aboutsummaryrefslogtreecommitdiff
path: root/db2/btree/bt_split.c
blob: 219d486dc57d1e3684189dd93611255389abb1e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
/*-
 * See the file LICENSE for redistribution information.
 *
 * Copyright (c) 1996, 1997
 *	Sleepycat Software.  All rights reserved.
 */
/*
 * Copyright (c) 1990, 1993, 1994, 1995, 1996
 *	Keith Bostic.  All rights reserved.
 */
/*
 * Copyright (c) 1990, 1993, 1994, 1995
 *	The Regents of the University of California.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include "config.h"

#ifndef lint
static const char sccsid[] = "@(#)bt_split.c	10.18 (Sleepycat) 11/23/97";
#endif /* not lint */

#ifndef NO_SYSTEM_INCLUDES
#include <sys/types.h>

#include <errno.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#endif

#include "db_int.h"
#include "db_page.h"
#include "btree.h"

static int __bam_page __P((DB *, EPG *, EPG *));
static int __bam_pinsert __P((DB *, EPG *, PAGE *, PAGE *));
static int __bam_psplit __P((DB *, EPG *, PAGE *, PAGE *, int));
static int __bam_root __P((DB *, EPG *));

/*
 * __bam_split --
 *	Split a page.
 *
 * PUBLIC: int __bam_split __P((DB *, void *));
 */
int
__bam_split(dbp, arg)
	DB *dbp;
	void *arg;
{
	BTREE *t;
	enum { UP, DOWN } dir;
	int exact, level, ret;

	t = dbp->internal;

	/*
	 * The locking protocol we use to avoid deadlock to acquire locks by
	 * walking down the tree, but we do it as lazily as possible, locking
	 * the root only as a last resort.  We expect all stack pages to have
	 * been discarded before we're called; we discard all short-term locks.
	 *
	 * When __bam_split is first called, we know that a leaf page was too
	 * full for an insert.  We don't know what leaf page it was, but we
	 * have the key/recno that caused the problem.  We call XX_search to
	 * reacquire the leaf page, but this time get both the leaf page and
	 * its parent, locked.  We then split the leaf page and see if the new
	 * internal key will fit into the parent page.  If it will, we're done.
	 *
	 * If it won't, we discard our current locks and repeat the process,
	 * only this time acquiring the parent page and its parent, locked.
	 * This process repeats until we succeed in the split, splitting the
	 * root page as the final resort.  The entire process then repeats,
	 * as necessary, until we split a leaf page.
	 *
	 * XXX
	 * A traditional method of speeding this up is to maintain a stack of
	 * the pages traversed in the original search.  You can detect if the
	 * stack is correct by storing the page's LSN when it was searched and
	 * comparing that LSN with the current one when it's locked during the
	 * split.  This would be an easy change for this code, but I have no
	 * numbers that indicate it's worthwhile.
	 */
	for (dir = UP, level = LEAFLEVEL;; dir == UP ? ++level : --level) {
		/*
		 * Acquire a page and its parent, locked.
		 */
		if ((ret = (dbp->type == DB_BTREE ?
		    __bam_search(dbp, arg, S_WRPAIR, level, NULL, &exact) :
		    __bam_rsearch(dbp,
		        (db_recno_t *)arg, S_WRPAIR, level, &exact))) != 0)
			return (ret);

		/* Split the page. */
		ret = t->bt_csp[0].page->pgno == PGNO_ROOT ?
		    __bam_root(dbp, &t->bt_csp[0]) :
		    __bam_page(dbp, &t->bt_csp[-1], &t->bt_csp[0]);

		switch (ret) {
		case 0:
			/* Once we've split the leaf page, we're done. */
			if (level == LEAFLEVEL)
				return (0);

			/* Switch directions. */
			if (dir == UP)
				dir = DOWN;
			break;
		case DB_NEEDSPLIT:
			/*
			 * It's possible to fail to split repeatedly, as other
			 * threads may be modifying the tree, or the page usage
			 * is sufficiently bad that we don't get enough space
			 * the first time.
			 */
			if (dir == DOWN)
				dir = UP;
			break;
		default:
			return (ret);
		}
	}
	/* NOTREACHED */
}

/*
 * __bam_root --
 *	Split the root page of a btree.
 */
static int
__bam_root(dbp, cp)
	DB *dbp;
	EPG *cp;
{
	BTREE *t;
	PAGE *lp, *rp;
	int ret;

	t = dbp->internal;

