/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001, 2005, 2011 Free Software Foundation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /************************************************************************/ /* */ /* MODULE_NAME:halfulp.c */ /* */ /* FUNCTIONS:halfulp */ /* FILES NEEDED: mydefs.h dla.h endian.h */ /* uroot.c */ /* */ /*Routine halfulp(double x, double y) computes x^y where result does */ /*not need rounding. If the result is closer to 0 than can be */ /*represented it returns 0. */ /* In the following cases the function does not compute anything */ /*and returns a negative number: */ /*1. if the result needs rounding, */ /*2. if y is outside the interval [0, 2^20-1], */ /*3. if x can be represented by x=2**n for some integer n. */ /************************************************************************/ #include "endian.h" #include "mydefs.h" #include "dla.h" #include "math_private.h" static const int4 tab54[32] = { 262143, 11585, 1782, 511, 210, 107, 63, 42, 30, 22, 17, 14, 12, 10, 9, 7, 7, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3 }; double __halfulp(double x, double y) { mynumber v; double z,u,uu; #ifndef DLA_FMA double j1,j2,j3,j4,j5; #endif int4 k,l,m,n; if (y <= 0) { /*if power is negative or zero */ v.x = y; if (v.i[LOW_HALF] != 0) return -10.0; v.x = x; if (v.i[LOW_HALF] != 0) return -10.0; if ((v.i[HIGH_HALF]&0x000fffff) != 0) return -10; /* if x =2 ^ n */ k = ((v.i[HIGH_HALF]&0x7fffffff)>>20)-1023; /* find this n */ z = (double) k; return (z*y == -1075.0)?0: -10.0; } /* if y > 0 */ v.x = y; if (v.i[LOW_HALF] != 0) return -10.0; v.x=x; /* case where x = 2**n for some integer n */ if (((v.i[HIGH_HALF]&0x000fffff)|v.i[LOW_HALF]) == 0) { k=(v.i[HIGH_HALF]>>20)-1023; return (((double) k)*y == -1075.0)?0:-10.0; } v.x = y; k = v.i[HIGH_HALF]; m = k<<12; l = 0; while (m) {m = m<<1; l++; } n = (k&0x000fffff)|0x00100000; n = n>>(20-l); /* n is the odd integer of y */ k = ((k>>20) -1023)-l; /* y = n*2**k */ if (k>5) return -10.0; if (k>0) for (;k>0;k--) n *= 2; if (n > 34) return -10.0; k = -k; if (k>5) return -10.0; /* now treat x */ while (k>0) { z = __ieee754_sqrt(x); EMULV(z,z,u,uu,j1,j2,j3,j4,j5); if (((u-x)+uu) != 0) break; x = z; k--; } if (k) return -10.0; /* it is impossible that n == 2, so the mantissa of x must be short */ v.x = x; if (v.i[LOW_HALF]) return -10.0; k = v.i[HIGH_HALF]; m = k<<12; l = 0; while (m) {m = m<<1; l++; } m = (k&0x000fffff)|0x00100000; m = m>>(20-l); /* m is the odd integer of x */ /* now check whether the length of m**n is at most 54 bits */ if (m > tab54[n-3]) return -10.0; /* yes, it is - now compute x**n by simple multiplications */ u = x; for (k=1;k