aboutsummaryrefslogtreecommitdiff
path: root/linuxthreads/pthread.c
blob: 15de7e610f063f0f105ed26aaec2fe2d46cae6f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313

/* Linuxthreads - a simple clone()-based implementation of Posix        */
/* threads for Linux.                                                   */
/* Copyright (C) 1996 Xavier Leroy (Xavier.Leroy@inria.fr)              */
/*                                                                      */
/* This program is free software; you can redistribute it and/or        */
/* modify it under the terms of the GNU Library General Public License  */
/* as published by the Free Software Foundation; either version 2       */
/* of the License, or (at your option) any later version.               */
/*                                                                      */
/* This program is distributed in the hope that it will be useful,      */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of       */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the        */
/* GNU Library General Public License for more details.                 */

/* Thread creation, initialization, and basic low-level routines */

#include <errno.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/wait.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <shlib-compat.h>
#include "pthread.h"
#include "internals.h"
#include "spinlock.h"
#include "restart.h"
#include "smp.h"
#include <ldsodefs.h>
#include <tls.h>
#include <version.h>

/* Sanity check.  */
#if !defined __SIGRTMIN || (__SIGRTMAX - __SIGRTMIN) < 3
# error "This must not happen"
#endif

#if !(USE_TLS && HAVE___THREAD)
/* These variables are used by the setup code.  */
extern int _errno;
extern int _h_errno;

/* We need the global/static resolver state here.  */
# include <resolv.h>
# undef _res

extern struct __res_state _res;
#endif

#ifdef USE_TLS

/* We need only a few variables.  */
static pthread_descr manager_thread;

#else

/* Descriptor of the initial thread */

struct _pthread_descr_struct __pthread_initial_thread = {
  .p_header.data.self = &__pthread_initial_thread,
  .p_nextlive = &__pthread_initial_thread,
  .p_prevlive = &__pthread_initial_thread,
  .p_tid = PTHREAD_THREADS_MAX,
  .p_lock = &__pthread_handles[0].h_lock,
  .p_start_args = PTHREAD_START_ARGS_INITIALIZER(NULL),
#if !(USE_TLS && HAVE___THREAD)
  .p_errnop = &_errno,
  .p_h_errnop = &_h_errno,
  .p_resp = &_res,
#endif
  .p_userstack = 1,
  .p_resume_count = __ATOMIC_INITIALIZER,
  .p_alloca_cutoff = __MAX_ALLOCA_CUTOFF
};

/* Descriptor of the manager thread; none of this is used but the error
   variables, the p_pid and p_priority fields,
   and the address for identification.  */

#define manager_thread (&__pthread_manager_thread)
struct _pthread_descr_struct __pthread_manager_thread = {
  .p_header.data.self = &__pthread_manager_thread,
  .p_header.data.multiple_threads = 1,
  .p_lock = &__pthread_handles[1].h_lock,
  .p_start_args = PTHREAD_START_ARGS_INITIALIZER(__pthread_manager),
#if !(USE_TLS && HAVE___THREAD)
  .p_errnop = &__pthread_manager_thread.p_errno,
#endif
  .p_nr = 1,
  .p_resume_count = __ATOMIC_INITIALIZER,
  .p_alloca_cutoff = PTHREAD_STACK_MIN / 4
};
#endif

/* Pointer to the main thread (the father of the thread manager thread) */
/* Originally, this is the initial thread, but this changes after fork() */

#ifdef USE_TLS
pthread_descr __pthread_main_thread;
#else
pthread_descr __pthread_main_thread = &__pthread_initial_thread;
#endif

/* Limit between the stack of the initial thread (above) and the
   stacks of other threads (below). Aligned on a STACK_SIZE boundary. */

char *__pthread_initial_thread_bos;

/* File descriptor for sending requests to the thread manager. */
/* Initially -1, meaning that the thread manager is not running. */

int __pthread_manager_request = -1;

int __pthread_multiple_threads attribute_hidden;

/* Other end of the pipe for sending requests to the thread manager. */

int __pthread_manager_reader;

/* Limits of the thread manager stack */

char *__pthread_manager_thread_bos;
char *__pthread_manager_thread_tos;

/* For process-wide exit() */

int __pthread_exit_requested;
int __pthread_exit_code;

/* Maximum stack size.  */
size_t __pthread_max_stacksize;

/* Nozero if the machine has more than one processor.  */
int __pthread_smp_kernel;


#if !__ASSUME_REALTIME_SIGNALS
/* Pointers that select new or old suspend/resume functions
   based on availability of rt signals. */

void (*__pthread_restart)(pthread_descr) = __pthread_restart_old;
void (*__pthread_suspend)(pthread_descr) = __pthread_suspend_old;
int (*__pthread_timedsuspend)(pthread_descr, const struct timespec *) = __pthread_timedsuspend_old;
#endif	/* __ASSUME_REALTIME_SIGNALS */

/* Communicate relevant LinuxThreads constants to gdb */

const int __pthread_threads_max = PTHREAD_THREADS_MAX;
const int __pthread_sizeof_handle = sizeof(struct pthread_handle_struct);
const int __pthread_offsetof_descr = offsetof(struct pthread_handle_struct,
                                              h_descr);
const int __pthread_offsetof_pid = offsetof(struct _pthread_descr_struct,
                                            p_pid);
const int __linuxthreads_pthread_sizeof_descr
  = sizeof(struct _pthread_descr_struct);

const int __linuxthreads_initial_report_events;

const char __linuxthreads_version[] = VERSION;

/* Forward declarations */

static void pthread_onexit_process(int retcode, void *arg);
#ifndef HAVE_Z_NODELETE
static void pthread_atexit_process(void *arg, int retcode);
static void pthread_atexit_retcode(void *arg, int retcode);
#endif
static void pthread_handle_sigcancel(int sig);
static void pthread_handle_sigrestart(int sig);
static void pthread_handle_sigdebug(int sig);

/* Signal numbers used for the communication.
   In these variables we keep track of the used variables.  If the
   platform does not support any real-time signals we will define the
   values to some unreasonable value which will signal failing of all
   the functions below.  */
int __pthread_sig_restart = __SIGRTMIN;
int __pthread_sig_cancel = __SIGRTMIN + 1;
int __pthread_sig_debug = __SIGRTMIN + 2;

extern int __libc_current_sigrtmin_private (void);

