aboutsummaryrefslogtreecommitdiff
path: root/crypt/crypt_util.c
blob: 62c87908ff4bde39b78d1e24639950d802ca38f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
/*
 * UFC-crypt: ultra fast crypt(3) implementation
 *
 * Copyright (C) 1991-1993,1996-1998,2000,2010,2011,2012
 * Free Software Foundation, Inc.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; see the file COPYING.LIB.  If not,
 * write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 *
 * @(#)crypt_util.c	2.56 12/20/96
 *
 * Support routines
 *
 */

#ifdef DEBUG
#include <stdio.h>
#endif
#include <atomic.h>
#include <string.h>

#ifndef STATIC
#define STATIC static
#endif

#ifndef DOS
#include "ufc-crypt.h"
#else
/*
 * Thanks to greg%wind@plains.NoDak.edu (Greg W. Wettstein)
 * for DOS patches
 */
#include "pl.h"
#include "ufc.h"
#endif
#include "crypt.h"
#include "crypt-private.h"

/* Prototypes for local functions.  */
#if __STDC__ - 0
#ifndef __GNU_LIBRARY__
void _ufc_clearmem (char *start, int cnt);
void _ufc_copymem (char *from, char *to, int cnt);
#endif
#ifdef _UFC_32_
STATIC void shuffle_sb (long32 *k, ufc_long saltbits);
#else
STATIC void shuffle_sb (long64 *k, ufc_long saltbits);
#endif
#endif


/*
 * Permutation done once on the 56 bit
 *  key derived from the original 8 byte ASCII key.
 */
static const int pc1[56] = {
  57, 49, 41, 33, 25, 17,  9,  1, 58, 50, 42, 34, 26, 18,
  10,  2, 59, 51, 43, 35, 27, 19, 11,  3, 60, 52, 44, 36,
  63, 55, 47, 39, 31, 23, 15,  7, 62, 54, 46, 38, 30, 22,
  14,  6, 61, 53, 45, 37, 29, 21, 13,  5, 28, 20, 12,  4
};

/*
 * How much to rotate each 28 bit half of the pc1 permutated
 *  56 bit key before using pc2 to give the i' key
 */
static const int rots[16] = {
  1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
};

/*
 * Permutation giving the key
 * of the i' DES round
 */
static const int pc2[48] = {
  14, 17, 11, 24,  1,  5,  3, 28, 15,  6, 21, 10,
  23, 19, 12,  4, 26,  8, 16,  7, 27, 20, 13,  2,
  41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
  44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
};

/*
 * The E expansion table which selects
 * bits from the 32 bit intermediate result.
 */
static const int esel[48] = {
  32,  1,  2,  3,  4,  5,  4,  5,  6,  7,  8,  9,
   8,  9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
  16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
  24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32,  1
};

/*
 * Permutation done on the
 * result of sbox lookups
 */
static const int perm32[32] = {
  16,  7, 20, 21, 29, 12, 28, 17,  1, 15, 23, 26,  5, 18, 31, 10,
  2,   8, 24, 14, 32, 27,  3,  9, 19, 13, 30,  6, 22, 11,  4, 25
};

/*
 * The sboxes
 */
static const int sbox[8][4][16]= {
	{ { 14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7 },
	  {  0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8 },
	  {  4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0 },
	  { 15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13 }
	},

	{ { 15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10 },
	  {  3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5 },
	  {  0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15 },
	  { 13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9 }
	},

	{ { 10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8 },
	  { 13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1 },
	  { 13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7 },
	  {  1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12 }
	},

	{ {  7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15 },
	  { 13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9 },
	  { 10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4 },
	  {  3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14 }
	},

	{ {  2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9 },
	  { 14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6 },
	  {  4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14 },
	  { 11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3 }
	},

	{ { 12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11 },
	  { 10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8 },
	  {  9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6 },
	  {  4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13 }
	},

	{ {  4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1 },
	  { 13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6 },
	  {  1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2 },
	  {  6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12 }
	},

	{ { 13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7 },
	  {  1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2 },
	  {  7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8 },
	  {  2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11 }
	}
};

