summaryrefslogtreecommitdiff
path: root/db2/include/db_page.h
blob: 5c9ca674f1fb0c18606a9e5921f68dbdabd8b19e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
/*-
 * See the file LICENSE for redistribution information.
 *
 * Copyright (c) 1996, 1997, 1998
 *	Sleepycat Software.  All rights reserved.
 *
 *	@(#)db_page.h	10.18 (Sleepycat) 12/2/98
 */

#ifndef _DB_PAGE_H_
#define	_DB_PAGE_H_

/*
 * DB page formats.
 *
 * This implementation requires that values within the following structures
 * NOT be padded -- note, ANSI C permits random padding within structures.
 * If your compiler pads randomly you can just forget ever making DB run on
 * your system.  In addition, no data type can require larger alignment than
 * its own size, e.g., a 4-byte data element may not require 8-byte alignment.
 *
 * Note that key/data lengths are often stored in db_indx_t's -- this is
 * not accidental, nor does it limit the key/data size.  If the key/data
 * item fits on a page, it's guaranteed to be small enough to fit into a
 * db_indx_t, and storing it in one saves space.
 */

#define	PGNO_METADATA	0	/* Metadata page number. */
#define	PGNO_INVALID	0	/* Metadata page number, therefore illegal. */
#define	PGNO_ROOT	1	/* Root is page #1. */

/*
 * When we create pages in mpool, we ask mpool to clear some number of bytes
 * in the header.  This number must be at least as big as the regular page
 * headers and cover enough of the btree and hash meta-data pages to obliterate
 * the magic and version numbers.
 */
#define	DB_PAGE_CLEAR_LEN	32

/************************************************************************
 BTREE METADATA PAGE LAYOUT
 ************************************************************************/

/*
 * Btree metadata page layout:
 */
typedef struct _btmeta {
	DB_LSN	  lsn;		/* 00-07: LSN. */
	db_pgno_t pgno;		/* 08-11: Current page number. */
	u_int32_t magic;	/* 12-15: Magic number. */
	u_int32_t version;	/* 16-19: Version. */
	u_int32_t pagesize;	/* 20-23: Pagesize. */
	u_int32_t maxkey;	/* 24-27: Btree: Maxkey. */
	u_int32_t minkey;	/* 28-31: Btree: Minkey. */
	u_int32_t free;		/* 32-35: Free list page number. */
#define	BTM_DUP		0x001	/* 	  Duplicates. */
#define	BTM_RECNO	0x002	/*	  Recno tree. */
#define	BTM_RECNUM	0x004	/*	  Btree: maintain record count. */
#define	BTM_FIXEDLEN	0x008	/*	  Recno: fixed length records. */
#define	BTM_RENUMBER	0x010	/*	  Recno: renumber on insert/delete. */
#define	BTM_MASK	0x01f
	u_int32_t flags;	/* 36-39: Flags. */
	u_int32_t re_len;	/* 40-43: Recno: fixed-length record length. */
	u_int32_t re_pad;	/* 44-47: Recno: fixed-length record pad. */
				/* 48-67: Unique file ID. */
	u_int8_t  uid[DB_FILE_ID_LEN];
} BTMETA;

/************************************************************************
 HASH METADATA PAGE LAYOUT
 ************************************************************************/

/*
 * Hash metadata page layout:
 */
/* Hash Table Information */
typedef struct hashhdr {	/* Disk resident portion */
	DB_LSN	lsn;		/* 00-07: LSN of the header page */
	db_pgno_t pgno;		/* 08-11: Page number (btree compatibility). */
	u_int32_t magic;	/* 12-15: Magic NO for hash tables */
	u_int32_t version;	/* 16-19: Version ID */
	u_int32_t pagesize;	/* 20-23: Bucket/Page Size */
	u_int32_t ovfl_point;	/* 24-27: Overflow page allocation location */
	u_int32_t last_freed;	/* 28-31: Last freed overflow page pgno */
	u_int32_t max_bucket;	/* 32-35: ID of Maximum bucket in use */
	u_int32_t high_mask;	/* 36-39: Modulo mask into table */
	u_int32_t low_mask;	/* 40-43: Modulo mask into table lower half */
	u_int32_t ffactor;	/* 44-47: Fill factor */
	u_int32_t nelem;	/* 48-51: Number of keys in hash table */
	u_int32_t h_charkey;	/* 52-55: Value of hash(CHARKEY) */
#define	DB_HASH_DUP	0x01
	u_int32_t flags;	/* 56-59: Allow duplicates. */
#define NCACHED	32		/* number of spare points */
				/* 60-187: Spare pages for overflow */
	u_int32_t spares[NCACHED];
				/* 188-207: Unique file ID. */
	u_int8_t  uid[DB_FILE_ID_LEN];

