/* Single-precision 2^x function.
Copyright (C) 2017-2019 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
. */
#include
#include
#include
#include
#include
#include "math_config.h"
/*
EXP2F_TABLE_BITS = 5
EXP2F_POLY_ORDER = 3
ULP error: 0.502 (nearest rounding.)
Relative error: 1.69 * 2^-34 in [-1/64, 1/64] (before rounding.)
Wrong count: 168353 (all nearest rounding wrong results with fma.)
Non-nearest ULP error: 1 (rounded ULP error)
*/
#define N (1 << EXP2F_TABLE_BITS)
#define T __exp2f_data.tab
#define C __exp2f_data.poly
#define SHIFT __exp2f_data.shift_scaled
static inline uint32_t
top12 (float x)
{
return asuint (x) >> 20;
}
float
__exp2f (float x)
{
uint32_t abstop;
uint64_t ki, t;
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
double_t kd, xd, z, r, r2, y, s;
xd = (double_t) x;
abstop = top12 (x) & 0x7ff;
if (__glibc_unlikely (abstop >= top12 (128.0f)))
{
/* |x| >= 128 or x is nan. */
if (asuint (x) == asuint (-INFINITY))
return 0.0f;
if (abstop >= top12 (INFINITY))
return x + x;
if (x > 0.0f)
return __math_oflowf (0);
if (x <= -150.0f)
return __math_uflowf (0);
#if WANT_ERRNO_UFLOW
if (x < -149.0f)
return __math_may_uflowf (0);
#endif
}
/* x = k/N + r with r in [-1/(2N), 1/(2N)] and int k. */
kd = math_narrow_eval ((double) (xd + SHIFT)); /* Needs to be double. */
ki = asuint64 (kd);
kd -= SHIFT; /* k/N for int k. */
r = xd - kd;
/* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
t = T[ki % N];
t += ki << (52 - EXP2F_TABLE_BITS);
s = asdouble (t);
z = C[0] * r + C[1];
r2 = r * r;
y = C[2] * r + 1;
y = z * r2 + y;
y = y * s;
return (float) y;
}
#ifndef __exp2f
strong_alias (__exp2f, __ieee754_exp2f)
strong_alias (__exp2f, __exp2f_finite)
versioned_symbol (libm, __exp2f, exp2f, GLIBC_2_27);
libm_alias_float_other (__exp2, exp2)
#endif