/*
 * This is the initial
 * permutation matrix
 */
static const int initial_perm[64] = {
  58, 50, 42, 34, 26, 18, 10,  2, 60, 52, 44, 36, 28, 20, 12, 4,
  62, 54, 46, 38, 30, 22, 14,  6, 64, 56, 48, 40, 32, 24, 16, 8,
  57, 49, 41, 33, 25, 17,  9,  1, 59, 51, 43, 35, 27, 19, 11, 3,
  61, 53, 45, 37, 29, 21, 13,  5, 63, 55, 47, 39, 31, 23, 15, 7
};

/*
 * This is the final
 * permutation matrix
 */
static const int final_perm[64] = {
  40,  8, 48, 16, 56, 24, 64, 32, 39,  7, 47, 15, 55, 23, 63, 31,
  38,  6, 46, 14, 54, 22, 62, 30, 37,  5, 45, 13, 53, 21, 61, 29,
  36,  4, 44, 12, 52, 20, 60, 28, 35,  3, 43, 11, 51, 19, 59, 27,
  34,  2, 42, 10, 50, 18, 58, 26, 33,  1, 41,  9, 49, 17, 57, 25
};

#define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.')
#define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.')

static const ufc_long BITMASK[24] = {
  0x40000000, 0x20000000, 0x10000000, 0x08000000, 0x04000000, 0x02000000,
  0x01000000, 0x00800000, 0x00400000, 0x00200000, 0x00100000, 0x00080000,
  0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200,
  0x00000100, 0x00000080, 0x00000040, 0x00000020, 0x00000010, 0x00000008
};

static const unsigned char bytemask[8]  = {
  0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01
};

static const ufc_long longmask[32] = {
  0x80000000, 0x40000000, 0x20000000, 0x10000000,
  0x08000000, 0x04000000, 0x02000000, 0x01000000,
  0x00800000, 0x00400000, 0x00200000, 0x00100000,
  0x00080000, 0x00040000, 0x00020000, 0x00010000,
  0x00008000, 0x00004000, 0x00002000, 0x00001000,
  0x00000800, 0x00000400, 0x00000200, 0x00000100,
  0x00000080, 0x00000040, 0x00000020, 0x00000010,
  0x00000008, 0x00000004, 0x00000002, 0x00000001
};

/*
 * do_pc1: permform pc1 permutation in the key schedule generation.
 *
 * The first   index is the byte number in the 8 byte ASCII key
 *  -  second    -      -    the two 28 bits halfs of the result
 *  -  third     -   selects the 7 bits actually used of each byte
 *
 * The result is kept with 28 bit per 32 bit with the 4 most significant
 * bits zero.
 */
static ufc_long do_pc1[8][2][128];

/*
 * do_pc2: permform pc2 permutation in the key schedule generation.
 *
 * The first   index is the septet number in the two 28 bit intermediate values
 *  -  second    -    -  -  septet values
 *
 * Knowledge of the structure of the pc2 permutation is used.
 *
 * The result is kept with 28 bit per 32 bit with the 4 most significant
 * bits zero.
 */
static ufc_long do_pc2[8][128];

/*
 * eperm32tab: do 32 bit permutation and E selection
 *
 * The first index is the byte number in the 32 bit value to be permuted
 *  -  second  -   is the value of this byte
 *  -  third   -   selects the two 32 bit values
 *
 * The table is used and generated internally in init_des to speed it up
 */
static ufc_long eperm32tab[4][256][2];

/*
 * efp: undo an extra e selection and do final
 *      permutation giving the DES result.
 *
 *      Invoked 6 bit a time on two 48 bit values
 *      giving two 32 bit longs.
 */
static ufc_long efp[16][64][2];

/*
 * For use by the old, non-reentrant routines
 * (crypt/encrypt/setkey)
 */
struct crypt_data _ufc_foobar;