#if !__ASSUME_REALTIME_SIGNALS
static int rtsigs_initialized;

static void
init_rtsigs (void)
{
  if (rtsigs_initialized)
    return;

  if (__libc_current_sigrtmin_private () == -1)
    {
      __pthread_sig_restart = SIGUSR1;
      __pthread_sig_cancel = SIGUSR2;
      __pthread_sig_debug = 0;
    }
  else
    {
      __pthread_restart = __pthread_restart_new;
      __pthread_suspend = __pthread_wait_for_restart_signal;
      __pthread_timedsuspend = __pthread_timedsuspend_new;
    }

  rtsigs_initialized = 1;
}
#endif


/* Initialize the pthread library.
   Initialization is split in two functions:
   - a constructor function that blocks the __pthread_sig_restart signal
     (must do this very early, since the program could capture the signal
      mask with e.g. sigsetjmp before creating the first thread);
   - a regular function called from pthread_create when needed. */

static void pthread_initialize(void) __attribute__((constructor));

#ifndef HAVE_Z_NODELETE
extern void *__dso_handle __attribute__ ((weak));
#endif


#if defined USE_TLS && !defined SHARED
extern void __libc_setup_tls (size_t tcbsize, size_t tcbalign);
#endif

#ifdef SHARED
static struct pthread_functions pthread_functions =
  {
#if !(USE_TLS && HAVE___THREAD)
    .ptr_pthread_internal_tsd_set = __pthread_internal_tsd_set,
    .ptr_pthread_internal_tsd_get = __pthread_internal_tsd_get,
    .ptr_pthread_internal_tsd_address = __pthread_internal_tsd_address,
#endif
    .ptr_pthread_attr_destroy = __pthread_attr_destroy,
#if SHLIB_COMPAT(libpthread, GLIBC_2_0, GLIBC_2_1)
    .ptr___pthread_attr_init_2_0 = __pthread_attr_init_2_0,
#endif
    .ptr___pthread_attr_init_2_1 = __pthread_attr_init_2_1,
    .ptr_pthread_attr_getdetachstate = __pthread_attr_getdetachstate,
    .ptr_pthread_attr_setdetachstate = __pthread_attr_setdetachstate,
    .ptr_pthread_attr_getinheritsched = __pthread_attr_getinheritsched,
    .ptr_pthread_attr_setinheritsched = __pthread_attr_setinheritsched,
    .ptr_pthread_attr_getschedparam = __pthread_attr_getschedparam,
    .ptr_pthread_attr_setschedparam = __pthread_attr_setschedparam,
    .ptr_pthread_attr_getschedpolicy = __pthread_attr_getschedpolicy,
    .ptr_pthread_attr_setschedpolicy = __pthread_attr_setschedpolicy,
    .ptr_pthread_attr_getscope = __pthread_attr_getscope,
    .ptr_pthread_attr_setscope = __pthread_attr_setscope,
    .ptr_pthread_condattr_destroy = __pthread_condattr_destroy,
    .ptr_pthread_condattr_init = __pthread_condattr_init,
    .ptr_pthread_cond_broadcast = __pthread_cond_broadcast,
    .ptr_pthread_cond_destroy = __pthread_cond_destroy,
    .ptr_pthread_cond_init = __pthread_cond_init,
    .ptr_pthread_cond_signal = __pthread_cond_signal,
    .ptr_pthread_cond_wait = __pthread_cond_wait,
    .ptr_pthread_equal = __pthread_equal,
    .ptr___pthread_exit = __pthread_exit,
    .ptr_pthread_getschedparam = __pthread_getschedparam,
    .ptr_pthread_setschedparam = __pthread_setschedparam,
    .ptr_pthread_mutex_destroy = __pthread_mutex_destroy,
    .ptr_pthread_mutex_init = __pthread_mutex_init,
    .ptr_pthread_mutex_lock = __pthread_mutex_lock,
    .ptr_pthread_mutex_trylock = __pthread_mutex_trylock,
    .ptr_pthread_mutex_unlock = __pthread_mutex_unlock,
    .ptr_pthread_self = __pthread_self,
    .ptr_pthread_setcancelstate = __pthread_setcancelstate,
    .ptr_pthread_setcanceltype = __pthread_setcanceltype,
    .ptr_pthread_do_exit = __pthread_do_exit,
    .ptr_pthread_thread_self = __pthread_thread_self
  };
# define ptr_pthread_functions &pthread_functions
#else
# define ptr_pthread_functions NULL
#endif

static int *__libc_multiple_threads_ptr;

/* Do some minimal initialization which has to be done during the
   startup of the C library.  */
void
__pthread_initialize_minimal(void)
{
#ifdef USE_TLS
  pthread_descr self;

  /* First of all init __pthread_handles[0] and [1] if needed.  */
# if __LT_SPINLOCK_INIT != 0
  __pthread_handles[0].h_lock = __LOCK_INITIALIZER;
  __pthread_handles[1].h_lock = __LOCK_INITIALIZER;
# endif
# ifndef SHARED
  /* Unlike in the dynamically linked case the dynamic linker has not
     taken care of initializing the TLS data structures.  */
  __libc_setup_tls (TLS_TCB_SIZE, TLS_TCB_ALIGN);
# elif !USE___THREAD
  if (__builtin_expect (GL(dl_tls_max_dtv_idx) == 0, 0))
    {
      /* There is no actual TLS being used, so the thread register
	 was not initialized in the dynamic linker.  */

