @var{X} is the state of the generator at the beginning and
@var{Y} the state at the end.  @code{a} and @code{c} are constants
determining the way the generator works.  By default they are

@smallexample
a = 0x5DEECE66D = 25214903917
c = 0xb = 11
@end smallexample

@noindent
but they can also be changed by the user.  @code{m} is of course 2^48
since the state consists of a 48-bit array.

The prototypes for these functions are in @file{stdlib.h}.
@pindex stdlib.h


@deftypefun double drand48 (void)
@standards{SVID, stdlib.h}
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
@c Uses of the static state buffer are not guarded by a lock (thus
@c @mtasurace:drand48), so they may be found or left at a
@c partially-updated state in case of calls from within signal handlers
@c or cancellation.  None of this will break safety rules or invoke
@c undefined behavior, but it may affect randomness.
This function returns a @code{double} value in the range of @code{0.0}
to @code{1.0} (exclusive).  The random bits are determined by the global
state of the random number generator in the C library.

Since the @code{double} type according to @w{IEEE 754} has a 52-bit
mantissa this means 4 bits are not initialized by the random number
generator.  These are (of course) chosen to be the least significant
bits and they are initialized to @code{0}.
@end deftypefun

@deftypefun double erand48 (unsigned short int @var{xsubi}[3])
@standards{SVID, stdlib.h}
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
@c The static buffer is just initialized with default parameters, which
@c are later read to advance the state held in xsubi.
This function returns a @code{double} value in the range of @code{0.0}
to @code{1.0} (exclusive), similarly to @code{drand48}.  The argument is
an array describing the state of the random number generator.

This function can be called subsequently since it updates the array to
guarantee random numbers.  The array should have been initialized before
initial use to obtain reproducible results.
@end deftypefun

@deftypefun {long int} lrand48 (void)
@standards{SVID, stdlib.h}
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
The @code{lrand48} function returns an integer value in the range of
@code{0} to @code{2^31} (exclusive).  Even if the size of the @code{long
int} type can take more than 32 bits, no higher numbers are returned.
The random bits are determined by the global state of the random number
generator in the C library.
@end deftypefun

@deftypefun {long int} nrand48 (unsigned short int @var{xsubi}[3])
@standards{SVID, stdlib.h}
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
This function is similar to the @code{lrand48} function in that it
returns a number in the range of @code{0} to @code{2^31} (exclusive) but
the state of the random number generator used to produce the random bits
is determined by the array provided as the parameter to the function.

The numbers in the array are updated afterwards so that subsequent calls
to this function yield different results (as is expected of a random
number generator).  The array should have been initialized before the
first call to obtain reproducible results.
@end deftypefun

@deftypefun {long int} mrand48 (void)
@standards{SVID, stdlib.h}
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
The @code{mrand48} function is similar to @code{lrand48}.  The only
difference is that the numbers returned are in the range @code{-2^31} to
@code{2^31} (exclusive).
@end deftypefun

@deftypefun {long int} jrand48 (unsigned short int @var{xsubi}[3])
@standards{SVID, stdlib.h}
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
The @code{jrand48} function is similar to @code{nrand48}.  The only
difference is that the numbers returned are in the range @code{-2^31} to
@code{2^31} (exclusive).  For the @code{xsubi} parameter the same
requirements are necessary.
@end deftypefun

The internal state of the random number generator can be initialized in
several ways.  The methods differ in the completeness of the
information provided.

@deftypefun void srand48 (long int @var{seedval})
@standards{SVID, stdlib.h}
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
The @code{srand48} function sets the most significant 32 bits of the
internal state of the random number generator to the least
significant 32 bits of the @var{seedval} parameter.  The lower 16 bits
are initialized to the value @code{0x330E}.  Even if the @code{long
int} type contains more than 32 bits only the lower 32 bits are used.

Owing to this limitation, initialization of the state of this
function is not very useful.  But it makes it easy to use a construct
like @code{srand48 (time (0))}.

A side-effect of this function is that the values @code{a} and @code{c}
from the internal state, which are used in the congruential formula,
are reset to the default values given above.  This is of importance once
the user has called the @code{lcong48} function (see below).
@end deftypefun

@deftypefun {unsigned short int *} seed48 (unsigned short int @var{seed16v}[3])
@standards{SVID, stdlib.h}
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
The @code{seed48} function initializes all 48 bits of the state of the
internal random number generator from the contents of the parameter
@var{seed16v}.  Here the lower 16 bits of the first element of
@var{seed16v} initialize the least significant 16 bits of the internal
state, the lower 16 bits of @code{@var{seed16v}[1]} initialize the mid-order
16 bits of the state and the 16 lower bits of @code{@var{seed16v}[2]}
initialize the most significant 16 bits of the state.