#ifdef __GNU_LIBRARY__
#include <bits/libc-lock.h>

__libc_lock_define_initialized (static, _ufc_tables_lock)
#endif

#ifdef DEBUG

void
_ufc_prbits(a, n)
     ufc_long *a;
     int n;
{
  ufc_long i, j, t, tmp;
  n /= 8;
  for(i = 0; i < n; i++) {
    tmp=0;
    for(j = 0; j < 8; j++) {
      t=8*i+j;
      tmp|=(a[t/24] & BITMASK[t % 24])?bytemask[j]:0;
    }
    (void)printf("%02x ",tmp);
  }
  printf(" ");
}

static void
_ufc_set_bits(v, b)
     ufc_long v;
     ufc_long *b;
{
  ufc_long i;
  *b = 0;
  for(i = 0; i < 24; i++) {
    if(v & longmask[8 + i])
      *b |= BITMASK[i];
  }
}

#endif

#ifndef __GNU_LIBRARY__
/*
 * Silly rewrites of 'bzero'/'memset'. I do so
 * because some machines don't have
 * bzero and some don't have memset.
 */

void
_ufc_clearmem(start, cnt)
     char *start;
     int cnt;
{
  while(cnt--)
    *start++ = '\0';
}

void
_ufc_copymem(from, to, cnt)
     char *from, *to;
     int cnt;
{
  while(cnt--)
    *to++ = *from++;
}
#else
#define _ufc_clearmem(start, cnt)   memset(start, 0, cnt)
#define _ufc_copymem(from, to, cnt) memcpy(to, from, cnt)
#endif

/* lookup a 6 bit value in sbox */

#define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf];

/*
 * Initialize unit - may be invoked directly
 * by fcrypt users.
 */

void
__init_des_r(__data)
     struct crypt_data * __restrict __data;
{
  int comes_from_bit;
  int bit, sg;
  ufc_long j;
  ufc_long mask1, mask2;
  int e_inverse[64];
  static volatile int small_tables_initialized = 0;

#ifdef _UFC_32_
  long32 *sb[4];
  sb[0] = (long32*)__data->sb0; sb[1] = (long32*)__data->sb1;
  sb[2] = (long32*)__data->sb2; sb[3] = (long32*)__data->sb3;
#endif
#ifdef _UFC_64_
  long64 *sb[4];
  sb[0] = (long64*)__data->sb0; sb[1] = (long64*)__data->sb1;
  sb[2] = (long64*)__data->sb2; sb[3] = (long64*)__data->sb3;
#endif

  if(small_tables_initialized == 0) {
#ifdef __GNU_LIBRARY__
    __libc_lock_lock (_ufc_tables_lock);
    if(small_tables_initialized)
      goto small_tables_done;
#endif

    /*
     * Create the do_pc1 table used
     * to affect pc1 permutation
     * when generating keys
     */
    _ufc_clearmem((char*)do_pc1, (int)sizeof(do_pc1));
    for(bit = 0; bit < 56; bit++) {
      comes_from_bit  = pc1[bit] - 1;
      mask1 = bytemask[comes_from_bit % 8 + 1];
      mask2 = longmask[bit % 28 + 4];
      for(j = 0; j < 128; j++) {
	if(j & mask1)
	  do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2;
      }
    }

    /*
     * Create the do_pc2 table used
     * to affect pc2 permutation when
     * generating keys
     */
    _ufc_clearmem((char*)do_pc2, (int)sizeof(do_pc2));
    for(bit = 0; bit < 48; bit++) {
      comes_from_bit  = pc2[bit] - 1;
      mask1 = bytemask[comes_from_bit % 7 + 1];
      mask2 = BITMASK[bit % 24];
      for(j = 0; j < 128; j++) {
	if(j & mask1)
	  do_pc2[comes_from_bit / 7][j] |= mask2;
      }
    }

    /*
     * Now generate the table used to do combined
     * 32 bit permutation and e expansion
     *
     * We use it because we have to permute 16384 32 bit
     * longs into 48 bit in order to initialize sb.
     *
     * Looping 48 rounds per permutation becomes
     * just too slow...
     *
     */