      /* We need to install special hooks so that the malloc and memalign
	 calls in _dl_tls_setup and _dl_allocate_tls won't cause full
	 malloc initialization that will try to set up its thread state.  */

      extern void __libc_malloc_pthread_startup (bool first_time);
      __libc_malloc_pthread_startup (true);

      if (__builtin_expect (_dl_tls_setup (), 0)
	  || __builtin_expect ((self = _dl_allocate_tls (NULL)) == NULL, 0))
	{
	  static const char msg[] = "\
cannot allocate TLS data structures for initial thread\n";
	  TEMP_FAILURE_RETRY (__libc_write (STDERR_FILENO,
					    msg, sizeof msg - 1));
	  abort ();
	}
      const char *lossage = TLS_INIT_TP (self, 0);
      if (__builtin_expect (lossage != NULL, 0))
	{
	  static const char msg[] = "cannot set up thread-local storage: ";
	  const char nl = '\n';
	  TEMP_FAILURE_RETRY (__libc_write (STDERR_FILENO,
					    msg, sizeof msg - 1));
	  TEMP_FAILURE_RETRY (__libc_write (STDERR_FILENO,
					    lossage, strlen (lossage)));
	  TEMP_FAILURE_RETRY (__libc_write (STDERR_FILENO, &nl, 1));
	}

      /* Though it was allocated with libc's malloc, that was done without
	 the user's __malloc_hook installed.  A later realloc that uses
	 the hooks might not work with that block from the plain malloc.
	 So we record this block as unfreeable just as the dynamic linker
	 does when it allocates the DTV before the libc malloc exists.  */
      GL(dl_initial_dtv) = GET_DTV (self);

      __libc_malloc_pthread_startup (false);
    }
# endif

  self = THREAD_SELF;

  /* The memory for the thread descriptor was allocated elsewhere as
     part of the TLS allocation.  We have to initialize the data
     structure by hand.  This initialization must mirror the struct
     definition above.  */
  self->p_nextlive = self->p_prevlive = self;
  self->p_tid = PTHREAD_THREADS_MAX;
  self->p_lock = &__pthread_handles[0].h_lock;
# ifndef HAVE___THREAD
  self->p_errnop = &_errno;
  self->p_h_errnop = &_h_errno;
# endif
  /* self->p_start_args need not be initialized, it's all zero.  */
  self->p_userstack = 1;
# if __LT_SPINLOCK_INIT != 0
  self->p_resume_count = (struct pthread_atomic) __ATOMIC_INITIALIZER;
# endif
  self->p_alloca_cutoff = __MAX_ALLOCA_CUTOFF;

  /* Another variable which points to the thread descriptor.  */
  __pthread_main_thread = self;

  /* And fill in the pointer the the thread __pthread_handles array.  */
  __pthread_handles[0].h_descr = self;

#else  /* USE_TLS */

  /* First of all init __pthread_handles[0] and [1].  */
# if __LT_SPINLOCK_INIT != 0
  __pthread_handles[0].h_lock = __LOCK_INITIALIZER;
  __pthread_handles[1].h_lock = __LOCK_INITIALIZER;
# endif
  __pthread_handles[0].h_descr = &__pthread_initial_thread;
  __pthread_handles[1].h_descr = &__pthread_manager_thread;

  /* If we have special thread_self processing, initialize that for the
     main thread now.  */
# ifdef INIT_THREAD_SELF
  INIT_THREAD_SELF(&__pthread_initial_thread, 0);
# endif
#endif

#if HP_TIMING_AVAIL
# ifdef USE_TLS
  self->p_cpuclock_offset = GL(dl_cpuclock_offset);
# else
  __pthread_initial_thread.p_cpuclock_offset = GL(dl_cpuclock_offset);
# endif
#endif

  __libc_multiple_threads_ptr = __libc_pthread_init (ptr_pthread_functions);
}


void
__pthread_init_max_stacksize(void)
{
  struct rlimit limit;
  size_t max_stack;

  getrlimit(RLIMIT_STACK, &limit);
#ifdef FLOATING_STACKS
  if (limit.rlim_cur == RLIM_INFINITY)
    limit.rlim_cur = ARCH_STACK_MAX_SIZE;
# ifdef NEED_SEPARATE_REGISTER_STACK
  max_stack = limit.rlim_cur / 2;
# else
  max_stack = limit.rlim_cur;
# endif
#else
  /* Play with the stack size limit to make sure that no stack ever grows
     beyond STACK_SIZE minus one page (to act as a guard page). */
# ifdef NEED_SEPARATE_REGISTER_STACK
  /* STACK_SIZE bytes hold both the main stack and register backing
     store. The rlimit value applies to each individually.  */
  max_stack = STACK_SIZE/2 - __getpagesize ();
# else
  max_stack = STACK_SIZE - __getpagesize();
# endif
  if (limit.rlim_cur > max_stack) {
    limit.rlim_cur = max_stack;
    setrlimit(RLIMIT_STACK, &limit);
  }
#endif
  __pthread_max_stacksize = max_stack;
  if (max_stack / 4 < __MAX_ALLOCA_CUTOFF)
    {
#ifdef USE_TLS
      pthread_descr self = THREAD_SELF;
      self->p_alloca_cutoff = max_stack / 4;
#else
      __pthread_initial_thread.p_alloca_cutoff = max_stack / 4;
#endif
    }
}

#ifdef SHARED
# if USE___THREAD
/* When using __thread for this, we do it in libc so as not
   to give libpthread its own TLS segment just for this.  */
extern void **__libc_dl_error_tsd (void) __attribute__ ((const));
# else
static void ** __attribute__ ((const))
__libc_dl_error_tsd (void)
{
  return &thread_self ()->p_libc_specific[_LIBC_TSD_KEY_DL_ERROR];
}
# endif
#endif

static void pthread_initialize(void)
{
  struct sigaction sa;
  sigset_t mask;