	/*
	 * Minimum page size is 256.
	 */
} HASHHDR;

/************************************************************************
 MAIN PAGE LAYOUT
 ************************************************************************/

/*
 *	+-----------------------------------+
 *	|    lsn    |   pgno    | prev pgno |
 *	+-----------------------------------+
 *	| next pgno |  entries  | hf offset |
 *	+-----------------------------------+
 *	|   level   |   type    |   index   |
 *	+-----------------------------------+
 *	|   index   | free -->              |
 *	+-----------+-----------------------+
 *	|   	 F R E E A R E A            |
 *	+-----------------------------------+
 *	|              <-- free |   item    |
 *	+-----------------------------------+
 *	|   item    |   item    |   item    |
 *	+-----------------------------------+
 *
 * sizeof(PAGE) == 26 bytes, and the following indices are guaranteed to be
 * two-byte aligned.
 *
 * For hash and btree leaf pages, index items are paired, e.g., inp[0] is the
 * key for inp[1]'s data.  All other types of pages only contain single items.
 */
typedef struct _db_page {
	DB_LSN	  lsn;		/* 00-07: Log sequence number. */
	db_pgno_t pgno;		/* 08-11: Current page number. */
	db_pgno_t prev_pgno;	/* 12-15: Previous page number. */
	db_pgno_t next_pgno;	/* 16-19: Next page number. */
	db_indx_t entries;	/* 20-21: Number of item pairs on the page. */
	db_indx_t hf_offset;	/* 22-23: High free byte page offset. */

	/*
	 * The btree levels are numbered from the leaf to the root, starting
	 * with 1, so the leaf is level 1, its parent is level 2, and so on.
	 * We maintain this level on all btree pages, but the only place that
	 * we actually need it is on the root page.  It would not be difficult
	 * to hide the byte on the root page once it becomes an internal page,
	 * so we could get this byte back if we needed it for something else.
	 */
#define	LEAFLEVEL	  1
#define	MAXBTREELEVEL	255
	u_int8_t  level;	/*    24: Btree tree level. */

#define	P_INVALID	0	/*	  Invalid page type. */
#define	P_DUPLICATE	1	/*        Duplicate. */
#define	P_HASH		2	/*        Hash. */
#define	P_IBTREE	3	/*        Btree internal. */
#define	P_IRECNO	4	/*        Recno internal. */
#define	P_LBTREE	5	/*        Btree leaf. */
#define	P_LRECNO	6	/*        Recno leaf. */
#define	P_OVERFLOW	7	/*        Overflow. */
	u_int8_t  type;		/*    25: Page type. */
	db_indx_t inp[1];	/* Variable length index of items. */
} PAGE;

/* Element macros. */
#define	LSN(p)		(((PAGE *)p)->lsn)
#define	PGNO(p)		(((PAGE *)p)->pgno)
#define	PREV_PGNO(p)	(((PAGE *)p)->prev_pgno)
#define	NEXT_PGNO(p)	(((PAGE *)p)->next_pgno)
#define	NUM_ENT(p)	(((PAGE *)p)->entries)
#define	HOFFSET(p)	(((PAGE *)p)->hf_offset)
#define	LEVEL(p)	(((PAGE *)p)->level)
#define	TYPE(p)		(((PAGE *)p)->type)

/*
 * !!!
 * The next_pgno and prev_pgno fields are not maintained for btree and recno
 * internal pages.  It's a minor performance improvement, and more, it's
 * hard to do when deleting internal pages, and it decreases the chance of
 * deadlock during deletes and splits.
 *
 * !!!
 * The btree/recno access method needs db_recno_t bytes of space on the root
 * page to specify how many records are stored in the tree.  (The alternative
 * is to store the number of records in the meta-data page, which will create
 * a second hot spot in trees being actively modified, or recalculate it from
 * the BINTERNAL fields on each access.)  Overload the prev_pgno field.
 */
#define	RE_NREC(p)							\
	(TYPE(p) == P_LBTREE ? NUM_ENT(p) / 2 :				\
	    TYPE(p) == P_LRECNO ? NUM_ENT(p) : PREV_PGNO(p))
#define	RE_NREC_ADJ(p, adj)						\
	PREV_PGNO(p) += adj;
#define	RE_NREC_SET(p, num)						\
	PREV_PGNO(p) = num;