	/* Yeah, right. */
	if (cp->page->level >= MAXBTREELEVEL)
		return (ENOSPC);

	/* Create new left and right pages for the split. */
	lp = rp = NULL;
	if ((ret = __bam_new(dbp, TYPE(cp->page), &lp)) != 0 ||
	    (ret = __bam_new(dbp, TYPE(cp->page), &rp)) != 0)
		goto err;
	P_INIT(lp, dbp->pgsize, lp->pgno,
	    PGNO_INVALID, ISINTERNAL(cp->page) ? PGNO_INVALID : rp->pgno,
	    cp->page->level, TYPE(cp->page));
	P_INIT(rp, dbp->pgsize, rp->pgno,
	    ISINTERNAL(cp->page) ?  PGNO_INVALID : lp->pgno, PGNO_INVALID,
	    cp->page->level, TYPE(cp->page));

	/* Split the page. */
	if ((ret = __bam_psplit(dbp, cp, lp, rp, 1)) != 0)
		goto err;

	/* Log the change. */
	if (DB_LOGGING(dbp)) {
		DBT __a;
		DB_LSN __lsn;
		memset(&__a, 0, sizeof(__a));
		__a.data = cp->page;
		__a.size = dbp->pgsize;
		ZERO_LSN(__lsn);
		if ((ret = __bam_split_log(dbp->dbenv->lg_info, dbp->txn,
		    &LSN(cp->page), 0, dbp->log_fileid, PGNO(lp), &LSN(lp),
		    PGNO(rp), &LSN(rp), (u_int32_t)NUM_ENT(lp), 0, &__lsn,
		    &__a)) != 0)
			goto err;
		LSN(lp) = LSN(rp) = LSN(cp->page);
	}

	/* Clean up the new root page. */
	if ((ret = (dbp->type == DB_RECNO ?
	    __ram_root(dbp, cp->page, lp, rp) :
	    __bam_broot(dbp, cp->page, lp, rp))) != 0)
		goto err;

	/* Success -- write the real pages back to the store. */
	(void)memp_fput(dbp->mpf, cp->page, DB_MPOOL_DIRTY);
	(void)__BT_TLPUT(dbp, cp->lock);
	(void)memp_fput(dbp->mpf, lp, DB_MPOOL_DIRTY);
	(void)memp_fput(dbp->mpf, rp, DB_MPOOL_DIRTY);

	++t->lstat.bt_split;
	++t->lstat.bt_rootsplit;
	return (0);

err:	if (lp != NULL)
		(void)__bam_free(dbp, lp);
	if (rp != NULL)
		(void)__bam_free(dbp, rp);
	(void)memp_fput(dbp->mpf, cp->page, 0);
	(void)__BT_TLPUT(dbp, cp->lock);
	return (ret);
}

/*
 * __bam_page --
 *	Split the non-root page of a btree.
 */
static int
__bam_page(dbp, pp, cp)
	DB *dbp;
	EPG *pp, *cp;
{
	BTREE *t;
	DB_LOCK tplock;
	PAGE *lp, *rp, *tp;
	int ret;

	t = dbp->internal;
	lp = rp = tp = NULL;
	ret = -1;

	/* Create new right page for the split. */
	if ((ret = __bam_new(dbp, TYPE(cp->page), &rp)) != 0)
		return (ret);
	P_INIT(rp, dbp->pgsize, rp->pgno,
	    ISINTERNAL(cp->page) ? PGNO_INVALID : cp->page->pgno,
	    ISINTERNAL(cp->page) ? PGNO_INVALID : cp->page->next_pgno,
	    cp->page->level, TYPE(cp->page));

	/* Create new left page for the split. */
	if ((lp = (PAGE *)__db_malloc(dbp->pgsize)) == NULL) {
		ret = ENOMEM;
		goto err;
	}
#ifdef DEBUG
	memset(lp, 0xff, dbp->pgsize);
#endif
	P_INIT(lp, dbp->pgsize, cp->page->pgno,
	    ISINTERNAL(cp->page) ?  PGNO_INVALID : cp->page->prev_pgno,
	    ISINTERNAL(cp->page) ?  PGNO_INVALID : rp->pgno,
	    cp->page->level, TYPE(cp->page));
	ZERO_LSN(lp->lsn);

	/*
	 * Split right.
	 *
	 * Only the indices are sorted on the page, i.e., the key/data pairs
	 * aren't, so it's simpler to copy the data from the split page onto
	 * two new pages instead of copying half the data to the right page
	 * and compacting the left page in place.  Since the left page can't
	 * change, we swap the original and the allocated left page after the
	 * split.
	 */
	if ((ret = __bam_psplit(dbp, cp, lp, rp, 0)) != 0)
		goto err;