  /* If already done (e.g. by a constructor called earlier!), bail out */
  if (__pthread_initial_thread_bos != NULL) return;
#ifdef TEST_FOR_COMPARE_AND_SWAP
  /* Test if compare-and-swap is available */
  __pthread_has_cas = compare_and_swap_is_available();
#endif
#ifdef FLOATING_STACKS
  /* We don't need to know the bottom of the stack.  Give the pointer some
     value to signal that initialization happened.  */
  __pthread_initial_thread_bos = (void *) -1l;
#else
  /* Determine stack size limits .  */
  __pthread_init_max_stacksize ();
# ifdef _STACK_GROWS_UP
  /* The initial thread already has all the stack it needs */
  __pthread_initial_thread_bos = (char *)
    ((long)CURRENT_STACK_FRAME &~ (STACK_SIZE - 1));
# else
  /* For the initial stack, reserve at least STACK_SIZE bytes of stack
     below the current stack address, and align that on a
     STACK_SIZE boundary. */
  __pthread_initial_thread_bos =
    (char *)(((long)CURRENT_STACK_FRAME - 2 * STACK_SIZE) & ~(STACK_SIZE - 1));
# endif
#endif
#ifdef USE_TLS
  /* Update the descriptor for the initial thread. */
  THREAD_SETMEM (((pthread_descr) NULL), p_pid, __getpid());
# ifndef HAVE___THREAD
  /* Likewise for the resolver state _res.  */
  THREAD_SETMEM (((pthread_descr) NULL), p_resp, &_res);
# endif
#else
  /* Update the descriptor for the initial thread. */
  __pthread_initial_thread.p_pid = __getpid();
  /* Likewise for the resolver state _res.  */
  __pthread_initial_thread.p_resp = &_res;
#endif
#if !__ASSUME_REALTIME_SIGNALS
  /* Initialize real-time signals. */
  init_rtsigs ();
#endif
  /* Setup signal handlers for the initial thread.
     Since signal handlers are shared between threads, these settings
     will be inherited by all other threads. */
  sa.sa_handler = pthread_handle_sigrestart;
  sigemptyset(&sa.sa_mask);
  sa.sa_flags = 0;
  __libc_sigaction(__pthread_sig_restart, &sa, NULL);
  sa.sa_handler = pthread_handle_sigcancel;
  // sa.sa_flags = 0;
  __libc_sigaction(__pthread_sig_cancel, &sa, NULL);
  if (__pthread_sig_debug > 0) {
    sa.sa_handler = pthread_handle_sigdebug;
    sigemptyset(&sa.sa_mask);
    // sa.sa_flags = 0;
    __libc_sigaction(__pthread_sig_debug, &sa, NULL);
  }
  /* Initially, block __pthread_sig_restart. Will be unblocked on demand. */
  sigemptyset(&mask);
  sigaddset(&mask, __pthread_sig_restart);
  sigprocmask(SIG_BLOCK, &mask, NULL);
  /* Register an exit function to kill all other threads. */
  /* Do it early so that user-registered atexit functions are called
     before pthread_*exit_process. */
#ifndef HAVE_Z_NODELETE
  if (__builtin_expect (&__dso_handle != NULL, 1))
    __cxa_atexit ((void (*) (void *)) pthread_atexit_process, NULL,
		  __dso_handle);
  else
#endif
    __on_exit (pthread_onexit_process, NULL);
  /* How many processors.  */
  __pthread_smp_kernel = is_smp_system ();

#ifdef SHARED
  /* Transfer the old value from the dynamic linker's internal location.  */
  *__libc_dl_error_tsd () = *(*GL(dl_error_catch_tsd)) ();
  GL(dl_error_catch_tsd) = &__libc_dl_error_tsd;
#endif
}

void __pthread_initialize(void)
{
  pthread_initialize();
}

int __pthread_initialize_manager(void)
{
  int manager_pipe[2];
  int pid;
  struct pthread_request request;
  int report_events;
  pthread_descr tcb;

  __pthread_multiple_threads = 1;
  __pthread_main_thread->p_header.data.multiple_threads = 1;
  * __libc_multiple_threads_ptr = 1;

#ifndef HAVE_Z_NODELETE
  if (__builtin_expect (&__dso_handle != NULL, 1))
    __cxa_atexit ((void (*) (void *)) pthread_atexit_retcode, NULL,
		  __dso_handle);
#endif

  if (__pthread_max_stacksize == 0)
    __pthread_init_max_stacksize ();
  /* If basic initialization not done yet (e.g. we're called from a
     constructor run before our constructor), do it now */
  if (__pthread_initial_thread_bos == NULL) pthread_initialize();
  /* Setup stack for thread manager */
  __pthread_manager_thread_bos = malloc(THREAD_MANAGER_STACK_SIZE);
  if (__pthread_manager_thread_bos == NULL) return -1;
  __pthread_manager_thread_tos =
    __pthread_manager_thread_bos + THREAD_MANAGER_STACK_SIZE;
  /* Setup pipe to communicate with thread manager */
  if (pipe(manager_pipe) == -1) {
    free(__pthread_manager_thread_bos);
    return -1;
  }

#ifdef USE_TLS
  /* Allocate memory for the thread descriptor and the dtv.  */
  __pthread_handles[1].h_descr = manager_thread = tcb
    = _dl_allocate_tls (NULL);
  if (tcb == NULL) {
    free(__pthread_manager_thread_bos);
    __libc_close(manager_pipe[0]);
    __libc_close(manager_pipe[1]);
    return -1;
  }

  /* Initialize the descriptor.  */
  tcb->p_header.data.tcb = tcb;
  tcb->p_header.data.self = tcb;
  tcb->p_header.data.multiple_threads = 1;
  tcb->p_lock = &__pthread_handles[1].h_lock;
# ifndef HAVE___THREAD
  tcb->p_errnop = &tcb->p_errno;
# endif
  tcb->p_start_args = (struct pthread_start_args) PTHREAD_START_ARGS_INITIALIZER(__pthread_manager);
  tcb->p_nr = 1;
# if __LT_SPINLOCK_INIT != 0
  self->p_resume_count = (struct pthread_atomic) __ATOMIC_INITIALIZER;
# endif
  tcb->p_alloca_cutoff = PTHREAD_STACK_MIN / 4;
#else
  tcb = &__pthread_manager_thread;
#endif

  __pthread_manager_request = manager_pipe[1]; /* writing end */
  __pthread_manager_reader = manager_pipe[0]; /* reading end */

  /* Start the thread manager */
  pid = 0;
#ifdef USE_TLS
  if (__linuxthreads_initial_report_events != 0)
    THREAD_SETMEM (((pthread_descr) NULL), p_report_events,
		   __linuxthreads_initial_report_events);
  report_events = THREAD_GETMEM (((pthread_descr) NULL), p_report_events);
#else
  if (__linuxthreads_initial_report_events != 0)
    __pthread_initial_thread.p_report_events
      = __linuxthreads_initial_report_events;
  report_events = __pthread_initial_thread.p_report_events;
#endif
  if (__builtin_expect (report_events, 0))
    {
      /* It's a bit more complicated.  We have to report the creation of
	 the manager thread.  */
      int idx = __td_eventword (TD_CREATE);
      uint32_t mask = __td_eventmask (TD_CREATE);
      uint32_t event_bits;