    _ufc_clearmem((char*)eperm32tab, (int)sizeof(eperm32tab));
    for(bit = 0; bit < 48; bit++) {
      ufc_long mask1,comes_from;
      comes_from = perm32[esel[bit]-1]-1;
      mask1      = bytemask[comes_from % 8];
      for(j = 256; j--;) {
	if(j & mask1)
	  eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK[bit % 24];
      }
    }

    /*
     * Create an inverse matrix for esel telling
     * where to plug out bits if undoing it
     */
    for(bit=48; bit--;) {
      e_inverse[esel[bit] - 1     ] = bit;
      e_inverse[esel[bit] - 1 + 32] = bit + 48;
    }

    /*
     * create efp: the matrix used to
     * undo the E expansion and effect final permutation
     */
    _ufc_clearmem((char*)efp, (int)sizeof efp);
    for(bit = 0; bit < 64; bit++) {
      int o_bit, o_long;
      ufc_long word_value, mask1, mask2;
      int comes_from_f_bit, comes_from_e_bit;
      int comes_from_word, bit_within_word;

      /* See where bit i belongs in the two 32 bit long's */
      o_long = bit / 32; /* 0..1  */
      o_bit  = bit % 32; /* 0..31 */

      /*
       * And find a bit in the e permutated value setting this bit.
       *
       * Note: the e selection may have selected the same bit several
       * times. By the initialization of e_inverse, we only look
       * for one specific instance.
       */
      comes_from_f_bit = final_perm[bit] - 1;         /* 0..63 */
      comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */
      comes_from_word  = comes_from_e_bit / 6;        /* 0..15 */
      bit_within_word  = comes_from_e_bit % 6;        /* 0..5  */

      mask1 = longmask[bit_within_word + 26];
      mask2 = longmask[o_bit];

      for(word_value = 64; word_value--;) {
	if(word_value & mask1)
	  efp[comes_from_word][word_value][o_long] |= mask2;
      }
    }
    atomic_write_barrier ();
    small_tables_initialized = 1;
#ifdef __GNU_LIBRARY__
small_tables_done:
    __libc_lock_unlock(_ufc_tables_lock);
#endif
  } else
    atomic_read_barrier ();

  /*
   * Create the sb tables:
   *
   * For each 12 bit segment of an 48 bit intermediate
   * result, the sb table precomputes the two 4 bit
   * values of the sbox lookups done with the two 6
   * bit halves, shifts them to their proper place,
   * sends them through perm32 and finally E expands
   * them so that they are ready for the next
   * DES round.
   *
   */

  if (__data->sb0 + sizeof (__data->sb0) == __data->sb1
      && __data->sb1 + sizeof (__data->sb1) == __data->sb2
      && __data->sb2 + sizeof (__data->sb2) == __data->sb3)
    _ufc_clearmem(__data->sb0,
		  (int)sizeof(__data->sb0)
		  + (int)sizeof(__data->sb1)
		  + (int)sizeof(__data->sb2)
		  + (int)sizeof(__data->sb3));
  else {
    _ufc_clearmem(__data->sb0, (int)sizeof(__data->sb0));
    _ufc_clearmem(__data->sb1, (int)sizeof(__data->sb1));
    _ufc_clearmem(__data->sb2, (int)sizeof(__data->sb2));
    _ufc_clearmem(__data->sb3, (int)sizeof(__data->sb3));
  }

  for(sg = 0; sg < 4; sg++) {
    int j1, j2;
    int s1, s2;

    for(j1 = 0; j1 < 64; j1++) {
      s1 = s_lookup(2 * sg, j1);
      for(j2 = 0; j2 < 64; j2++) {
	ufc_long to_permute, inx;

	s2         = s_lookup(2 * sg + 1, j2);
	to_permute = (((ufc_long)s1 << 4)  |
		      (ufc_long)s2) << (24 - 8 * (ufc_long)sg);