Unlike @code{srand48} this function lets the user initialize all 48 bits
of the state.

The value returned by @code{seed48} is a pointer to an array containing
the values of the internal state before the change.  This might be
useful to restart the random number generator at a certain state.
Otherwise the value can simply be ignored.

As for @code{srand48}, the values @code{a} and @code{c} from the
congruential formula are reset to the default values.
@end deftypefun

There is one more function to initialize the random number generator
which enables you to specify even more information by allowing you to
change the parameters in the congruential formula.

@deftypefun void lcong48 (unsigned short int @var{param}[7])
@standards{SVID, stdlib.h}
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
The @code{lcong48} function allows the user to change the complete state
of the random number generator.  Unlike @code{srand48} and
@code{seed48}, this function also changes the constants in the
congruential formula.

From the seven elements in the array @var{param} the least significant
16 bits of the entries @code{@var{param}[0]} to @code{@var{param}[2]}
determine the initial state, the least significant 16 bits of
@code{@var{param}[3]} to @code{@var{param}[5]} determine the 48 bit
constant @code{a} and @code{@var{param}[6]} determines the 16-bit value
@code{c}.
@end deftypefun

All the above functions have in common that they use the global
parameters for the congruential formula.  In multi-threaded programs it
might sometimes be useful to have different parameters in different
threads.  For this reason all the above functions have a counterpart
which works on a description of the random number generator in the
user-supplied buffer instead of the global state.

Please note that it is no problem if several threads use the global
state if all threads use the functions which take a pointer to an array
containing the state.  The random numbers are computed following the
same loop but if the state in the array is different all threads will
obtain an individual random number generator.

The user-supplied buffer must be of type @code{struct drand48_data}.
This type should be regarded as opaque and not manipulated directly.

@deftypefun int drand48_r (struct drand48_data *@var{buffer}, double *@var{result})
@standards{GNU, stdlib.h}
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
This function is equivalent to the @code{drand48} function with the
difference that it does not modify the global random number generator
parameters but instead the parameters in the buffer supplied through the
pointer @var{buffer}.  The random number is returned in the variable
pointed to by @var{result}.

The return value of the function indicates whether the call succeeded.
If the value is less than @code{0} an error occurred and @var{errno} is
set to indicate the problem.

This function is a GNU extension and should not be used in portable
programs.
@end deftypefun

@deftypefun int erand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, double *@var{result})
@standards{GNU, stdlib.h}
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
The @code{erand48_r} function works like @code{erand48}, but in addition
it takes an argument @var{buffer} which describes the random number
generator.  The state of the random number generator is taken from the
@code{xsubi} array, the parameters for the congruential formula from the
global random number generator data.  The random number is returned in
the variable pointed to by @var{result}.

The return value is non-negative if the call succeeded.

This function is a GNU extension and should not be used in portable
programs.
@end deftypefun

@deftypefun int lrand48_r (struct drand48_data *@var{buffer}, long int *@var{result})
@standards{GNU, stdlib.h}
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
This function is similar to @code{lrand48}, but in addition it takes a
pointer to a buffer describing the state of the random number generator
just like @code{drand48}.

If the return value of the function is non-negative the variable pointed
to by @var{result} contains the result.  Otherwise an error occurred.

This function is a GNU extension and should not be used in portable
programs.
@end deftypefun

@deftypefun int nrand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, long int *@var{result})
@standards{GNU, stdlib.h}
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
The @code{nrand48_r} function works like @code{nrand48} in that it
produces a random number in the range @code{0} to @code{2^31}.  But instead
of using the global parameters for the congruential formula it uses the
information from the buffer pointed to by @var{buffer}.  The state is
described by the values in @var{xsubi}.

If the return value is non-negative the variable pointed to by
@var{result} contains the result.

This function is a GNU extension and should not be used in portable
programs.
@end deftypefun

@deftypefun int mrand48_r (struct drand48_data *@var{buffer}, long int *@var{result})
@standards{GNU, stdlib.h}
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
This function is similar to @code{mrand48} but like the other reentrant
functions it uses the random number generator described by the value in
the buffer pointed to by @var{buffer}.