/*
 * Initialize a page.
 *
 * !!!
 * Don't modify the page's LSN, code depends on it being unchanged after a
 * P_INIT call.
 */
#define	P_INIT(pg, pg_size, n, pg_prev, pg_next, btl, pg_type) do {	\
	PGNO(pg) = n;							\
	PREV_PGNO(pg) = pg_prev;					\
	NEXT_PGNO(pg) = pg_next;					\
	NUM_ENT(pg) = 0;						\
	HOFFSET(pg) = pg_size;						\
	LEVEL(pg) = btl;						\
	TYPE(pg) = pg_type;						\
} while (0)

/* Page header length (offset to first index). */
#define P_OVERHEAD		(SSZA(PAGE, inp))

/* First free byte. */
#define	LOFFSET(pg)		(P_OVERHEAD + NUM_ENT(pg) * sizeof(db_indx_t))

/* Free space on the page. */
#define	P_FREESPACE(pg)		(HOFFSET(pg) - LOFFSET(pg))

/* Get a pointer to the bytes at a specific index. */
#define	P_ENTRY(pg, indx)	((u_int8_t *)pg + ((PAGE *)pg)->inp[indx])

/************************************************************************
 OVERFLOW PAGE LAYOUT
 ************************************************************************/

/*
 * Overflow items are referenced by HOFFPAGE and BOVERFLOW structures, which
 * store a page number (the first page of the overflow item) and a length
 * (the total length of the overflow item).  The overflow item consists of
 * some number of overflow pages, linked by the next_pgno field of the page.
 * A next_pgno field of PGNO_INVALID flags the end of the overflow item.
 *
 * Overflow page overloads:
 *	The amount of overflow data stored on each page is stored in the
 *	hf_offset field.
 *
 *	The implementation reference counts overflow items as it's possible
 *	for them to be promoted onto btree internal pages.  The reference
 *	count is stored in the entries field.
 */
#define	OV_LEN(p)	(((PAGE *)p)->hf_offset)
#define	OV_REF(p)	(((PAGE *)p)->entries)

/* Maximum number of bytes that you can put on an overflow page. */
#define	P_MAXSPACE(psize)	((psize) - P_OVERHEAD)

/************************************************************************
 HASH PAGE LAYOUT
 ************************************************************************/

/* Each index references a group of bytes on the page. */
#define	H_KEYDATA	1	/* Key/data item. */
#define	H_DUPLICATE	2	/* Duplicate key/data item. */
#define	H_OFFPAGE	3	/* Overflow key/data item. */
#define	H_OFFDUP	4	/* Overflow page of duplicates. */

/*
 * !!!
 * Items on hash pages are (potentially) unaligned, so we can never cast the
 * (page + offset) pointer to an HKEYDATA, HOFFPAGE or HOFFDUP structure, as
 * we do with B+tree on-page structures.  Because we frequently want the type
 * field, it requires no alignment, and it's in the same location in all three
 * structures, there's a pair of macros.
 */
#define	HPAGE_PTYPE(p)		(*(u_int8_t *)p)
#define	HPAGE_TYPE(pg, indx)	(*P_ENTRY(pg, indx))

/*
 * The first and second types are H_KEYDATA and H_DUPLICATE, represented
 * by the HKEYDATA structure:
 *
 *	+-----------------------------------+
 *	|    type   | key/data ...          |
 *	+-----------------------------------+
 *
 * For duplicates, the data field encodes duplicate elements in the data
 * field:
 *
 *	+---------------------------------------------------------------+
 *	|    type   | len1 | element1 | len1 | len2 | element2 | len2   |
 *	+---------------------------------------------------------------+
 *
 * Thus, by keeping track of the offset in the element, we can do both
 * backward and forward traversal.
 */
typedef struct _hkeydata {
	u_int8_t  type;		/*    00: Page type. */
	u_int8_t  data[1];	/* Variable length key/data item. */
} HKEYDATA;
#define	HKEYDATA_DATA(p)	(((u_int8_t *)p) + SSZA(HKEYDATA, data))

/*
 * The length of any HKEYDATA item. Note that indx is an element index,
 * not a PAIR index.
 */
#define	LEN_HITEM(pg, pgsize, indx)					\
	(((indx) == 0 ? pgsize : pg->inp[indx - 1]) - pg->inp[indx])

#define	LEN_HKEYDATA(pg, psize, indx)					\
	(((indx) == 0 ? psize : pg->inp[indx - 1]) -			\
	pg->inp[indx] - HKEYDATA_SIZE(0))