#ifdef _UFC_32_
	inx = ((j1 << 6)  | j2) << 1;
	sb[sg][inx  ]  = eperm32tab[0][(to_permute >> 24) & 0xff][0];
	sb[sg][inx+1]  = eperm32tab[0][(to_permute >> 24) & 0xff][1];
	sb[sg][inx  ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0];
	sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1];
	sb[sg][inx  ] |= eperm32tab[2][(to_permute >>  8) & 0xff][0];
	sb[sg][inx+1] |= eperm32tab[2][(to_permute >>  8) & 0xff][1];
	sb[sg][inx  ] |= eperm32tab[3][(to_permute)       & 0xff][0];
	sb[sg][inx+1] |= eperm32tab[3][(to_permute)       & 0xff][1];
#endif
#ifdef _UFC_64_
	inx = ((j1 << 6)  | j2);
	sb[sg][inx]  =
	  ((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) |
	   (long64)eperm32tab[0][(to_permute >> 24) & 0xff][1];
	sb[sg][inx] |=
	  ((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) |
	   (long64)eperm32tab[1][(to_permute >> 16) & 0xff][1];
	sb[sg][inx] |=
	  ((long64)eperm32tab[2][(to_permute >>  8) & 0xff][0] << 32) |
	   (long64)eperm32tab[2][(to_permute >>  8) & 0xff][1];
	sb[sg][inx] |=
	  ((long64)eperm32tab[3][(to_permute)       & 0xff][0] << 32) |
	   (long64)eperm32tab[3][(to_permute)       & 0xff][1];
#endif
      }
    }
  }

  __data->current_saltbits = 0;
  __data->current_salt[0] = 0;
  __data->current_salt[1] = 0;
  __data->initialized++;
}

void
__init_des()
{
  __init_des_r(&_ufc_foobar);
}

/*
 * Process the elements of the sb table permuting the
 * bits swapped in the expansion by the current salt.
 */

#ifdef _UFC_32_
STATIC void
shuffle_sb(k, saltbits)
     long32 *k;
     ufc_long saltbits;
{
  ufc_long j;
  long32 x;
  for(j=4096; j--;) {
    x = (k[0] ^ k[1]) & (long32)saltbits;
    *k++ ^= x;
    *k++ ^= x;
  }
}
#endif

#ifdef _UFC_64_
STATIC void
shuffle_sb(k, saltbits)
     long64 *k;
     ufc_long saltbits;
{
  ufc_long j;
  long64 x;
  for(j=4096; j--;) {
    x = ((*k >> 32) ^ *k) & (long64)saltbits;
    *k++ ^= (x << 32) | x;
  }
}
#endif

/*
 * Setup the unit for a new salt
 * Hopefully we'll not see a new salt in each crypt call.
 */

void
_ufc_setup_salt_r(s, __data)
     const char *s;
     struct crypt_data * __restrict __data;
{
  ufc_long i, j, saltbits;

  if(__data->initialized == 0)
    __init_des_r(__data);

  if(s[0] == __data->current_salt[0] && s[1] == __data->current_salt[1])
    return;
  __data->current_salt[0] = s[0]; __data->current_salt[1] = s[1];

  /*
   * This is the only crypt change to DES:
   * entries are swapped in the expansion table
   * according to the bits set in the salt.
   */
  saltbits = 0;
  for(i = 0; i < 2; i++) {
    long c=ascii_to_bin(s[i]);
    for(j = 0; j < 6; j++) {
      if((c >> j) & 0x1)
	saltbits |= BITMASK[6 * i + j];
    }
  }

  /*
   * Permute the sb table values
   * to reflect the changed e
   * selection table
   */
#ifdef _UFC_32_
#define LONGG long32*
#endif
#ifdef _UFC_64_
#define LONGG long64*
#endif

  shuffle_sb((LONGG)__data->sb0, __data->current_saltbits ^ saltbits);
  shuffle_sb((LONGG)__data->sb1, __data->current_saltbits ^ saltbits);
  shuffle_sb((LONGG)__data->sb2, __data->current_saltbits ^ saltbits);
  shuffle_sb((LONGG)__data->sb3, __data->current_saltbits ^ saltbits);