	/*
	 * Fix up the previous pointer of any leaf page following the split
	 * page.
	 *
	 * !!!
	 * There are interesting deadlock situations here as we write-lock a
	 * page that's not in our direct ancestry.  Consider a cursor walking
	 * through the leaf pages, that has the previous page read-locked and
	 * is waiting on a lock for the page we just split.  It will deadlock
	 * here.  If this is a problem, we can fail in the split; it's not a
	 * problem as the split will succeed after the cursor passes through
	 * the page we're splitting.
	 */
	if (TYPE(cp->page) == P_LBTREE && rp->next_pgno != PGNO_INVALID) {
		if ((ret = __bam_lget(dbp,
		    0, rp->next_pgno, DB_LOCK_WRITE, &tplock)) != 0)
			goto err;
		if ((ret = __bam_pget(dbp, &tp, &rp->next_pgno, 0)) != 0)
			goto err;
	}

	/* Insert the new pages into the parent page. */
	if ((ret = __bam_pinsert(dbp, pp, lp, rp)) != 0)
		goto err;

	/* Log the change. */
	if (DB_LOGGING(dbp)) {
		DBT __a;
		DB_LSN __lsn;
		memset(&__a, 0, sizeof(__a));
		__a.data = cp->page;
		__a.size = dbp->pgsize;
		if (tp == NULL)
			ZERO_LSN(__lsn);
		if ((ret = __bam_split_log(dbp->dbenv->lg_info, dbp->txn,
		    &cp->page->lsn, 0, dbp->log_fileid, PGNO(cp->page),
		    &LSN(cp->page), PGNO(rp), &LSN(rp), (u_int32_t)NUM_ENT(lp),
		    tp == NULL ? 0 : PGNO(tp),
		    tp == NULL ? &__lsn : &LSN(tp), &__a)) != 0)
			goto err;

		LSN(lp) = LSN(rp) = LSN(cp->page);
		if (tp != NULL)
			LSN(tp) = LSN(cp->page);
	}

	/* Copy the allocated page into place. */
	memcpy(cp->page, lp, LOFFSET(lp));
	memcpy((u_int8_t *)cp->page + HOFFSET(lp),
	    (u_int8_t *)lp + HOFFSET(lp), dbp->pgsize - HOFFSET(lp));
	FREE(lp, dbp->pgsize);
	lp = NULL;

	/* Finish the next-page link. */
	if (tp != NULL)
		tp->prev_pgno = rp->pgno;

	/* Success -- write the real pages back to the store. */
	(void)memp_fput(dbp->mpf, pp->page, DB_MPOOL_DIRTY);
	(void)__BT_TLPUT(dbp, pp->lock);
	(void)memp_fput(dbp->mpf, cp->page, DB_MPOOL_DIRTY);
	(void)__BT_TLPUT(dbp, cp->lock);
	(void)memp_fput(dbp->mpf, rp, DB_MPOOL_DIRTY);
	if (tp != NULL) {
		(void)memp_fput(dbp->mpf, tp, DB_MPOOL_DIRTY);
		(void)__BT_TLPUT(dbp, tplock);
	}
	return (0);

err:	if (lp != NULL)
		FREE(lp, dbp->pgsize);
	if (rp != NULL)
		(void)__bam_free(dbp, rp);
	if (tp != NULL) {
		(void)memp_fput(dbp->mpf, tp, 0);
		(void)__BT_TLPUT(dbp, tplock);
	}
	(void)memp_fput(dbp->mpf, pp->page, 0);
	(void)__BT_TLPUT(dbp, pp->lock);
	(void)memp_fput(dbp->mpf, cp->page, 0);
	(void)__BT_TLPUT(dbp, cp->lock);
	return (ret);
}

/*
 * __bam_broot --
 *	Fix up the btree root page after it has been split.
 *
 * PUBLIC: int __bam_broot __P((DB *, PAGE *, PAGE *, PAGE *));
 */
int
__bam_broot(dbp, rootp, lp, rp)
	DB *dbp;
	PAGE *rootp, *lp, *rp;
{
	BINTERNAL bi, *child_bi;
	BKEYDATA *child_bk;
	DBT hdr, data;
	int ret;