/*
 * Page space required to add a new HKEYDATA item to the page, with and
 * without the index value.
 */
#define	HKEYDATA_SIZE(len)						\
	((len) + SSZA(HKEYDATA, data))
#define	HKEYDATA_PSIZE(len)						\
	(HKEYDATA_SIZE(len) + sizeof(db_indx_t))

/* Put a HKEYDATA item at the location referenced by a page entry. */
#define	PUT_HKEYDATA(pe, kd, len, type) {				\
	((HKEYDATA *)pe)->type = type;					\
	memcpy((u_int8_t *)pe + sizeof(u_int8_t), kd, len);		\
}

/*
 * Macros the describe the page layout in terms of key-data pairs.
 * The use of "pindex" indicates that the argument is the index
 * expressed in pairs instead of individual elements.
 */
#define H_NUMPAIRS(pg)			(NUM_ENT(pg) / 2)
#define	H_KEYINDEX(pindx)		(2 * (pindx))
#define	H_DATAINDEX(pindx)		((2 * (pindx)) + 1)
#define	H_PAIRKEY(pg, pindx)		P_ENTRY(pg, H_KEYINDEX(pindx))
#define	H_PAIRDATA(pg, pindx)		P_ENTRY(pg, H_DATAINDEX(pindx))
#define H_PAIRSIZE(pg, psize, pindx)					\
	(LEN_HITEM(pg, psize, H_KEYINDEX(pindx)) +			\
	LEN_HITEM(pg, psize, H_DATAINDEX(pindx)))
#define LEN_HDATA(p, psize, pindx) LEN_HKEYDATA(p, psize, H_DATAINDEX(pindx))
#define LEN_HKEY(p, psize, pindx) LEN_HKEYDATA(p, psize, H_KEYINDEX(pindx))

/*
 * The third type is the H_OFFPAGE, represented by the HOFFPAGE structure:
 */
typedef struct _hoffpage {
	u_int8_t  type;		/*    00: Page type and delete flag. */
	u_int8_t  unused[3];	/* 01-03: Padding, unused. */
	db_pgno_t pgno;		/* 04-07: Offpage page number. */
	u_int32_t tlen;		/* 08-11: Total length of item. */
} HOFFPAGE;

#define	HOFFPAGE_PGNO(p)	(((u_int8_t *)p) + SSZ(HOFFPAGE, pgno))
#define	HOFFPAGE_TLEN(p)	(((u_int8_t *)p) + SSZ(HOFFPAGE, tlen))

/*
 * Page space required to add a new HOFFPAGE item to the page, with and
 * without the index value.
 */
#define	HOFFPAGE_SIZE		(sizeof(HOFFPAGE))
#define	HOFFPAGE_PSIZE		(HOFFPAGE_SIZE + sizeof(db_indx_t))

/*
 * The fourth type is H_OFFDUP represented by the HOFFDUP structure:
 */
typedef struct _hoffdup {
	u_int8_t  type;		/*    00: Page type and delete flag. */
	u_int8_t  unused[3];	/* 01-03: Padding, unused. */
	db_pgno_t pgno;		/* 04-07: Offpage page number. */
} HOFFDUP;
#define	HOFFDUP_PGNO(p)		(((u_int8_t *)p) + SSZ(HOFFDUP, pgno))

/*
 * Page space required to add a new HOFFDUP item to the page, with and
 * without the index value.
 */
#define	HOFFDUP_SIZE		(sizeof(HOFFDUP))
#define	HOFFDUP_PSIZE		(HOFFDUP_SIZE + sizeof(db_indx_t))

/************************************************************************
 BTREE PAGE LAYOUT
 ************************************************************************/

/* Each index references a group of bytes on the page. */
#define	B_KEYDATA	1	/* Key/data item. */
#define	B_DUPLICATE	2	/* Duplicate key/data item. */
#define	B_OVERFLOW	3	/* Overflow key/data item. */

/*
 * We have to store a deleted entry flag in the page.   The reason is complex,
 * but the simple version is that we can't delete on-page items referenced by
 * a cursor -- the return order of subsequent insertions might be wrong.  The
 * delete flag is an overload of the top bit of the type byte.
 */
#define	B_DELETE	(0x80)
#define	B_DCLR(t)	(t) &= ~B_DELETE
#define	B_DSET(t)	(t) |= B_DELETE
#define	B_DISSET(t)	((t) & B_DELETE)