#ifdef USE_TLS
      event_bits = THREAD_GETMEM_NC (((pthread_descr) NULL),
				     p_eventbuf.eventmask.event_bits[idx]);
#else
      event_bits = __pthread_initial_thread.p_eventbuf.eventmask.event_bits[idx];
#endif

      if ((mask & (__pthread_threads_events.event_bits[idx] | event_bits))
	  != 0)
	{
	  __pthread_lock(tcb->p_lock, NULL);

#ifdef NEED_SEPARATE_REGISTER_STACK
	  pid = __clone2(__pthread_manager_event,
			 (void **) __pthread_manager_thread_bos,
			 THREAD_MANAGER_STACK_SIZE,
			 CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
			 tcb);
#elif _STACK_GROWS_UP
	  pid = __clone(__pthread_manager_event,
			(void **) __pthread_manager_thread_bos,
			CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
			tcb);
#else
	  pid = __clone(__pthread_manager_event,
			(void **) __pthread_manager_thread_tos,
			CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
			tcb);
#endif

	  if (pid != -1)
	    {
	      /* Now fill in the information about the new thread in
	         the newly created thread's data structure.  We cannot let
	         the new thread do this since we don't know whether it was
	         already scheduled when we send the event.  */
	      tcb->p_eventbuf.eventdata = tcb;
	      tcb->p_eventbuf.eventnum = TD_CREATE;
	      __pthread_last_event = tcb;
	      tcb->p_tid = 2* PTHREAD_THREADS_MAX + 1;
	      tcb->p_pid = pid;

	      /* Now call the function which signals the event.  */
	      __linuxthreads_create_event ();
	    }

	  /* Now restart the thread.  */
	  __pthread_unlock(tcb->p_lock);
	}
    }

  if (__builtin_expect (pid, 0) == 0)
    {
#ifdef NEED_SEPARATE_REGISTER_STACK
      pid = __clone2(__pthread_manager, (void **) __pthread_manager_thread_bos,
		     THREAD_MANAGER_STACK_SIZE,
		     CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND, tcb);
#elif _STACK_GROWS_UP
      pid = __clone(__pthread_manager, (void **) __pthread_manager_thread_bos,
		    CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND, tcb);
#else
      pid = __clone(__pthread_manager, (void **) __pthread_manager_thread_tos,
		    CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND, tcb);
#endif
    }
  if (__builtin_expect (pid, 0) == -1) {
    free(__pthread_manager_thread_bos);
    __libc_close(manager_pipe[0]);
    __libc_close(manager_pipe[1]);
    return -1;
  }
  tcb->p_tid = 2* PTHREAD_THREADS_MAX + 1;
  tcb->p_pid = pid;
  /* Make gdb aware of new thread manager */
  if (__builtin_expect (__pthread_threads_debug, 0) && __pthread_sig_debug > 0)
    {
      raise(__pthread_sig_debug);
      /* We suspend ourself and gdb will wake us up when it is
	 ready to handle us. */
      __pthread_wait_for_restart_signal(thread_self());
    }
  /* Synchronize debugging of the thread manager */
  request.req_kind = REQ_DEBUG;
  TEMP_FAILURE_RETRY(__libc_write(__pthread_manager_request,
				  (char *) &request, sizeof(request)));
  return 0;
}

/* Thread creation */

int __pthread_create_2_1(pthread_t *thread, const pthread_attr_t *attr,
			 void * (*start_routine)(void *), void *arg)
{
  pthread_descr self = thread_self();
  struct pthread_request request;
  int retval;
  if (__builtin_expect (__pthread_manager_request, 0) < 0) {
    if (__pthread_initialize_manager() < 0) return EAGAIN;
  }
  request.req_thread = self;
  request.req_kind = REQ_CREATE;
  request.req_args.create.attr = attr;
  request.req_args.create.fn = start_routine;
  request.req_args.create.arg = arg;
  sigprocmask(SIG_SETMASK, (const sigset_t *) NULL,
              &request.req_args.create.mask);
  TEMP_FAILURE_RETRY(__libc_write(__pthread_manager_request,
				  (char *) &request, sizeof(request)));
  suspend(self);
  retval = THREAD_GETMEM(self, p_retcode);
  if (__builtin_expect (retval, 0) == 0)
    *thread = (pthread_t) THREAD_GETMEM(self, p_retval);
  return retval;
}

versioned_symbol (libpthread, __pthread_create_2_1, pthread_create, GLIBC_2_1);

#if SHLIB_COMPAT (libpthread, GLIBC_2_0, GLIBC_2_1)

int __pthread_create_2_0(pthread_t *thread, const pthread_attr_t *attr,
			 void * (*start_routine)(void *), void *arg)
{
  /* The ATTR attribute is not really of type `pthread_attr_t *'.  It has
     the old size and access to the new members might crash the program.
     We convert the struct now.  */
  pthread_attr_t new_attr;

  if (attr != NULL)
    {
      size_t ps = __getpagesize ();

      memcpy (&new_attr, attr,
	      (size_t) &(((pthread_attr_t*)NULL)->__guardsize));
      new_attr.__guardsize = ps;
      new_attr.__stackaddr_set = 0;
      new_attr.__stackaddr = NULL;
      new_attr.__stacksize = STACK_SIZE - ps;
      attr = &new_attr;
    }
  return __pthread_create_2_1 (thread, attr, start_routine, arg);
}
compat_symbol (libpthread, __pthread_create_2_0, pthread_create, GLIBC_2_0);
#endif

/* Simple operations on thread identifiers */

pthread_descr __pthread_thread_self(void)
{
  return thread_self();
}

pthread_t __pthread_self(void)
{
  pthread_descr self = thread_self();
  return THREAD_GETMEM(self, p_tid);
}
strong_alias (__pthread_self, pthread_self);

int __pthread_equal(pthread_t thread1, pthread_t thread2)
{
  return thread1 == thread2;
}
strong_alias (__pthread_equal, pthread_equal);