	/*
	 * If the root page was a leaf page, change it into an internal page.
	 * We copy the key we split on (but not the key's data, in the case of
	 * a leaf page) to the new root page.
	 */
	P_INIT(rootp, dbp->pgsize,
	    PGNO_ROOT, PGNO_INVALID, PGNO_INVALID, lp->level + 1, P_IBTREE);

	memset(&data, 0, sizeof(data));
	memset(&hdr, 0, sizeof(hdr));

	/*
	 * The btree comparison code guarantees that the left-most key on any
	 * level of the tree is never used, so it doesn't need to be filled in.
	 */
	memset(&bi, 0, sizeof(bi));
	bi.len = 0;
	B_TSET(bi.type, B_KEYDATA, 0);
	bi.pgno = lp->pgno;
	if (F_ISSET(dbp, DB_BT_RECNUM)) {
		bi.nrecs = __bam_total(lp);
		RE_NREC_SET(rootp, bi.nrecs);
	}
	hdr.data = &bi;
	hdr.size = SSZA(BINTERNAL, data);
	if ((ret =
	    __db_pitem(dbp, rootp, 0, BINTERNAL_SIZE(0), &hdr, NULL)) != 0)
		return (ret);

	switch (TYPE(rp)) {
	case P_IBTREE:
		/* Copy the first key of the child page onto the root page. */
		child_bi = GET_BINTERNAL(rp, 0);

		bi.len = child_bi->len;
		B_TSET(bi.type, child_bi->type, 0);
		bi.pgno = rp->pgno;
		if (F_ISSET(dbp, DB_BT_RECNUM)) {
			bi.nrecs = __bam_total(rp);
			RE_NREC_ADJ(rootp, bi.nrecs);
		}
		hdr.data = &bi;
		hdr.size = SSZA(BINTERNAL, data);
		data.data = child_bi->data;
		data.size = child_bi->len;
		if ((ret = __db_pitem(dbp, rootp, 1,
		    BINTERNAL_SIZE(child_bi->len), &hdr, &data)) != 0)
			return (ret);

		/* Increment the overflow ref count. */
		if (B_TYPE(child_bi->type) == B_OVERFLOW)
			if ((ret = __db_ovref(dbp,
			    ((BOVERFLOW *)(child_bi->data))->pgno, 1)) != 0)
				return (ret);
		break;
	case P_LBTREE:
		/* Copy the first key of the child page onto the root page. */
		child_bk = GET_BKEYDATA(rp, 0);
		switch (B_TYPE(child_bk->type)) {
		case B_KEYDATA:
			bi.len = child_bk->len;
			B_TSET(bi.type, child_bk->type, 0);
			bi.pgno = rp->pgno;
			if (F_ISSET(dbp, DB_BT_RECNUM)) {
				bi.nrecs = __bam_total(rp);
				RE_NREC_ADJ(rootp, bi.nrecs);
			}
			hdr.data = &bi;
			hdr.size = SSZA(BINTERNAL, data);
			data.data = child_bk->data;
			data.size = child_bk->len;
			if ((ret = __db_pitem(dbp, rootp, 1,
			    BINTERNAL_SIZE(child_bk->len), &hdr, &data)) != 0)
				return (ret);
			break;
		case B_DUPLICATE:
		case B_OVERFLOW:
			bi.len = BOVERFLOW_SIZE;
			B_TSET(bi.type, child_bk->type, 0);
			bi.pgno = rp->pgno;
			if (F_ISSET(dbp, DB_BT_RECNUM)) {
				bi.nrecs = __bam_total(rp);
				RE_NREC_ADJ(rootp, bi.nrecs);
			}
			hdr.data = &bi;
			hdr.size = SSZA(BINTERNAL, data);
			data.data = child_bk;
			data.size = BOVERFLOW_SIZE;
			if ((ret = __db_pitem(dbp, rootp, 1,
			    BINTERNAL_SIZE(BOVERFLOW_SIZE), &hdr, &data)) != 0)
				return (ret);

			/* Increment the overflow ref count. */
			if (B_TYPE(child_bk->type) == B_OVERFLOW)
				if ((ret = __db_ovref(dbp,
				    ((BOVERFLOW *)child_bk)->pgno, 1)) != 0)
					return (ret);
			break;
		default:
			return (__db_pgfmt(dbp, rp->pgno));
		}
		break;
	default:
		return (__db_pgfmt(dbp, rp->pgno));
	}
	return (0);
}

/*
 * __ram_root --
 *	Fix up the recno root page after it has been split.
 *
 * PUBLIC: int __ram_root __P((DB *, PAGE *, PAGE *, PAGE *));
 */
int
__ram_root(dbp, rootp, lp, rp)
	DB *dbp;
	PAGE *rootp, *lp, *rp;
{
	DBT hdr;
	RINTERNAL ri;
	int ret;

