/* * IBM Accurate Mathematical Library * Copyright (c) International Business Machines Corp., 2001 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /************************************************************************/ /* MODULE_NAME: mpa.c */ /* */ /* FUNCTIONS: */ /* mcr */ /* acr */ /* cr */ /* cpy */ /* cpymn */ /* norm */ /* denorm */ /* mp_dbl */ /* dbl_mp */ /* add_magnitudes */ /* sub_magnitudes */ /* add */ /* sub */ /* mul */ /* inv */ /* dvd */ /* */ /* Arithmetic functions for multiple precision numbers. */ /* Relative errors are bounded */ /************************************************************************/ #include "endian.h" #include "mpa.h" #include "mpa2.h" /* mcr() compares the sizes of the mantissas of two multiple precision */ /* numbers. Mantissas are compared regardless of the signs of the */ /* numbers, even if x->d[0] or y->d[0] are zero. Exponents are also */ /* disregarded. */ static int mcr(const mp_no *x, const mp_no *y, int p) { int i; for (i=1; i<=p; i++) { if (X[i] == Y[i]) continue; else if (X[i] > Y[i]) return 1; else return -1; } return 0; } /* acr() compares the absolute values of two multiple precision numbers */ int acr(const mp_no *x, const mp_no *y, int p) { int i; if (X[0] == ZERO) { if (Y[0] == ZERO) i= 0; else i=-1; } else if (Y[0] == ZERO) i= 1; else { if (EX > EY) i= 1; else if (EX < EY) i=-1; else i= mcr(x,y,p); } return i; } /* cr90 compares the values of two multiple precision numbers */ int cr(const mp_no *x, const mp_no *y, int p) { int i; if (X[0] > Y[0]) i= 1; else if (X[0] < Y[0]) i=-1; else if (X[0] < ZERO ) i= acr(y,x,p); else i= acr(x,y,p); return i; } /* Copy a multiple precision number. Set *y=*x. x=y is permissible. */ void cpy(const mp_no *x, mp_no *y, int p) { int i; EY = EX; for (i=0; i <= p; i++) Y[i] = X[i]; return; } /* Copy a multiple precision number x of precision m into a */ /* multiple precision number y of precision n. In case n>m, */ /* the digits of y beyond the m'th are set to zero. In case */ /* n= 2**(-1022))) */ static void norm(const mp_no *x, double *y, int p) { #define R radixi.d int i; #if 0 int k; #endif double a,c,u,v,z[5]; if (p<5) { if (p==1) c = X[1]; else if (p==2) c = X[1] + R* X[2]; else if (p==3) c = X[1] + R*(X[2] + R* X[3]); else if (p==4) c =(X[1] + R* X[2]) + R*R*(X[3] + R*X[4]); } else { for (a=ONE, z[1]=X[1]; z[1] < TWO23; ) {a *= TWO; z[1] *= TWO; } for (i=2; i<5; i++) { z[i] = X[i]*a; u = (z[i] + CUTTER)-CUTTER; if (u > z[i]) u -= RADIX; z[i] -= u; z[i-1] += u*RADIXI; } u = (z[3] + TWO71) - TWO71; if (u > z[3]) u -= TWO19; v = z[3]-u; if (v == TWO18) { if (z[4] == ZERO) { for (i=5; i <= p; i++) { if (X[i] == ZERO) continue; else {z[3] += ONE; break; } } } else z[3] += ONE; } c = (z[1] + R *(z[2] + R * z[3]))/a; } c *= X[0]; for (i=1; iEX; i--) c *= RADIXI; *y = c; return; #undef R } /* Convert a multiple precision number *x into a double precision */ /* number *y, denormalized case (|x| < 2**(-1022))) */ static void denorm(const mp_no *x, double *y, int p) { int i,k; double c,u,z[5]; #if 0 double a,v; #endif #define R radixi.d if (EX<-44 || (EX==-44 && X[1] z[3]) u -= TWO5; if (u==z[3]) { for (i=k+1; i <= p; i++) { if (X[i] == ZERO) continue; else {z[3] += ONE; break; } } } c = X[0]*((z[1] + R*(z[2] + R*z[3])) - TWO10); *y = c*TWOM1032; return; #undef R } /* Convert a multiple precision number *x into a double precision number *y. */ /* The result is correctly rounded to the nearest/even. *x is left unchanged */ void __mp_dbl(const mp_no *x, double *y, int p) { #if 0 int i,k; double a,c,u,v,z[5]; #endif if (X[0] == ZERO) {*y = ZERO; return; } if (EX> -42) norm(x,y,p); else if (EX==-42 && X[1]>=TWO10) norm(x,y,p); else denorm(x,y,p); } /* dbl_mp() converts a double precision number x into a multiple precision */ /* number *y. If the precision p is too small the result is truncated. x is */ /* left unchanged. */ void dbl_mp(double x, mp_no *y, int p) { int i,n; double u; /* Sign */ if (x == ZERO) {Y[0] = ZERO; return; } else if (x > ZERO) Y[0] = ONE; else {Y[0] = MONE; x=-x; } /* Exponent */ for (EY=ONE; x >= RADIX; EY += ONE) x *= RADIXI; for ( ; x < ONE; EY -= ONE) x *= RADIX; /* Digits */ n=MIN(p,4); for (i=1; i<=n; i++) { u = (x + TWO52) - TWO52; if (u>x) u -= ONE; Y[i] = u; x -= u; x *= RADIX; } for ( ; i<=p; i++) Y[i] = ZERO; return; } /* add_magnitudes() adds the magnitudes of *x & *y assuming that */ /* abs(*x) >= abs(*y) > 0. */ /* The sign of the sum *z is undefined. x&y