/* Helper function for thread_self in the case of user-provided stacks */

#ifndef THREAD_SELF

pthread_descr __pthread_find_self(void)
{
  char * sp = CURRENT_STACK_FRAME;
  pthread_handle h;

  /* __pthread_handles[0] is the initial thread, __pthread_handles[1] is
     the manager threads handled specially in thread_self(), so start at 2 */
  h = __pthread_handles + 2;
  while (! (sp <= (char *) h->h_descr && sp >= h->h_bottom)) h++;
  return h->h_descr;
}

#else

static pthread_descr thread_self_stack(void)
{
  char *sp = CURRENT_STACK_FRAME;
  pthread_handle h;

  if (sp >= __pthread_manager_thread_bos && sp < __pthread_manager_thread_tos)
    return manager_thread;
  h = __pthread_handles + 2;
# ifdef USE_TLS
  while (h->h_descr == NULL
	 || ! (sp <= (char *) h->h_descr->p_stackaddr && sp >= h->h_bottom))
    h++;
# else
  while (! (sp <= (char *) h->h_descr && sp >= h->h_bottom))
    h++;
# endif
  return h->h_descr;
}

#endif

/* Thread scheduling */

int __pthread_setschedparam(pthread_t thread, int policy,
                            const struct sched_param *param)
{
  pthread_handle handle = thread_handle(thread);
  pthread_descr th;

  __pthread_lock(&handle->h_lock, NULL);
  if (__builtin_expect (invalid_handle(handle, thread), 0)) {
    __pthread_unlock(&handle->h_lock);
    return ESRCH;
  }
  th = handle->h_descr;
  if (__builtin_expect (__sched_setscheduler(th->p_pid, policy, param) == -1,
			0)) {
    __pthread_unlock(&handle->h_lock);
    return errno;
  }
  th->p_priority = policy == SCHED_OTHER ? 0 : param->sched_priority;
  __pthread_unlock(&handle->h_lock);
  if (__pthread_manager_request >= 0)
    __pthread_manager_adjust_prio(th->p_priority);
  return 0;
}
strong_alias (__pthread_setschedparam, pthread_setschedparam);

int __pthread_getschedparam(pthread_t thread, int *policy,
                            struct sched_param *param)
{
  pthread_handle handle = thread_handle(thread);
  int pid, pol;

  __pthread_lock(&handle->h_lock, NULL);
  if (__builtin_expect (invalid_handle(handle, thread), 0)) {
    __pthread_unlock(&handle->h_lock);
    return ESRCH;
  }
  pid = handle->h_descr->p_pid;
  __pthread_unlock(&handle->h_lock);
  pol = __sched_getscheduler(pid);
  if (__builtin_expect (pol, 0) == -1) return errno;
  if (__sched_getparam(pid, param) == -1) return errno;
  *policy = pol;
  return 0;
}
strong_alias (__pthread_getschedparam, pthread_getschedparam);

int __pthread_yield (void)
{
  /* For now this is equivalent with the POSIX call.  */
  return sched_yield ();
}
weak_alias (__pthread_yield, pthread_yield)

/* Process-wide exit() request */

static void pthread_onexit_process(int retcode, void *arg)
{
  if (__builtin_expect (__pthread_manager_request, 0) >= 0) {
    struct pthread_request request;
    pthread_descr self = thread_self();

    request.req_thread = self;
    request.req_kind = REQ_PROCESS_EXIT;
    request.req_args.exit.code = retcode;
    TEMP_FAILURE_RETRY(__libc_write(__pthread_manager_request,
				    (char *) &request, sizeof(request)));
    suspend(self);
    /* Main thread should accumulate times for thread manager and its
       children, so that timings for main thread account for all threads. */
    if (self == __pthread_main_thread)
      {
#ifdef USE_TLS
	waitpid(manager_thread->p_pid, NULL, __WCLONE);
#else
	waitpid(__pthread_manager_thread.p_pid, NULL, __WCLONE);
#endif
	/* Since all threads have been asynchronously terminated
           (possibly holding locks), free cannot be used any more.  */
	/*free (__pthread_manager_thread_bos);*/
	__pthread_manager_thread_bos = __pthread_manager_thread_tos = NULL;
      }
  }
}

#ifndef HAVE_Z_NODELETE
static int __pthread_atexit_retcode;

static void pthread_atexit_process(void *arg, int retcode)
{
  pthread_onexit_process (retcode ?: __pthread_atexit_retcode, arg);
}

static void pthread_atexit_retcode(void *arg, int retcode)
{
  __pthread_atexit_retcode = retcode;
}
#endif

/* The handler for the RESTART signal just records the signal received
   in the thread descriptor, and optionally performs a siglongjmp
   (for pthread_cond_timedwait). */

static void pthread_handle_sigrestart(int sig)
{
  pthread_descr self = thread_self();
  THREAD_SETMEM(self, p_signal, sig);
  if (THREAD_GETMEM(self, p_signal_jmp) != NULL)
    siglongjmp(*THREAD_GETMEM(self, p_signal_jmp), 1);
}