	/* Initialize the page. */
	P_INIT(rootp, dbp->pgsize,
	    PGNO_ROOT, PGNO_INVALID, PGNO_INVALID, lp->level + 1, P_IRECNO);

	/* Initialize the header. */
	memset(&hdr, 0, sizeof(hdr));
	hdr.data = &ri;
	hdr.size = RINTERNAL_SIZE;

	/* Insert the left and right keys, set the header information. */
	ri.pgno = lp->pgno;
	ri.nrecs = __bam_total(lp);
	if ((ret = __db_pitem(dbp, rootp, 0, RINTERNAL_SIZE, &hdr, NULL)) != 0)
		return (ret);
	RE_NREC_SET(rootp, ri.nrecs);
	ri.pgno = rp->pgno;
	ri.nrecs = __bam_total(rp);
	if ((ret = __db_pitem(dbp, rootp, 1, RINTERNAL_SIZE, &hdr, NULL)) != 0)
		return (ret);
	RE_NREC_ADJ(rootp, ri.nrecs);
	return (0);
}

/*
 * __bam_pinsert --
 *	Insert a new key into a parent page, completing the split.
 */
static int
__bam_pinsert(dbp, parent, lchild, rchild)
	DB *dbp;
	EPG *parent;
	PAGE *lchild, *rchild;
{
	BINTERNAL bi, *child_bi;
	BKEYDATA *child_bk, *tmp_bk;
	BTREE *t;
	DBT a, b, hdr, data;
	PAGE *ppage;
	RINTERNAL ri;
	db_indx_t off;
	db_recno_t nrecs;
	u_int32_t n, nbytes, nksize;
	int ret;

	t = dbp->internal;
	ppage = parent->page;

	/* If handling record numbers, count records split to the right page. */
	nrecs = dbp->type == DB_RECNO || F_ISSET(dbp, DB_BT_RECNUM) ?
	    __bam_total(rchild) : 0;

	/*
	 * Now we insert the new page's first key into the parent page, which
	 * completes the split.  The parent points to a PAGE and a page index
	 * offset, where the new key goes ONE AFTER the index, because we split
	 * to the right.
	 *
	 * XXX
	 * Some btree algorithms replace the key for the old page as well as
	 * the new page.  We don't, as there's no reason to believe that the
	 * first key on the old page is any better than the key we have, and,
	 * in the case of a key being placed at index 0 causing the split, the
	 * key is unavailable.
	 */
	off = parent->indx + O_INDX;

	/*
	 * Calculate the space needed on the parent page.
	 *
	 * Prefix trees: space hack used when inserting into BINTERNAL pages.
	 * Retain only what's needed to distinguish between the new entry and
	 * the LAST entry on the page to its left.  If the keys compare equal,
	 * retain the entire key.  We ignore overflow keys, and the entire key
	 * must be retained for the next-to-leftmost key on the leftmost page
	 * of each level, or the search will fail.  Applicable ONLY to internal
	 * pages that have leaf pages as children.  Further reduction of the
	 * key between pairs of internal pages loses too much information.
	 */
	switch (TYPE(rchild)) {
	case P_IBTREE:
		child_bi = GET_BINTERNAL(rchild, 0);
		nbytes = BINTERNAL_PSIZE(child_bi->len);

		if (P_FREESPACE(ppage) < nbytes)
			return (DB_NEEDSPLIT);

		/* Add a new record for the right page. */
		memset(&bi, 0, sizeof(bi));
		bi.len = child_bi->len;
		B_TSET(bi.type, child_bi->type, 0);
		bi.pgno = rchild->pgno;
		bi.nrecs = nrecs;
		memset(&hdr, 0, sizeof(hdr));
		hdr.data = &bi;
		hdr.size = SSZA(BINTERNAL, data);
		memset(&data, 0, sizeof(data));
		data.data = child_bi->data;
		data.size = child_bi->len;
		if ((ret = __db_pitem(dbp, ppage, off,
		    BINTERNAL_SIZE(child_bi->len), &hdr, &data)) != 0)
			return (ret);

