/* Compute x * y + z as ternary operation. Copyright (C) 2010-2012 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Jakub Jelinek , 2010. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include #include #include /* This implementation uses rounding to odd to avoid problems with double rounding. See a paper by Boldo and Melquiond: http://www.lri.fr/~melquion/doc/08-tc.pdf */ long double __fmal (long double x, long double y, long double z) { union ieee854_long_double u, v, w; int adjust = 0; u.d = x; v.d = y; w.d = z; if (__builtin_expect (u.ieee.exponent + v.ieee.exponent >= 0x7fff + IEEE854_LONG_DOUBLE_BIAS - LDBL_MANT_DIG, 0) || __builtin_expect (u.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0) || __builtin_expect (v.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0) || __builtin_expect (w.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0) || __builtin_expect (u.ieee.exponent + v.ieee.exponent <= IEEE854_LONG_DOUBLE_BIAS + LDBL_MANT_DIG, 0)) { /* If z is Inf, but x and y are finite, the result should be z rather than NaN. */ if (w.ieee.exponent == 0x7fff && u.ieee.exponent != 0x7fff && v.ieee.exponent != 0x7fff) return (z + x) + y; /* If z is zero and x are y are nonzero, compute the result as x * y to avoid the wrong sign of a zero result if x * y underflows to 0. */ if (z == 0 && x != 0 && y != 0) return x * y; /* If x or y or z is Inf/NaN, or if fma will certainly overflow, or if x * y is less than half of LDBL_DENORM_MIN, compute as x * y + z. */ if (u.ieee.exponent == 0x7fff || v.ieee.exponent == 0x7fff || w.ieee.exponent == 0x7fff || u.ieee.exponent + v.ieee.exponent > 0x7fff + IEEE854_LONG_DOUBLE_BIAS || u.ieee.exponent + v.ieee.exponent < IEEE854_LONG_DOUBLE_BIAS - LDBL_MANT_DIG - 2) return x * y + z; if (u.ieee.exponent + v.ieee.exponent >= 0x7fff + IEEE854_LONG_DOUBLE_BIAS - LDBL_MANT_DIG) { /* Compute 1p-113 times smaller result and multiply at the end. */ if (u.ieee.exponent > v.ieee.exponent) u.ieee.exponent -= LDBL_MANT_DIG; else v.ieee.exponent -= LDBL_MANT_DIG; /* If x + y exponent is very large and z exponent is very small, it doesn't matter if we don't adjust it. */ if (w.ieee.exponent > LDBL_MANT_DIG) w.ieee.exponent -= LDBL_MANT_DIG; adjust = 1; } else if (w.ieee.exponent >= 0x7fff - LDBL_MANT_DIG) { /* Similarly. If z exponent is very large and x and y exponents are very small, it doesn't matter if we don't adjust it. */ if (u.ieee.exponent > v.ieee.exponent) { if (u.ieee.exponent > LDBL_MANT_DIG) u.ieee.exponent -= LDBL_MANT_DIG; } else if (v.ieee.exponent > LDBL_MANT_DIG) v.ieee.exponent -= LDBL_MANT_DIG; w.ieee.exponent -= LDBL_MANT_DIG; adjust = 1; } else if (u.ieee.exponent >= 0x7fff - LDBL_MANT_DIG) { u.ieee.exponent -= LDBL_MANT_DIG; if (v.ieee.exponent) v.ieee.exponent += LDBL_MANT_DIG; else v.d *= 0x1p113L; } else if (v.ieee.exponent >= 0x7fff - LDBL_MANT_DIG) { v.ieee.exponent -= LDBL_MANT_DIG; if (u.ieee.exponent) u.ieee.exponent += LDBL_MANT_DIG; else u.d *= 0x1p113L; } else /* if (u.ieee.exponent + v.ieee.exponent <= IEEE854_LONG_DOUBLE_BIAS + LDBL_MANT_DIG) */ { if (u.ieee.exponent > v.ieee.exponent) u.ieee.exponent += 2 * LDBL_MANT_DIG; else v.ieee.exponent += 2 * LDBL_MANT_DIG; if (w.ieee.exponent <= 4 * LDBL_MANT_DIG + 4) { if (w.ieee.exponent) w.ieee.exponent += 2 * LDBL_MANT_DIG; else w.d *= 0x1p226L; adjust = -1; } /* Otherwise x * y should just affect inexact and nothing else. */ } x = u.d; y = v.d; z = w.d; } /* Ensure correct sign of exact 0 + 0. */ if (__builtin_expect ((x == 0 || y == 0) && z == 0, 0)) return x * y + z; /* Multiplication m1 + m2 = x * y using Dekker's algorithm. */ #define C ((1LL << (LDBL_MANT_DIG + 1) / 2) + 1) long double x1 = x * C; long double y1 = y * C; long double m1 = x * y; x1 = (x - x1) + x1; y1 = (y - y1) + y1; long double x2 = x - x1; long double y2 = y - y1; long double m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2; /* Addition a1 + a2 = z + m1 using Knuth's algorithm. */ long double a1 = z + m1; long double t1 = a1 - z; long double t2 = a1 - t1; t1 = m1 - t1; t2 = z - t2; long double a2 = t1 + t2; fenv_t env; feholdexcept (&env); fesetround (FE_TOWARDZERO); /* Perform m2 + a2 addition with round to odd. */ u.d = a2 + m2; if (__builtin_expect (adjust == 0, 1)) { if ((u.ieee.mantissa3 & 1) == 0 && u.ieee.exponent != 0x7fff) u.ieee.mantissa3 |= fetestexcept (FE_INEXACT) != 0; feupdateenv (&env); /* Result is a1 + u.d. */ return a1 + u.d; } else if (__builtin_expect (adjust > 0, 1)) { if ((u.ieee.mantissa3 & 1) == 0 && u.ieee.exponent != 0x7fff) u.ieee.mantissa3 |= fetestexcept (FE_INEXACT) != 0; feupdateenv (&env); /* Result is a1 + u.d, scaled up. */ return (a1 + u.d) * 0x1p113L; } else { if ((u.ieee.mantissa3 & 1) == 0) u.ieee.mantissa3 |= fetestexcept (FE_INEXACT) != 0; v.d = a1 + u.d; /* Ensure the addition is not scheduled after fetestexcept call. */ math_force_eval (v.d); int j = fetestexcept (FE_INEXACT) != 0; feupdateenv (&env); /* Ensure the following computations are performed in default rounding mode instead of just reusing the round to zero computation. */ asm volatile ("" : "=m" (u) : "m" (u)); /* If a1 + u.d is exact, the only rounding happens during scaling down. */ if (j == 0) return v.d * 0x1p-226L; /* If result rounded to zero is not subnormal, no double rounding will occur. */ if (v.ieee.exponent > 226) return (a1 + u.d) * 0x1p-226L; /* If v.d * 0x1p-226L with round to zero is a subnormal above or equal to LDBL_MIN / 2, then v.d * 0x1p-226L shifts mantissa down just by 1 bit, which means v.ieee.mantissa3 |= j would change the round bit, not sticky or guard bit. v.d * 0x1p-226L never normalizes by shifting up, so round bit plus sticky bit should be already enough for proper rounding. */ if (v.ieee.exponent == 226) { /* If the exponent would be in the normal range when rounding to normal precision with unbounded exponent range, the exact result is known and spurious underflows must be avoided on systems detecting tininess after rounding. */ if (TININESS_AFTER_ROUNDING) { w.d = a1 + u.d; if (w.ieee.exponent == 227) return w.d * 0x1p-226L; } /* v.ieee.mantissa3 & 2 is LSB bit of the result before rounding, v.ieee.mantissa3 & 1 is the round bit and j is our sticky bit. */ w.d = 0.0L; w.ieee.mantissa3 = ((v.ieee.mantissa3 & 3) << 1) | j; w.ieee.negative = v.ieee.negative; v.ieee.mantissa3 &= ~3U; v.d *= 0x1p-226L; w.d *= 0x1p-2L; return v.d + w.d; } v.ieee.mantissa3 |= j; return v.d * 0x1p-226L; } } weak_alias (__fmal, fmal)