  __data->current_saltbits = saltbits;
}

void
_ufc_mk_keytab_r(key, __data)
     const char *key;
     struct crypt_data * __restrict __data;
{
  ufc_long v1, v2, *k1;
  int i;
#ifdef _UFC_32_
  long32 v, *k2;
  k2 = (long32*)__data->keysched;
#endif
#ifdef _UFC_64_
  long64 v, *k2;
  k2 = (long64*)__data->keysched;
#endif

  v1 = v2 = 0; k1 = &do_pc1[0][0][0];
  for(i = 8; i--;) {
    v1 |= k1[*key   & 0x7f]; k1 += 128;
    v2 |= k1[*key++ & 0x7f]; k1 += 128;
  }

  for(i = 0; i < 16; i++) {
    k1 = &do_pc2[0][0];

    v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i]));
    v  = k1[(v1 >> 21) & 0x7f]; k1 += 128;
    v |= k1[(v1 >> 14) & 0x7f]; k1 += 128;
    v |= k1[(v1 >>  7) & 0x7f]; k1 += 128;
    v |= k1[(v1      ) & 0x7f]; k1 += 128;

#ifdef _UFC_32_
    *k2++ = (v | 0x00008000);
    v = 0;
#endif
#ifdef _UFC_64_
    v = (v << 32);
#endif

    v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i]));
    v |= k1[(v2 >> 21) & 0x7f]; k1 += 128;
    v |= k1[(v2 >> 14) & 0x7f]; k1 += 128;
    v |= k1[(v2 >>  7) & 0x7f]; k1 += 128;
    v |= k1[(v2      ) & 0x7f];

#ifdef _UFC_32_
    *k2++ = (v | 0x00008000);
#endif
#ifdef _UFC_64_
    *k2++ = v | 0x0000800000008000l;
#endif
  }

  __data->direction = 0;
}

/*
 * Undo an extra E selection and do final permutations
 */

void
_ufc_dofinalperm_r(res, __data)
     ufc_long *res;
     struct crypt_data * __restrict __data;
{
  ufc_long v1, v2, x;
  ufc_long l1,l2,r1,r2;

  l1 = res[0]; l2 = res[1];
  r1 = res[2]; r2 = res[3];

  x = (l1 ^ l2) & __data->current_saltbits; l1 ^= x; l2 ^= x;
  x = (r1 ^ r2) & __data->current_saltbits; r1 ^= x; r2 ^= x;

  v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3;

  v1 |= efp[15][ r2         & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1];
  v1 |= efp[14][(r2 >>= 6)  & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1];
  v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1];
  v1 |= efp[12][(r2 >>= 6)  & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1];

  v1 |= efp[11][ r1         & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1];
  v1 |= efp[10][(r1 >>= 6)  & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1];
  v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1];
  v1 |= efp[ 8][(r1 >>= 6)  & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1];

  v1 |= efp[ 7][ l2         & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1];
  v1 |= efp[ 6][(l2 >>= 6)  & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1];
  v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1];
  v1 |= efp[ 4][(l2 >>= 6)  & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1];

  v1 |= efp[ 3][ l1         & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1];
  v1 |= efp[ 2][(l1 >>= 6)  & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1];
  v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1];
  v1 |= efp[ 0][(l1 >>= 6)  & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1];

  res[0] = v1; res[1] = v2;
}

/*
 * crypt only: convert from 64 bit to 11 bit ASCII
 * prefixing with the salt
 */

void
_ufc_output_conversion_r(v1, v2, salt, __data)
     ufc_long v1, v2;
     const char *salt;
     struct crypt_data * __restrict __data;
{
  int i, s, shf;

  __data->crypt_3_buf[0] = salt[0];
  __data->crypt_3_buf[1] = salt[1] ? salt[1] : salt[0];

  for(i = 0; i < 5; i++) {
    shf = (26 - 6 * i); /* to cope with MSC compiler bug */
    __data->crypt_3_buf[i + 2] = bin_to_ascii((v1 >> shf) & 0x3f);
  }

  s  = (v2 & 0xf) << 2;
  v2 = (v2 >> 2) | ((v1 & 0x3) << 30);

  for(i = 5; i < 10; i++) {
    shf = (56 - 6 * i);
    __data->crypt_3_buf[i + 2] = bin_to_ascii((v2 >> shf) & 0x3f);
  }