		/* Increment the overflow ref count. */
		if (B_TYPE(child_bi->type) == B_OVERFLOW)
			if ((ret = __db_ovref(dbp,
			    ((BOVERFLOW *)(child_bi->data))->pgno, 1)) != 0)
				return (ret);
		break;
	case P_LBTREE:
		child_bk = GET_BKEYDATA(rchild, 0);
		switch (B_TYPE(child_bk->type)) {
		case B_KEYDATA:
			nbytes = BINTERNAL_PSIZE(child_bk->len);
			nksize = child_bk->len;
			if (t->bt_prefix == NULL)
				goto noprefix;
			if (ppage->prev_pgno == PGNO_INVALID && off <= 1)
				goto noprefix;
			tmp_bk = GET_BKEYDATA(lchild, NUM_ENT(lchild) - P_INDX);
			if (B_TYPE(tmp_bk->type) != B_KEYDATA)
				goto noprefix;
			memset(&a, 0, sizeof(a));
			a.size = tmp_bk->len;
			a.data = tmp_bk->data;
			memset(&b, 0, sizeof(b));
			b.size = child_bk->len;
			b.data = child_bk->data;
			nksize = t->bt_prefix(&a, &b);
			if ((n = BINTERNAL_PSIZE(nksize)) < nbytes) {
				t->lstat.bt_pfxsaved += nbytes - n;
				nbytes = n;
			} else
noprefix:			nksize = child_bk->len;

			if (P_FREESPACE(ppage) < nbytes)
				return (DB_NEEDSPLIT);

			memset(&bi, 0, sizeof(bi));
			bi.len = nksize;
			B_TSET(bi.type, child_bk->type, 0);
			bi.pgno = rchild->pgno;
			bi.nrecs = nrecs;
			memset(&hdr, 0, sizeof(hdr));
			hdr.data = &bi;
			hdr.size = SSZA(BINTERNAL, data);
			memset(&data, 0, sizeof(data));
			data.data = child_bk->data;
			data.size = nksize;
			if ((ret = __db_pitem(dbp, ppage, off,
			    BINTERNAL_SIZE(nksize), &hdr, &data)) != 0)
				return (ret);
			break;
		case B_DUPLICATE:
		case B_OVERFLOW:
			nbytes = BINTERNAL_PSIZE(BOVERFLOW_SIZE);

			if (P_FREESPACE(ppage) < nbytes)
				return (DB_NEEDSPLIT);

			memset(&bi, 0, sizeof(bi));
			bi.len = BOVERFLOW_SIZE;
			B_TSET(bi.type, child_bk->type, 0);
			bi.pgno = rchild->pgno;
			bi.nrecs = nrecs;
			memset(&hdr, 0, sizeof(hdr));
			hdr.data = &bi;
			hdr.size = SSZA(BINTERNAL, data);
			memset(&data, 0, sizeof(data));
			data.data = child_bk;
			data.size = BOVERFLOW_SIZE;
			if ((ret = __db_pitem(dbp, ppage, off,
			    BINTERNAL_SIZE(BOVERFLOW_SIZE), &hdr, &data)) != 0)
				return (ret);

			/* Increment the overflow ref count. */
			if (B_TYPE(child_bk->type) == B_OVERFLOW)
				if ((ret = __db_ovref(dbp,
				    ((BOVERFLOW *)child_bk)->pgno, 1)) != 0)
					return (ret);
			break;
		default:
			return (__db_pgfmt(dbp, rchild->pgno));
		}
		break;
	case P_IRECNO:
	case P_LRECNO:
		nbytes = RINTERNAL_PSIZE;

		if (P_FREESPACE(ppage) < nbytes)
			return (DB_NEEDSPLIT);

		/* Add a new record for the right page. */
		memset(&hdr, 0, sizeof(hdr));
		hdr.data = &ri;
		hdr.size = RINTERNAL_SIZE;
		ri.pgno = rchild->pgno;
		ri.nrecs = nrecs;
		if ((ret = __db_pitem(dbp,
		    ppage, off, RINTERNAL_SIZE, &hdr, NULL)) != 0)
			return (ret);
		break;
	default:
		return (__db_pgfmt(dbp, rchild->pgno));
	}

	/* Adjust the parent page's left page record count. */
	if (dbp->type == DB_RECNO || F_ISSET(dbp, DB_BT_RECNUM)) {
		/* Log the change. */
		if (DB_LOGGING(dbp) &&
		    (ret = __bam_cadjust_log(dbp->dbenv->lg_info,
		    dbp->txn, &LSN(ppage), 0, dbp->log_fileid,
		    PGNO(ppage), &LSN(ppage), (u_int32_t)parent->indx,
		    -(int32_t)nrecs, (int32_t)0)) != 0)
			return (ret);

