/* @(#)s_log1p.c 5.1 93/09/24 */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25, for performance improvement on pipelined processors. */ /* double log1p(double x) * * Method : * 1. Argument Reduction: find k and f such that * 1+x = 2^k * (1+f), * where sqrt(2)/2 < 1+f < sqrt(2) . * * Note. If k=0, then f=x is exact. However, if k!=0, then f * may not be representable exactly. In that case, a correction * term is need. Let u=1+x rounded. Let c = (1+x)-u, then * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), * and add back the correction term c/u. * (Note: when x > 2**53, one can simply return log(x)) * * 2. Approximation of log1p(f). * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) * = 2s + 2/3 s**3 + 2/5 s**5 + ....., * = 2s + s*R * We use a special Reme algorithm on [0,0.1716] to generate * a polynomial of degree 14 to approximate R The maximum error * of this polynomial approximation is bounded by 2**-58.45. In * other words, * 2 4 6 8 10 12 14 * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s * (the values of Lp1 to Lp7 are listed in the program) * and * | 2 14 | -58.45 * | Lp1*s +...+Lp7*s - R(z) | <= 2 * | | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. * In order to guarantee error in log below 1ulp, we compute log * by * log1p(f) = f - (hfsq - s*(hfsq+R)). * * 3. Finally, log1p(x) = k*ln2 + log1p(f). * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) * Here ln2 is split into two floating point number: * ln2_hi + ln2_lo, * where n*ln2_hi is always exact for |n| < 2000. * * Special cases: * log1p(x) is NaN with signal if x < -1 (including -INF) ; * log1p(+INF) is +INF; log1p(-1) is -INF with signal; * log1p(NaN) is that NaN with no signal. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. * * Note: Assuming log() return accurate answer, the following * algorithm can be used to compute log1p(x) to within a few ULP: * * u = 1+x; * if(u==1.0) return x ; else * return log(u)*(x/(u-1.0)); * * See HP-15C Advanced Functions Handbook, p.193. */ #include #include #include #include #include static const double ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ Lp[] = { 0.0, 6.666666666666735130e-01, /* 3FE55555 55555593 */ 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ 2.857142874366239149e-01, /* 3FD24924 94229359 */ 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ 1.479819860511658591e-01 }; /* 3FC2F112 DF3E5244 */ static const double zero = 0.0; double __log1p (double x) { double hfsq, f, c, s, z, R, u, z2, z4, z6, R1, R2, R3, R4; int32_t k, hx, hu, ax; GET_HIGH_WORD (hx, x); ax = hx & 0x7fffffff; k = 1; if (hx < 0x3FDA827A) /* x < 0.41422 */ { if (__glibc_unlikely (ax >= 0x3ff00000)) /* x <= -1.0 */ { if (x == -1.0) return -two54 / zero; /* log1p(-1)=-inf */ else return (x - x) / (x - x); /* log1p(x<-1)=NaN */ } if (__glibc_unlikely (ax < 0x3e200000)) /* |x| < 2**-29 */ { math_force_eval (two54 + x); /* raise inexact */ if (ax < 0x3c900000) /* |x| < 2**-54 */ { math_check_force_underflow (x); return x; } else return x - x * x * 0.5; } if (hx > 0 || hx <= ((int32_t) 0xbfd2bec3)) { k = 0; f = x; hu = 1; } /* -0.2929= 0x7ff00000)) return x + x; if (k != 0) { if (hx < 0x43400000) { u = 1.0 + x; GET_HIGH_WORD (hu, u); k = (hu >> 20) - 1023; c = (k > 0) ? 1.0 - (u - x) : x - (u - 1.0); /* correction term */ c /= u; } else { u = x; GET_HIGH_WORD (hu, u); k = (hu >> 20) - 1023; c = 0; } hu &= 0x000fffff; if (hu < 0x6a09e) { SET_HIGH_WORD (u, hu | 0x3ff00000); /* normalize u */ } else { k += 1; SET_HIGH_WORD (u, hu | 0x3fe00000); /* normalize u/2 */ hu = (0x00100000 - hu) >> 2; } f = u - 1.0; } hfsq = 0.5 * f * f; if (hu == 0) /* |f| < 2**-20 */ { if (f == zero) { if (k == 0) return zero; else { c += k * ln2_lo; return k * ln2_hi + c; } } R = hfsq * (1.0 - 0.66666666666666666 * f); if (k == 0) return f - R; else return k * ln2_hi - ((R - (k * ln2_lo + c)) - f); } s = f / (2.0 + f); z = s * s; R1 = z * Lp[1]; z2 = z * z; R2 = Lp[2] + z * Lp[3]; z4 = z2 * z2; R3 = Lp[4] + z * Lp[5]; z6 = z4 * z2; R4 = Lp[6] + z * Lp[7]; R = R1 + z2 * R2 + z4 * R3 + z6 * R4; if (k == 0) return f - (hfsq - s * (hfsq + R)); else { /* With GCC 7 when compiling with -Os the compiler warns that c might be used uninitialized. This can't be true because k must be 0 for c to be uninitialized and we handled that computation earlier without using c. */ DIAG_PUSH_NEEDS_COMMENT; DIAG_IGNORE_Os_NEEDS_COMMENT (7, "-Wmaybe-uninitialized"); return k * ln2_hi - ((hfsq - (s * (hfsq + R) + (k * ln2_lo + c))) - f); DIAG_POP_NEEDS_COMMENT; } }