  __data->crypt_3_buf[12] = bin_to_ascii(s);
  __data->crypt_3_buf[13] = 0;
}


/*
 * UNIX encrypt function. Takes a bitvector
 * represented by one byte per bit and
 * encrypt/decrypt according to edflag
 */

void
__encrypt_r(__block, __edflag, __data)
     char *__block;
     int __edflag;
     struct crypt_data * __restrict __data;
{
  ufc_long l1, l2, r1, r2, res[4];
  int i;
#ifdef _UFC_32_
  long32 *kt;
  kt = (long32*)__data->keysched;
#endif
#ifdef _UFC_64_
  long64 *kt;
  kt = (long64*)__data->keysched;
#endif

  /*
   * Undo any salt changes to E expansion
   */
  _ufc_setup_salt_r("..", __data);

  /*
   * Reverse key table if
   * changing operation (encrypt/decrypt)
   */
  if((__edflag == 0) != (__data->direction == 0)) {
    for(i = 0; i < 8; i++) {
#ifdef _UFC_32_
      long32 x;
      x = kt[2 * (15-i)];
      kt[2 * (15-i)] = kt[2 * i];
      kt[2 * i] = x;

      x = kt[2 * (15-i) + 1];
      kt[2 * (15-i) + 1] = kt[2 * i + 1];
      kt[2 * i + 1] = x;
#endif
#ifdef _UFC_64_
      long64 x;
      x = kt[15-i];
      kt[15-i] = kt[i];
      kt[i] = x;
#endif
      }
    __data->direction = __edflag;
  }

  /*
   * Do initial permutation + E expansion
   */
  i = 0;
  for(l1 = 0; i < 24; i++) {
    if(__block[initial_perm[esel[i]-1]-1])
      l1 |= BITMASK[i];
  }
  for(l2 = 0; i < 48; i++) {
    if(__block[initial_perm[esel[i]-1]-1])
      l2 |= BITMASK[i-24];
  }

  i = 0;
  for(r1 = 0; i < 24; i++) {
    if(__block[initial_perm[esel[i]-1+32]-1])
      r1 |= BITMASK[i];
  }
  for(r2 = 0; i < 48; i++) {
    if(__block[initial_perm[esel[i]-1+32]-1])
      r2 |= BITMASK[i-24];
  }

  /*
   * Do DES inner loops + final conversion
   */
  res[0] = l1; res[1] = l2;
  res[2] = r1; res[3] = r2;
  _ufc_doit_r((ufc_long)1, __data, &res[0]);

  /*
   * Do final permutations
   */
  _ufc_dofinalperm_r(res, __data);

  /*
   * And convert to bit array
   */
  l1 = res[0]; r1 = res[1];
  for(i = 0; i < 32; i++) {
    *__block++ = (l1 & longmask[i]) != 0;
  }
  for(i = 0; i < 32; i++) {
    *__block++ = (r1 & longmask[i]) != 0;
  }
}
weak_alias (__encrypt_r, encrypt_r)

void
encrypt(__block, __edflag)
     char *__block;
     int __edflag;
{
  __encrypt_r(__block, __edflag, &_ufc_foobar);
}


/*
 * UNIX setkey function. Take a 64 bit DES
 * key and setup the machinery.
 */

void
__setkey_r(__key, __data)
     const char *__key;
     struct crypt_data * __restrict __data;
{
  int i,j;
  unsigned char c;
  unsigned char ktab[8];

  _ufc_setup_salt_r("..", __data); /* be sure we're initialized */

  for(i = 0; i < 8; i++) {
    for(j = 0, c = 0; j < 8; j++)
      c = c << 1 | *__key++;
    ktab[i] = c >> 1;
  }
  _ufc_mk_keytab_r((char *) ktab, __data);
}
weak_alias (__setkey_r, setkey_r)

void
setkey(__key)
     const char *__key;
{
  __setkey_r(__key, &_ufc_foobar);
}