		/* Update the left page count. */
		if (dbp->type == DB_RECNO)
			GET_RINTERNAL(ppage, parent->indx)->nrecs -= nrecs;
		else
			GET_BINTERNAL(ppage, parent->indx)->nrecs -= nrecs;
	}

	return (0);
}

/*
 * __bam_psplit --
 *	Do the real work of splitting the page.
 */
static int
__bam_psplit(dbp, cp, lp, rp, cleft)
	DB *dbp;
	EPG *cp;
	PAGE *lp, *rp;
	int cleft;
{
	BTREE *t;
	PAGE *pp;
	db_indx_t half, nbytes, off, splitp, top;
	int adjust, cnt, isbigkey, ret;

	t = dbp->internal;
	pp = cp->page;
	adjust = TYPE(pp) == P_LBTREE ? P_INDX : O_INDX;

	/*
	 * If we're splitting the first (last) page on a level because we're
	 * inserting (appending) a key to it, it's likely that the data is
	 * sorted.  Moving a single item to the new page is less work and can
	 * push the fill factor higher than normal.  If we're wrong it's not
	 * a big deal, we'll just do the split the right way next time.
	 */
	off = 0;
	if (NEXT_PGNO(pp) == PGNO_INVALID &&
	    ((ISINTERNAL(pp) && cp->indx == NUM_ENT(cp->page) - 1) ||
	    (!ISINTERNAL(pp) && cp->indx == NUM_ENT(cp->page))))
		off = NUM_ENT(cp->page) - adjust;
	else if (PREV_PGNO(pp) == PGNO_INVALID && cp->indx == 0)
		off = adjust;

	++t->lstat.bt_split;
	if (off != 0) {
		++t->lstat.bt_fastsplit;
		goto sort;
	}

	/*
	 * Split the data to the left and right pages.  Try not to split on
	 * an overflow key.  (Overflow keys on internal pages will slow down
	 * searches.)  Refuse to split in the middle of a set of duplicates.
	 *
	 * First, find the optimum place to split.
	 *
	 * It's possible to try and split past the last record on the page if
	 * there's a very large record at the end of the page.  Make sure this
	 * doesn't happen by bounding the check at the next-to-last entry on
	 * the page.
	 *
	 * Note, we try and split half the data present on the page.  This is
	 * because another process may have already split the page and left
	 * it half empty.  We don't try and skip the split -- we don't know
	 * how much space we're going to need on the page, and we may need up
	 * to half the page for a big item, so there's no easy test to decide
	 * if we need to split or not.  Besides, if two threads are inserting
	 * data into the same place in the database, we're probably going to
	 * need more space soon anyway.
	 */
	top = NUM_ENT(pp) - adjust;
	half = (dbp->pgsize - HOFFSET(pp)) / 2;
	for (nbytes = 0, off = 0; off < top && nbytes < half; ++off)
		switch (TYPE(pp)) {
		case P_IBTREE:
			if (B_TYPE(GET_BINTERNAL(pp, off)->type) == B_KEYDATA)
				nbytes +=
				   BINTERNAL_SIZE(GET_BINTERNAL(pp, off)->len);
			else
				nbytes += BINTERNAL_SIZE(BOVERFLOW_SIZE);
			break;
		case P_LBTREE:
			if (B_TYPE(GET_BKEYDATA(pp, off)->type) == B_KEYDATA)
				nbytes +=
				    BKEYDATA_SIZE(GET_BKEYDATA(pp, off)->len);
			else
				nbytes += BOVERFLOW_SIZE;

			++off;
			if (B_TYPE(GET_BKEYDATA(pp, off)->type) == B_KEYDATA)
				nbytes +=
				    BKEYDATA_SIZE(GET_BKEYDATA(pp, off)->len);
			else
				nbytes += BOVERFLOW_SIZE;
			break;
		case P_IRECNO:
			nbytes += RINTERNAL_SIZE;
			break;
		case P_LRECNO:
			nbytes += BKEYDATA_SIZE(GET_BKEYDATA(pp, off)->len);
			break;
		default:
			return (__db_pgfmt(dbp, pp->pgno));
		}
sort:	splitp = off;