/* The handler for the CANCEL signal checks for cancellation
   (in asynchronous mode), for process-wide exit and exec requests.
   For the thread manager thread, redirect the signal to
   __pthread_manager_sighandler. */

static void pthread_handle_sigcancel(int sig)
{
  pthread_descr self = thread_self();
  sigjmp_buf * jmpbuf;

  if (self == manager_thread)
    {
#ifdef THREAD_SELF
      /* A new thread might get a cancel signal before it is fully
	 initialized, so that the thread register might still point to the
	 manager thread.  Double check that this is really the manager
	 thread.  */
      pthread_descr real_self = thread_self_stack();
      if (real_self == manager_thread)
	{
	  __pthread_manager_sighandler(sig);
	  return;
	}
      /* Oops, thread_self() isn't working yet..  */
      self = real_self;
# ifdef INIT_THREAD_SELF
      INIT_THREAD_SELF(self, self->p_nr);
# endif
#else
      __pthread_manager_sighandler(sig);
      return;
#endif
    }
  if (__builtin_expect (__pthread_exit_requested, 0)) {
    /* Main thread should accumulate times for thread manager and its
       children, so that timings for main thread account for all threads. */
    if (self == __pthread_main_thread) {
#ifdef USE_TLS
      waitpid(manager_thread->p_pid, NULL, __WCLONE);
#else
      waitpid(__pthread_manager_thread.p_pid, NULL, __WCLONE);
#endif
    }
    _exit(__pthread_exit_code);
  }
  if (__builtin_expect (THREAD_GETMEM(self, p_canceled), 0)
      && THREAD_GETMEM(self, p_cancelstate) == PTHREAD_CANCEL_ENABLE) {
    if (THREAD_GETMEM(self, p_canceltype) == PTHREAD_CANCEL_ASYNCHRONOUS)
      __pthread_do_exit(PTHREAD_CANCELED, CURRENT_STACK_FRAME);
    jmpbuf = THREAD_GETMEM(self, p_cancel_jmp);
    if (jmpbuf != NULL) {
      THREAD_SETMEM(self, p_cancel_jmp, NULL);
      siglongjmp(*jmpbuf, 1);
    }
  }
}

/* Handler for the DEBUG signal.
   The debugging strategy is as follows:
   On reception of a REQ_DEBUG request (sent by new threads created to
   the thread manager under debugging mode), the thread manager throws
   __pthread_sig_debug to itself. The debugger (if active) intercepts
   this signal, takes into account new threads and continue execution
   of the thread manager by propagating the signal because it doesn't
   know what it is specifically done for. In the current implementation,
   the thread manager simply discards it. */

static void pthread_handle_sigdebug(int sig)
{
  /* Nothing */
}

/* Reset the state of the thread machinery after a fork().
   Close the pipe used for requests and set the main thread to the forked
   thread.
   Notice that we can't free the stack segments, as the forked thread
   may hold pointers into them. */

void __pthread_reset_main_thread(void)
{
  pthread_descr self = thread_self();

  if (__pthread_manager_request != -1) {
    /* Free the thread manager stack */
    free(__pthread_manager_thread_bos);
    __pthread_manager_thread_bos = __pthread_manager_thread_tos = NULL;
    /* Close the two ends of the pipe */
    __libc_close(__pthread_manager_request);
    __libc_close(__pthread_manager_reader);
    __pthread_manager_request = __pthread_manager_reader = -1;
  }

  /* Update the pid of the main thread */
  THREAD_SETMEM(self, p_pid, __getpid());
  /* Make the forked thread the main thread */
  __pthread_main_thread = self;
  THREAD_SETMEM(self, p_nextlive, self);
  THREAD_SETMEM(self, p_prevlive, self);
#if !(USE_TLS && HAVE___THREAD)
  /* Now this thread modifies the global variables.  */
  THREAD_SETMEM(self, p_errnop, &_errno);
  THREAD_SETMEM(self, p_h_errnop, &_h_errno);
  THREAD_SETMEM(self, p_resp, &_res);
#endif

#ifndef FLOATING_STACKS
  /* This is to undo the setrlimit call in __pthread_init_max_stacksize.
     XXX This can be wrong if the user set the limit during the run.  */
 {
   struct rlimit limit;
   if (getrlimit (RLIMIT_STACK, &limit) == 0
       && limit.rlim_cur != limit.rlim_max)
     {
       limit.rlim_cur = limit.rlim_max;
       setrlimit(RLIMIT_STACK, &limit);
     }
 }
#endif
}

/* Process-wide exec() request */

void __pthread_kill_other_threads_np(void)
{
  struct sigaction sa;
  /* Terminate all other threads and thread manager */
  pthread_onexit_process(0, NULL);
  /* Make current thread the main thread in case the calling thread
     changes its mind, does not exec(), and creates new threads instead. */
  __pthread_reset_main_thread();

  /* Reset the signal handlers behaviour for the signals the
     implementation uses since this would be passed to the new
     process.  */
  sigemptyset(&sa.sa_mask);
  sa.sa_flags = 0;
  sa.sa_handler = SIG_DFL;
  __libc_sigaction(__pthread_sig_restart, &sa, NULL);
  __libc_sigaction(__pthread_sig_cancel, &sa, NULL);
  if (__pthread_sig_debug > 0)
    __libc_sigaction(__pthread_sig_debug, &sa, NULL);
}
weak_alias (__pthread_kill_other_threads_np, pthread_kill_other_threads_np)

/* Concurrency symbol level.  */
static int current_level;

int __pthread_setconcurrency(int level)
{
  /* We don't do anything unless we have found a useful interpretation.  */
  current_level = level;
  return 0;
}
weak_alias (__pthread_setconcurrency, pthread_setconcurrency)

int __pthread_getconcurrency(void)
{
  return current_level;
}
weak_alias (__pthread_getconcurrency, pthread_getconcurrency)

/* Primitives for controlling thread execution */

void __pthread_wait_for_restart_signal(pthread_descr self)
{
  sigset_t mask;

  sigprocmask(SIG_SETMASK, NULL, &mask); /* Get current signal mask */
  sigdelset(&mask, __pthread_sig_restart); /* Unblock the restart signal */
  THREAD_SETMEM(self, p_signal, 0);
  do {
    sigsuspend(&mask);                   /* Wait for signal */
  } while (THREAD_GETMEM(self, p_signal) !=__pthread_sig_restart);