If the return value is non-negative the variable pointed to by
@var{result} contains the result.

This function is a GNU extension and should not be used in portable
programs.
@end deftypefun

@deftypefun int jrand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, long int *@var{result})
@standards{GNU, stdlib.h}
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
The @code{jrand48_r} function is similar to @code{jrand48}.  Like the
other reentrant functions of this function family it uses the
congruential formula parameters from the buffer pointed to by
@var{buffer}.

If the return value is non-negative the variable pointed to by
@var{result} contains the result.

This function is a GNU extension and should not be used in portable
programs.
@end deftypefun

Before any of the above functions are used the buffer of type
@code{struct drand48_data} should be initialized.  The easiest way to do
this is to fill the whole buffer with null bytes, e.g. by

@smallexample
memset (buffer, '\0', sizeof (struct drand48_data));
@end smallexample

@noindent
Using any of the reentrant functions of this family now will
automatically initialize the random number generator to the default
values for the state and the parameters of the congruential formula.

The other possibility is to use any of the functions which explicitly
initialize the buffer.  Though it might be obvious how to initialize the
buffer from looking at the parameter to the function, it is highly
recommended to use these functions since the result might not always be
what you expect.

@deftypefun int srand48_r (long int @var{seedval}, struct drand48_data *@var{buffer})
@standards{GNU, stdlib.h}
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
The description of the random number generator represented by the
information in @var{buffer} is initialized similarly to what the function
@code{srand48} does.  The state is initialized from the parameter
@var{seedval} and the parameters for the congruential formula are
initialized to their default values.

If the return value is non-negative the function call succeeded.

This function is a GNU extension and should not be used in portable
programs.
@end deftypefun

@deftypefun int seed48_r (unsigned short int @var{seed16v}[3], struct drand48_data *@var{buffer})
@standards{GNU, stdlib.h}
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
This function is similar to @code{srand48_r} but like @code{seed48} it
initializes all 48 bits of the state from the parameter @var{seed16v}.

If the return value is non-negative the function call succeeded.  It
does not return a pointer to the previous state of the random number
generator like the @code{seed48} function does.  If the user wants to
preserve the state for a later re-run s/he can copy the whole buffer
pointed to by @var{buffer}.

This function is a GNU extension and should not be used in portable
programs.
@end deftypefun

@deftypefun int lcong48_r (unsigned short int @var{param}[7], struct drand48_data *@var{buffer})
@standards{GNU, stdlib.h}
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
This function initializes all aspects of the random number generator
described in @var{buffer} with the data in @var{param}.  Here it is
especially true that the function does more than just copying the
contents of @var{param} and @var{buffer}.  More work is required and
therefore it is important to use this function rather than initializing
the random number generator directly.

If the return value is non-negative the function call succeeded.

This function is a GNU extension and should not be used in portable
programs.
@end deftypefun

@node FP Function Optimizations
@section Is Fast Code or Small Code preferred?
@cindex Optimization

If an application uses many floating point functions it is often the case
that the cost of the function calls themselves is not negligible.
Modern processors can often execute the operations themselves
very fast, but the function call disrupts the instruction pipeline.

For this reason @theglibc{} provides optimizations for many of the
frequently-used math functions.  When GNU CC is used and the user
activates the optimizer, several new inline functions and macros are
defined.  These new functions and macros have the same names as the
library functions and so are used instead of the latter.  In the case of
inline functions the compiler will decide whether it is reasonable to
use them, and this decision is usually correct.

This means that no calls to the library functions may be necessary, and
can increase the speed of generated code significantly.  The drawback is
that code size will increase, and the increase is not always negligible.

There are two kinds of inline functions: those that give the same result
as the library functions and others that might not set @code{errno} and
might have a reduced precision and/or argument range in comparison with
the library functions.  The latter inline functions are only available
if the flag @code{-ffast-math} is given to GNU CC.

In cases where the inline functions and macros are not wanted the symbol
@code{__NO_MATH_INLINES} should be defined before any system header is
included.  This will ensure that only library functions are used.  Of
course, it can be determined for each file in the project whether
giving this option is preferable or not.

Not all hardware implements the entire @w{IEEE 754} standard, and even
if it does there may be a substantial performance penalty for using some
of its features.  For example, enabling traps on some processors forces
the FPU to run un-pipelined, which can more than double calculation time.
@c ***Add explanation of -lieee, -mieee.