/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001-2013 Free Software Foundation, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, see . */ /************************************************************************/ /* MODULE_NAME: mpa.c */ /* */ /* FUNCTIONS: */ /* mcr */ /* acr */ /* cpy */ /* norm */ /* denorm */ /* mp_dbl */ /* dbl_mp */ /* add_magnitudes */ /* sub_magnitudes */ /* add */ /* sub */ /* mul */ /* inv */ /* dvd */ /* */ /* Arithmetic functions for multiple precision numbers. */ /* Relative errors are bounded */ /************************************************************************/ #include "endian.h" #include "mpa.h" #include const mp_no mpone = {1, {1.0, 1.0}}; const mp_no mptwo = {1, {1.0, 2.0}}; /* Compare mantissa of two multiple precision numbers regardless of the sign and exponent of the numbers. */ static int mcr (const mp_no *x, const mp_no *y, int p) { long i; long p2 = p; for (i = 1; i <= p2; i++) { if (X[i] == Y[i]) continue; else if (X[i] > Y[i]) return 1; else return -1; } return 0; } /* Compare the absolute values of two multiple precision numbers. */ int __acr (const mp_no *x, const mp_no *y, int p) { long i; if (X[0] == ZERO) { if (Y[0] == ZERO) i = 0; else i = -1; } else if (Y[0] == ZERO) i = 1; else { if (EX > EY) i = 1; else if (EX < EY) i = -1; else i = mcr (x, y, p); } return i; } /* Copy multiple precision number X into Y. They could be the same number. */ void __cpy (const mp_no *x, mp_no *y, int p) { long i; EY = EX; for (i = 0; i <= p; i++) Y[i] = X[i]; } /* Convert a multiple precision number *X into a double precision number *Y, normalized case (|x| >= 2**(-1022))). */ static void norm (const mp_no *x, double *y, int p) { #define R RADIXI long i; double a, c, u, v, z[5]; if (p < 5) { if (p == 1) c = X[1]; else if (p == 2) c = X[1] + R * X[2]; else if (p == 3) c = X[1] + R * (X[2] + R * X[3]); else if (p == 4) c = (X[1] + R * X[2]) + R * R * (X[3] + R * X[4]); } else { for (a = ONE, z[1] = X[1]; z[1] < TWO23;) { a *= TWO; z[1] *= TWO; } for (i = 2; i < 5; i++) { z[i] = X[i] * a; u = (z[i] + CUTTER) - CUTTER; if (u > z[i]) u -= RADIX; z[i] -= u; z[i - 1] += u * RADIXI; } u = (z[3] + TWO71) - TWO71; if (u > z[3]) u -= TWO19; v = z[3] - u; if (v == TWO18) { if (z[4] == ZERO) { for (i = 5; i <= p; i++) { if (X[i] == ZERO) continue; else { z[3] += ONE; break; } } } else z[3] += ONE; } c = (z[1] + R * (z[2] + R * z[3])) / a; } c *= X[0]; for (i = 1; i < EX; i++) c *= RADIX; for (i = 1; i > EX; i--) c *= RADIXI; *y = c; #undef R } /* Convert a multiple precision number *X into a double precision number *Y, Denormal case (|x| < 2**(-1022))). */ static void denorm (const mp_no *x, double *y, int p) { long i, k; long p2 = p; double c, u, z[5]; #define R RADIXI if (EX < -44 || (EX == -44 && X[1] < TWO5)) { *y = ZERO; return; } if (p2 == 1) { if (EX == -42) { z[1] = X[1] + TWO10; z[2] = ZERO; z[3] = ZERO; k = 3; } else if (EX == -43) { z[1] = TWO10; z[2] = X[1]; z[3] = ZERO; k = 2; } else { z[1] = TWO10; z[2] = ZERO; z[3] = X[1]; k = 1; } } else if (p2 == 2) { if (EX == -42) { z[1] = X[1] + TWO10; z[2] = X[2]; z[3] = ZERO; k = 3; } else if (EX == -43) { z[1] = TWO10; z[2] = X[1]; z[3] = X[2]; k = 2; } else { z[1] = TWO10; z[2] = ZERO; z[3] = X[1]; k = 1; } } else { if (EX == -42) { z[1] = X[1] + TWO10; z[2] = X[2]; k = 3; } else if (EX == -43) { z[1] = TWO10; z[2] = X[1]; k = 2; } else { z[1] = TWO10; z[2] = ZERO; k = 1; } z[3] = X[k]; } u = (z[3] + TWO57) - TWO57; if (u > z[3]) u -= TWO5; if (u == z[3]) { for (i = k + 1; i <= p2; i++) { if (X[i] == ZERO) continue; else { z[3] += ONE; break; } } } c = X[0] * ((z[1] + R * (z[2] + R * z[3])) - TWO10); *y = c * TWOM1032; #undef R } /* Convert multiple precision number *X into double precision number *Y. The result is correctly rounded to the nearest/even. */ void __mp_dbl (const mp_no *x, double *y, int p) { if (X[0] == ZERO) { *y = ZERO; return; } if (EX > -42) norm (x, y, p); else if (EX == -42 && X[1] >= TWO10) norm (x, y, p); else denorm (x, y, p); } /* Get the multiple precision equivalent of X into *Y. If the precision is too small, the result is truncated. */ void __dbl_mp (double x, mp_no *y, int p) { long i, n; long p2 = p; double u; /* Sign. */ if (x == ZERO) { Y[0] = ZERO; return; } else if (x > ZERO) Y[0] = ONE; else { Y[0] = MONE; x = -x; } /* Exponent. */ for (EY = ONE; x >= RADIX; EY += ONE) x *= RADIXI; for (; x < ONE; EY -= ONE) x *= RADIX; /* Digits. */ n = MIN (p2, 4); for (i = 1; i <= n; i++) { u = (x + TWO52) - TWO52; if (u > x) u -= ONE; Y[i] = u; x -= u; x *= RADIX; } for (; i <= p2; i++) Y[i] = ZERO; } /* Add magnitudes of *X and *Y assuming that abs (*X) >= abs (*Y) > 0. The sign of the sum *Z is not changed. X and Y may overlap but not X and Z or Y and Z. No guard digit is used. The result equals the exact sum, truncated. */ static void add_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p) { long i, j, k; long p2 = p; EZ = EX; i = p2; j = p2 + EY - EX; k = p2 + 1; if (j < 1) { __cpy (x, z, p); return; } else Z[k] = ZERO; for (; j > 0; i--, j--) { Z[k] += X[i] + Y[j]; if (Z[k] >= RADIX) { Z[k] -= RADIX; Z[--k] = ONE; } else Z[--k] = ZERO; } for (; i > 0; i--) { Z[k] += X[i]; if (Z[k] >= RADIX) { Z[k] -= RADIX; Z[--k] = ONE; } else Z[--k] = ZERO; } if (Z[1] == ZERO) { for (i = 1; i <= p2; i++) Z[i] = Z[i + 1]; } else EZ += ONE; } /* Subtract the magnitudes of *X and *Y assuming that abs (*x) > abs (*y) > 0. The sign of the difference *Z is not changed. X and Y may overlap but not X and Z or Y and Z. One guard digit is used. The error is less than one ULP. */ static void sub_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p) { long i, j, k; long p2 = p; EZ = EX; if (EX == EY) { i = j = k = p2; Z[k] = Z[k + 1] = ZERO; } else { j = EX - EY; if (j > p2) { __cpy (x, z, p); return; } else { i = p2; j = p2 + 1 - j; k = p2; if (Y[j] > ZERO) { Z[k + 1] = RADIX - Y[j--]; Z[k] = MONE; } else { Z[k + 1] = ZERO; Z[k] = ZERO; j--; } } } for (; j > 