#define	B_TYPE(t)	((t) & ~B_DELETE)
#define	B_TSET(t, type, deleted) {					\
	(t) = (type);							\
	if (deleted)							\
		B_DSET(t);						\
}

/*
 * The first type is B_KEYDATA, represented by the BKEYDATA structure:
 */
typedef struct _bkeydata {
	db_indx_t len;		/* 00-01: Key/data item length. */
	u_int8_t  type;		/*    02: Page type AND DELETE FLAG. */
	u_int8_t  data[1];	/* Variable length key/data item. */
} BKEYDATA;

/* Get a BKEYDATA item for a specific index. */
#define	GET_BKEYDATA(pg, indx)						\
	((BKEYDATA *)P_ENTRY(pg, indx))

/*
 * Page space required to add a new BKEYDATA item to the page, with and
 * without the index value.
 */
#define	BKEYDATA_SIZE(len)						\
	ALIGN((len) + SSZA(BKEYDATA, data), 4)
#define	BKEYDATA_PSIZE(len)						\
	(BKEYDATA_SIZE(len) + sizeof(db_indx_t))

/*
 * The second and third types are B_DUPLICATE and B_OVERFLOW, represented
 * by the BOVERFLOW structure.
 */
typedef struct _boverflow {
	db_indx_t unused1;	/* 00-01: Padding, unused. */
	u_int8_t  type;		/*    02: Page type AND DELETE FLAG. */
	u_int8_t  unused2;	/*    03: Padding, unused. */
	db_pgno_t pgno;		/* 04-07: Next page number. */
	u_int32_t tlen;		/* 08-11: Total length of item. */
} BOVERFLOW;

/* Get a BOVERFLOW item for a specific index. */
#define	GET_BOVERFLOW(pg, indx)						\
	((BOVERFLOW *)P_ENTRY(pg, indx))

/*
 * Page space required to add a new BOVERFLOW item to the page, with and
 * without the index value.
 */
#define	BOVERFLOW_SIZE							\
	ALIGN(sizeof(BOVERFLOW), 4)
#define	BOVERFLOW_PSIZE							\
	(BOVERFLOW_SIZE + sizeof(db_indx_t))

/*
 * Btree leaf and hash page layouts group indices in sets of two, one
 * for the key and one for the data.  Everything else does it in sets
 * of one to save space.  I use the following macros so that it's real
 * obvious what's going on...
 */
#define	O_INDX	1
#define	P_INDX	2

/************************************************************************
 BTREE INTERNAL PAGE LAYOUT
 ************************************************************************/

/*
 * Btree internal entry.
 */
typedef struct _binternal {
	db_indx_t  len;		/* 00-01: Key/data item length. */
	u_int8_t   type;	/*    02: Page type AND DELETE FLAG. */
	u_int8_t   unused;	/*    03: Padding, unused. */
	db_pgno_t  pgno;	/* 04-07: Page number of referenced page. */
	db_recno_t nrecs;	/* 08-11: Subtree record count. */
	u_int8_t   data[1];	/* Variable length key item. */
} BINTERNAL;

/* Get a BINTERNAL item for a specific index. */
#define	GET_BINTERNAL(pg, indx)						\
	((BINTERNAL *)P_ENTRY(pg, indx))

/*
 * Page space required to add a new BINTERNAL item to the page, with and
 * without the index value.
 */
#define	BINTERNAL_SIZE(len)						\
	ALIGN((len) + SSZA(BINTERNAL, data), 4)
#define	BINTERNAL_PSIZE(len)						\
	(BINTERNAL_SIZE(len) + sizeof(db_indx_t))

/************************************************************************
 RECNO INTERNAL PAGE LAYOUT
 ************************************************************************/

/*
 * The recno internal entry.
 *
 * XXX
 * Why not fold this into the db_indx_t structure, it's fixed length?
 */
typedef struct _rinternal {
	db_pgno_t  pgno;	/* 00-03: Page number of referenced page. */
	db_recno_t nrecs;	/* 04-07: Subtree record count. */
} RINTERNAL;

/* Get a RINTERNAL item for a specific index. */
#define	GET_RINTERNAL(pg, indx)						\
	((RINTERNAL *)P_ENTRY(pg, indx))

/*
 * Page space required to add a new RINTERNAL item to the page, with and
 * without the index value.
 */
#define	RINTERNAL_SIZE							\
	ALIGN(sizeof(RINTERNAL), 4)
#define	RINTERNAL_PSIZE							\
	(RINTERNAL_SIZE + sizeof(db_indx_t))
#endif /* _DB_PAGE_H_ */