may overlap but not x&z or y&z. */ /* No guard digit is used. The result equals the exact sum, truncated. */ /* *x & *y are left unchanged. */ static void add_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) { int i,j,k; EZ = EX; i=p; j=p+ EY - EX; k=p+1; if (j<1) {cpy(x,z,p); return; } else Z[k] = ZERO; for (; j>0; i--,j--) { Z[k] += X[i] + Y[j]; if (Z[k] >= RADIX) { Z[k] -= RADIX; Z[--k] = ONE; } else Z[--k] = ZERO; } for (; i>0; i--) { Z[k] += X[i]; if (Z[k] >= RADIX) { Z[k] -= RADIX; Z[--k] = ONE; } else Z[--k] = ZERO; } if (Z[1] == ZERO) { for (i=1; i<=p; i++) Z[i] = Z[i+1]; } else EZ += ONE; } /* sub_magnitudes() subtracts the magnitudes of *x & *y assuming that */ /* abs(*x) > abs(*y) > 0. */ /* The sign of the difference *z is undefined. x&y may overlap but not x&z */ /* or y&z. One guard digit is used. The error is less than one ulp. */ /* *x & *y are left unchanged. */ static void sub_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) { int i,j,k; EZ = EX; if (EX == EY) { i=j=k=p; Z[k] = Z[k+1] = ZERO; } else { j= EX - EY; if (j > p) {cpy(x,z,p); return; } else { i=p; j=p+1-j; k=p; if (Y[j] > ZERO) { Z[k+1] = RADIX - Y[j--]; Z[k] = MONE; } else { Z[k+1] = ZERO; Z[k] = ZERO; j--;} } } for (; j>0; i--,j--) { Z[k] += (X[i] - Y[j]); if (Z[k] < ZERO) { Z[k] += RADIX; Z[--k] = MONE; } else Z[--k] = ZERO; } for (; i>0; i--) { Z[k] += X[i]; if (Z[k] < ZERO) { Z[k] += RADIX; Z[--k] = MONE; } else Z[--k] = ZERO; } for (i=1; Z[i] == ZERO; i++) ; EZ = EZ - i + 1; for (k=1; i <= p+1; ) Z[k++] = Z[i++]; for (; k <= p; ) Z[k++] = ZERO; return; } /* Add two multiple precision numbers. Set *z = *x + *y. x&y may overlap */ /* but not x&z or y&z. One guard digit is used. The error is less than */ /* one ulp. *x & *y are left unchanged. */ void add(const mp_no *x, const mp_no *y, mp_no *z, int p) { int n; if (X[0] == ZERO) {cpy(y,z,p); return; } else if (Y[0] == ZERO) {cpy(x,z,p); return; } if (X[0] == Y[0]) { if (acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; } else {add_magnitudes(y,x,z,p); Z[0] = Y[0]; } } else { if ((n=acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; } else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = Y[0]; } else Z[0] = ZERO; } return; } /* Subtract two multiple precision numbers. *z is set to *x - *y. x&y may */ /* overlap but not x&z or y&z. One guard digit is used. The error is */ /* less than one ulp. *x & *y are left unchanged. */ void sub(const mp_no *x, const mp_no *y, mp_no *z, int p) { int n; if (X[0] == ZERO) {cpy(y,z,p); Z[0] = -Z[0]; return; } else if (Y[0] == ZERO) {cpy(x,z,p); return; } if (X[0] != Y[0]) { if (acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; } else {add_magnitudes(y,x,z,p); Z[0] = -Y[0]; } } else { if ((n=acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; } else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = -Y[0]; } else Z[0] = ZERO; } return; } /* Multiply two multiple precision numbers. *z is set to *x * *y. x&y */ /* may overlap but not x&z or y&z. In case p=1,2,3 the exact result is */ /* truncated to p digits. In case p>3 the error is bounded by 1.001 ulp. */ /* *x & *y are left unchanged. */ void mul(const mp_no *x, const mp_no *y, mp_no *z, int p) { int i, i1, i2, j, k, k2; double u; /* Is z=0? */ if (X[0]*Y[0]==ZERO) { Z[0]=ZERO; return; } /* Multiply, add and carry */ k2 = (p<3) ? p+p : p+3; Z[k2]=ZERO; for (k=k2; k>1; ) { if (k > p) {i1=k-p; i2=p+1; } else {i1=1; i2=k; } for (i=i1,j=i2-1; i Z[k]) u -= RADIX; Z[k] -= u; Z[--k] = u*RADIXI; } /* Is there a carry beyond the most significant digit? */ if (Z[1] == ZERO) { for (i=1; i<=p; i++) Z[i]=Z[i+1]; EZ = EX + EY - 1; } else EZ = EX + EY; Z[0] = X[0] * Y[0]; return; } /* Invert a multiple precision number. Set *y = 1 / *x. */ /* Relative error bound = 1.001*r**(1-p) for p=2, 1.063*r**(1-p) for p=3, */ /* 2.001*r**(1-p) for p>3. */ /* *x=0 is not permissible. *x is left unchanged. */ void inv(const mp_no *x, mp_no *y, int p) { int i; #if 0 int l; #endif double t; mp_no z,w; static const int np1[] = {0,0,0,0,1,2,2,2,2,3,3,3,3,3,3,3,3,3, 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}; const mp_no mptwo = {1,{1.0,2.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}}; cpy(x,&z,p); z.e=0; __mp_dbl(&z,&t,p); t=ONE/t; dbl_mp(t,y,p); EY -= EX; for (i=0; i3. *y=0 is not permissible. */ void dvd(const mp_no *x, const mp_no *y, mp_no *z, int p) { mp_no w; if (X[0] == ZERO) Z[0] = ZERO; else {inv(y,&w,p); mul(x,&w,z,p);} return; }