	/*
	 * Splitp is either at or just past the optimum split point.  If
	 * it's a big key, try and find something close by that's not.
	 */
	if (TYPE(pp) == P_IBTREE)
		isbigkey = B_TYPE(GET_BINTERNAL(pp, off)->type) != B_KEYDATA;
	else if (TYPE(pp) == P_LBTREE)
		isbigkey = B_TYPE(GET_BKEYDATA(pp, off)->type) != B_KEYDATA;
	else
		isbigkey = 0;
	if (isbigkey)
		for (cnt = 1; cnt <= 3; ++cnt) {
			off = splitp + cnt * adjust;
			if (off < (db_indx_t)NUM_ENT(pp) &&
			    ((TYPE(pp) == P_IBTREE &&
			    B_TYPE(GET_BINTERNAL(pp,off)->type) == B_KEYDATA) ||
			    B_TYPE(GET_BKEYDATA(pp, off)->type) == B_KEYDATA)) {
				splitp = off;
				break;
			}
			if (splitp <= (db_indx_t)(cnt * adjust))
				continue;
			off = splitp - cnt * adjust;
			if (TYPE(pp) == P_IBTREE ?
			    B_TYPE(GET_BINTERNAL(pp, off)->type) == B_KEYDATA :
			    B_TYPE(GET_BKEYDATA(pp, off)->type) == B_KEYDATA) {
				splitp = off;
				break;
			}
		}

	/*
	 * We can't split in the middle a set of duplicates.  We know that
	 * no duplicate set can take up more than about 25% of the page,
	 * because that's the point where we push it off onto a duplicate
	 * page set.  So, this loop can't be unbounded.
	 */
	if (F_ISSET(dbp, DB_AM_DUP) && TYPE(pp) == P_LBTREE &&
	    pp->inp[splitp] == pp->inp[splitp - adjust])
		for (cnt = 1;; ++cnt) {
			off = splitp + cnt * adjust;
			if (off < NUM_ENT(pp) &&
			    pp->inp[splitp] != pp->inp[off]) {
				splitp = off;
				break;
			}
			if (splitp <= (db_indx_t)(cnt * adjust))
				continue;
			off = splitp - cnt * adjust;
			if (pp->inp[splitp] != pp->inp[off]) {
				splitp = off + adjust;
				break;
			}
		}


	/* We're going to split at splitp. */
	if ((ret = __bam_copy(dbp, pp, lp, 0, splitp)) != 0)
		return (ret);
	if ((ret = __bam_copy(dbp, pp, rp, splitp, NUM_ENT(pp))) != 0)
		return (ret);

	/* Adjust the cursors. */
	__bam_ca_split(dbp, pp->pgno, lp->pgno, rp->pgno, splitp, cleft);
	return (0);
}

/*
 * __bam_copy --
 *	Copy a set of records from one page to another.
 *
 * PUBLIC: int __bam_copy __P((DB *, PAGE *, PAGE *, u_int32_t, u_int32_t));
 */
int
__bam_copy(dbp, pp, cp, nxt, stop)
	DB *dbp;
	PAGE *pp, *cp;
	u_int32_t nxt, stop;
{
	db_indx_t dup, nbytes, off;

	/*
	 * Copy the rest of the data to the right page.  Nxt is the next
	 * offset placed on the target page.
	 */
	for (dup = off = 0; nxt < stop; ++nxt, ++NUM_ENT(cp), ++off) {
		switch (TYPE(pp)) {
		case P_IBTREE:
			if (B_TYPE(GET_BINTERNAL(pp, nxt)->type) == B_KEYDATA)
				nbytes =
				    BINTERNAL_SIZE(GET_BINTERNAL(pp, nxt)->len);
			else
				nbytes = BINTERNAL_SIZE(BOVERFLOW_SIZE);
			break;
		case P_LBTREE:
			/*
			 * If we're on a key and it's a duplicate, just copy
			 * the offset.
			 */
			if (off != 0 && (nxt % P_INDX) == 0 &&
			    pp->inp[nxt] == pp->inp[nxt - P_INDX]) {
				cp->inp[off] = cp->inp[off - P_INDX];
				continue;
			}
			/* FALLTHROUGH */
		case P_LRECNO:
			if (B_TYPE(GET_BKEYDATA(pp, nxt)->type) == B_KEYDATA)
				nbytes =
				    BKEYDATA_SIZE(GET_BKEYDATA(pp, nxt)->len);
			else
				nbytes = BOVERFLOW_SIZE;
			break;
		case P_IRECNO:
			nbytes = RINTERNAL_SIZE;
			break;
		default:
			return (__db_pgfmt(dbp, pp->pgno));
		}
		cp->inp[off] = HOFFSET(cp) -= nbytes;
		memcpy(P_ENTRY(cp, off), P_ENTRY(pp, nxt), nbytes);
	}
	return (0);
}