  READ_MEMORY_BARRIER(); /* See comment in __pthread_restart_new */
}

#if !__ASSUME_REALTIME_SIGNALS
/* The _old variants are for 2.0 and early 2.1 kernels which don't have RT
   signals.
   On these kernels, we use SIGUSR1 and SIGUSR2 for restart and cancellation.
   Since the restart signal does not queue, we use an atomic counter to create
   queuing semantics. This is needed to resolve a rare race condition in
   pthread_cond_timedwait_relative. */

void __pthread_restart_old(pthread_descr th)
{
  if (atomic_increment(&th->p_resume_count) == -1)
    kill(th->p_pid, __pthread_sig_restart);
}

void __pthread_suspend_old(pthread_descr self)
{
  if (atomic_decrement(&self->p_resume_count) <= 0)
    __pthread_wait_for_restart_signal(self);
}

int
__pthread_timedsuspend_old(pthread_descr self, const struct timespec *abstime)
{
  sigset_t unblock, initial_mask;
  int was_signalled = 0;
  sigjmp_buf jmpbuf;

  if (atomic_decrement(&self->p_resume_count) == 0) {
    /* Set up a longjmp handler for the restart signal, unblock
       the signal and sleep. */

    if (sigsetjmp(jmpbuf, 1) == 0) {
      THREAD_SETMEM(self, p_signal_jmp, &jmpbuf);
      THREAD_SETMEM(self, p_signal, 0);
      /* Unblock the restart signal */
      sigemptyset(&unblock);
      sigaddset(&unblock, __pthread_sig_restart);
      sigprocmask(SIG_UNBLOCK, &unblock, &initial_mask);

      while (1) {
	struct timeval now;
	struct timespec reltime;

	/* Compute a time offset relative to now.  */
	__gettimeofday (&now, NULL);
	reltime.tv_nsec = abstime->tv_nsec - now.tv_usec * 1000;
	reltime.tv_sec = abstime->tv_sec - now.tv_sec;
	if (reltime.tv_nsec < 0) {
	  reltime.tv_nsec += 1000000000;
	  reltime.tv_sec -= 1;
	}

	/* Sleep for the required duration. If woken by a signal,
	   resume waiting as required by Single Unix Specification.  */
	if (reltime.tv_sec < 0 || __libc_nanosleep(&reltime, NULL) == 0)
	  break;
      }

      /* Block the restart signal again */
      sigprocmask(SIG_SETMASK, &initial_mask, NULL);
      was_signalled = 0;
    } else {
      was_signalled = 1;
    }
    THREAD_SETMEM(self, p_signal_jmp, NULL);
  }

  /* Now was_signalled is true if we exited the above code
     due to the delivery of a restart signal.  In that case,
     we know we have been dequeued and resumed and that the
     resume count is balanced.  Otherwise, there are some
     cases to consider. First, try to bump up the resume count
     back to zero. If it goes to 1, it means restart() was
     invoked on this thread. The signal must be consumed
     and the count bumped down and everything is cool. We
     can return a 1 to the caller.
     Otherwise, no restart was delivered yet, so a potential
     race exists; we return a 0 to the caller which must deal
     with this race in an appropriate way; for example by
     atomically removing the thread from consideration for a
     wakeup---if such a thing fails, it means a restart is
     being delivered. */

  if (!was_signalled) {
    if (atomic_increment(&self->p_resume_count) != -1) {
      __pthread_wait_for_restart_signal(self);
      atomic_decrement(&self->p_resume_count); /* should be zero now! */
      /* woke spontaneously and consumed restart signal */
      return 1;
    }
    /* woke spontaneously but did not consume restart---caller must resolve */
    return 0;
  }
  /* woken due to restart signal */
  return 1;
}
#endif /* __ASSUME_REALTIME_SIGNALS */

void __pthread_restart_new(pthread_descr th)
{
  /* The barrier is proabably not needed, in which case it still documents
     our assumptions. The intent is to commit previous writes to shared
     memory so the woken thread will have a consistent view.  Complementary
     read barriers are present to the suspend functions. */
  WRITE_MEMORY_BARRIER();
  kill(th->p_pid, __pthread_sig_restart);
}

/* There is no __pthread_suspend_new because it would just
   be a wasteful wrapper for __pthread_wait_for_restart_signal */

int
__pthread_timedsuspend_new(pthread_descr self, const struct timespec *abstime)
{
  sigset_t unblock, initial_mask;
  int was_signalled = 0;
  sigjmp_buf jmpbuf;

  if (sigsetjmp(jmpbuf, 1) == 0) {
    THREAD_SETMEM(self, p_signal_jmp, &jmpbuf);
    THREAD_SETMEM(self, p_signal, 0);
    /* Unblock the restart signal */
    sigemptyset(&unblock);
    sigaddset(&unblock, __pthread_sig_restart);
    sigprocmask(SIG_UNBLOCK, &unblock, &initial_mask);

    while (1) {
      struct timeval now;
      struct timespec reltime;

      /* Compute a time offset relative to now.  */
      __gettimeofday (&now, NULL);
      reltime.tv_nsec = abstime->tv_nsec - now.tv_usec * 1000;
      reltime.tv_sec = abstime->tv_sec - now.tv_sec;
      if (reltime.tv_nsec < 0) {
	reltime.tv_nsec += 1000000000;
	reltime.tv_sec -= 1;
      }

      /* Sleep for the required duration. If woken by a signal,
	 resume waiting as required by Single Unix Specification.  */
      if (reltime.tv_sec < 0 || __libc_nanosleep(&reltime, NULL) == 0)
	break;
    }

    /* Block the restart signal again */
    sigprocmask(SIG_SETMASK, &initial_mask, NULL);
    was_signalled = 0;
  } else {
    was_signalled = 1;
  }
  THREAD_SETMEM(self, p_signal_jmp, NULL);

  /* Now was_signalled is true if we exited the above code
     due to the delivery of a restart signal.  In that case,
     everything is cool. We have been removed from whatever
     we were waiting on by the other thread, and consumed its signal.

     Otherwise we this thread woke up spontaneously, or due to a signal other
     than restart. This is an ambiguous case  that must be resolved by
     the caller; the thread is still eligible for a restart wakeup
     so there is a race. */

  READ_MEMORY_BARRIER(); /* See comment in __pthread_restart_new */
  return was_signalled;
}


/* Debugging aid */

#ifdef DEBUG
#include <stdarg.h>

void __pthread_message(const char * fmt, ...)
{
  char buffer[1024];
  va_list args;
  sprintf(buffer, "%05d : ", __getpid());
  va_start(args, fmt);
  vsnprintf(buffer + 8, sizeof(buffer) - 8, fmt, args);
  va_end(args);
  TEMP_FAILURE_RETRY(__libc_write(2, buffer, strlen(buffer)));
}

#endif