0; i--, j--) { Z[k] += (X[i] - Y[j]); if (Z[k] < ZERO) { Z[k] += RADIX; Z[--k] = MONE; } else Z[--k] = ZERO; } for (; i > 0; i--) { Z[k] += X[i]; if (Z[k] < ZERO) { Z[k] += RADIX; Z[--k] = MONE; } else Z[--k] = ZERO; } for (i = 1; Z[i] == ZERO; i++); EZ = EZ - i + 1; for (k = 1; i <= p2 + 1;) Z[k++] = Z[i++]; for (; k <= p2;) Z[k++] = ZERO; } /* Add *X and *Y and store the result in *Z. X and Y may overlap, but not X and Z or Y and Z. One guard digit is used. The error is less than one ULP. */ void __add (const mp_no *x, const mp_no *y, mp_no *z, int p) { int n; if (X[0] == ZERO) { __cpy (y, z, p); return; } else if (Y[0] == ZERO) { __cpy (x, z, p); return; } if (X[0] == Y[0]) { if (__acr (x, y, p) > 0) { add_magnitudes (x, y, z, p); Z[0] = X[0]; } else { add_magnitudes (y, x, z, p); Z[0] = Y[0]; } } else { if ((n = __acr (x, y, p)) == 1) { sub_magnitudes (x, y, z, p); Z[0] = X[0]; } else if (n == -1) { sub_magnitudes (y, x, z, p); Z[0] = Y[0]; } else Z[0] = ZERO; } } /* Subtract *Y from *X and return the result in *Z. X and Y may overlap but not X and Z or Y and Z. One guard digit is used. The error is less than one ULP. */ void __sub (const mp_no *x, const mp_no *y, mp_no *z, int p) { int n; if (X[0] == ZERO) { __cpy (y, z, p); Z[0] = -Z[0]; return; } else if (Y[0] == ZERO) { __cpy (x, z, p); return; } if (X[0] != Y[0]) { if (__acr (x, y, p) > 0) { add_magnitudes (x, y, z, p); Z[0] = X[0]; } else { add_magnitudes (y, x, z, p); Z[0] = -Y[0]; } } else { if ((n = __acr (x, y, p)) == 1) { sub_magnitudes (x, y, z, p); Z[0] = X[0]; } else if (n == -1) { sub_magnitudes (y, x, z, p); Z[0] = -Y[0]; } else Z[0] = ZERO; } } /* Multiply *X and *Y and store result in *Z. X and Y may overlap but not X and Z or Y and Z. For P in [1, 2, 3], the exact result is truncated to P digits. In case P > 3 the error is bounded by 1.001 ULP. */ void __mul (const mp_no *x, const mp_no *y, mp_no *z, int p) { long i, i1, i2, j, k, k2; long p2 = p; double u, zk, zk2; /* Is z=0? */ if (__glibc_unlikely (X[0] * Y[0] == ZERO)) { Z[0] = ZERO; return; } /* Multiply, add and carry */ k2 = (p2 < 3) ? p2 + p2 : p2 + 3; zk = Z[k2] = ZERO; for (k = k2; k > 1;) { if (k > p2) { i1 = k - p2; i2 = p2 + 1; } else { i1 = 1; i2 = k; } #if 1 /* Rearrange this inner loop to allow the fmadd instructions to be independent and execute in parallel on processors that have dual symmetrical FP pipelines. */ if (i1 < (i2 - 1)) { /* Make sure we have at least 2 iterations. */ if (((i2 - i1) & 1L) == 1L) { /* Handle the odd iterations case. */ zk2 = x->d[i2 - 1] * y->d[i1]; } else zk2 = 0.0; /* Do two multiply/adds per loop iteration, using independent accumulators; zk and zk2. */ for (i = i1, j = i2 - 1; i < i2 - 1; i += 2, j -= 2) { zk += x->d[i] * y->d[j]; zk2 += x->d[i + 1] * y->d[j - 1]; } zk += zk2; /* Final sum. */ } else { /* Special case when iterations is 1. */ zk += x->d[i1] * y->d[i1]; } #else /* The original code. */ for (i = i1, j = i2 - 1; i < i2; i++, j--) zk += X[i] * Y[j]; #endif u = (zk + CUTTER) - CUTTER; if (u > zk) u -= RADIX; Z[k] = zk - u; zk = u * RADIXI; --k; } Z[k] = zk; /* Is there a carry beyond the most significant digit? */ if (Z[1] == ZERO) { for (i = 1; i <= p2; i++) Z[i] = Z[i + 1]; EZ = EX + EY - 1; } else EZ = EX + EY; Z[0] = X[0] * Y[0]; } /* Square *X and store result in *Y. X and Y may not overlap. For P in [1, 2, 3], the exact result is truncated to P digits. In case P > 3 the error is bounded by 1.001 ULP. This is a faster special case of multiplication. */ void __sqr (const mp_no *x, mp_no *y, int p) { long i, j, k, ip; double u, yk; /* Is z=0? */ if (__glibc_unlikely (X[0] == ZERO)) { Y[0] = ZERO; return; } /* We need not iterate through all X's since it's pointless to multiply zeroes. */ for (ip = p; ip > 0; ip--) if (X[ip] != ZERO) break; k = (__glibc_unlikely (p < 3)) ? p + p : p + 3; while (k > 2 * ip + 1) Y[k--] = ZERO; yk = ZERO; while (k > p) { double yk2 = 0.0; long lim = k / 2; if (k % 2 == 0) { yk += X[lim] * X[lim]; lim--; } /* In __mul, this loop (and the one within the next while loop) run between a range to calculate the mantissa as follows: Z[k] = X[k] * Y[n] + X[k+1] * Y[n-1] ... + X[n-1] * Y[k+1] + X[n] * Y[k] For X == Y, we can get away with summing halfway and doubling the result. For cases where the range size is even, the mid-point needs to be added separately (above). */ for (i = k - p, j = p; i <= lim; i++, j--) yk2 += X[i] * X[j]; yk += 2.0 * yk2; u = (yk + CUTTER) - CUTTER; if (u > yk) u -= RADIX; Y[k--] = yk - u; yk = u * RADIXI; } while (k > 1) { double yk2 = 0.0; long lim = k / 2; if (k % 2 == 0) { yk += X[lim] * X[lim]; lim--; } /* Likewise for this loop. */ for (i = 1, j = k - 1; i <= lim; i++, j--) yk2 += X[i] * X[j]; yk += 2.0 * yk2; u = (yk + CUTTER) - CUTTER; if (u > yk) u -= RADIX; Y[k--] = yk - u; yk = u * RADIXI; } Y[k] = yk; /* Squares are always positive. */ Y[0] = 1.0; EY = 2 * EX; /* Is there a carry beyond the most significant digit? */ if (__glibc_unlikely (Y[1] == ZERO)) { for (i = 1; i <= p; i++) Y[i] = Y[i + 1]; EY--; } } /* Invert *X and store in *Y. Relative error bound: - For P = 2: 1.001 * R ^ (1 - P) - For P = 3: 1.063 * R ^ (1 - P) - For P > 3: 2.001 * R ^ (1 - P) *X = 0 is not permissible. */ static void __inv (const mp_no *x, mp_no *y, int p) { long i; double t; mp_no z, w; static const int np1[] = { 0, 0, 0, 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 }; __cpy (x, &z, p); z.e = 0; __mp_dbl (&z, &t, p); t = ONE / t; __dbl_mp (t, y, p); EY -= EX; for (i = 0; i < np1[p]; i++) { __cpy (y, &w, p); __mul (x, &w, y, p); __sub (&mptwo, y, &z, p); __mul (&w, &z, y, p); } } /* Divide *X by *Y and store result in *Z. X and Y may overlap but not X and Z or Y and Z. Relative error bound: - For P = 2: 2.001 * R ^ (1 - P) - For P = 3: 2.063 * R ^ (1 - P) - For P > 3: 3.001 * R ^ (1 - P) *X = 0 is not permissible. */ void __dvd (const mp_no *x, const mp_no *y, mp_no *z, int p) { mp_no w; if (X[0] == ZERO) Z[0] = ZERO; else { __inv (y, &w, p); __mul (x, &w, z, p); } }