/* * IBM Accurate Mathematical Library * Copyright (c) International Business Machines Corp., 2001 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /***************************************************************************/ /* MODULE_NAME: upow.c */ /* */ /* FUNCTIONS: upow */ /* power1 */ /* log2 */ /* log1 */ /* checkint */ /* FILES NEEDED: dla.h endian.h mpa.h mydefs.h */ /* halfulp.c mpexp.c mplog.c slowexp.c slowpow.c mpa.c */ /* uexp.c upow.c */ /* root.tbl uexp.tbl upow.tbl */ /* An ultimate power routine. Given two IEEE double machine numbers y,x */ /* it computes the correctly rounded (to nearest) value of x^y. */ /* Assumption: Machine arithmetic operations are performed in */ /* round to nearest mode of IEEE 754 standard. */ /* */ /***************************************************************************/ #include "endian.h" #include "upow.h" #include "dla.h" #include "mydefs.h" #include "MathLib.h" #include "upow.tbl" double __exp1(double x, double xx, double error); static double log1(double x, double *delta, double *error); static double log2(double x, double *delta, double *error); double slowpow(double x, double y,double z); static double power1(double x, double y); static int checkint(double x); /***************************************************************************/ /* An ultimate power routine. Given two IEEE double machine numbers y,x */ /* it computes the correctly rounded (to nearest) value of X^y. */ /***************************************************************************/ double __ieee754_upow(double x, double y) { double z,a,aa,error, t,a1,a2,y1,y2,gor=1.0; mynumber u,v; int k; int4 qx,qy; v.x=y; u.x=x; if (v.i[LOW_HALF] == 0) { /* of y */ qx = u.i[HIGH_HALF]&0x7fffffff; /* Checking if x is not too small to compute */ if (((qx==0x7ff00000)&&(u.i[LOW_HALF]!=0))||(qx>0x7ff00000)) return NaNQ.x; if (y == 1.0) return x; if (y == 2.0) return x*x; if (y == -1.0) return (x!=0)?1.0/x:NaNQ.x; if (y == 0) return ((x>0)&&(qx<0x7ff00000))?1.0:NaNQ.x; } /* else */ if(((u.i[HIGH_HALF]>0 && u.i[HIGH_HALF]<0x7ff00000)|| /* x>0 and not x->0 */ (u.i[HIGH_HALF]==0 && u.i[LOW_HALF]!=0)) && /* 2^-1023< x<= 2^-1023 * 0x1.0000ffffffff */ (v.i[HIGH_HALF]&0x7fffffff) < 0x4ff00000) { /* if y<-1 or y>1 */ z = log1(x,&aa,&error); /* x^y =e^(y log (X)) */ t = y*134217729.0; y1 = t - (t-y); y2 = y - y1; t = z*134217729.0; a1 = t - (t-z); a2 = (z - a1)+aa; a = y1*a1; aa = y2*a1 + y*a2; a1 = a+aa; a2 = (a-a1)+aa; error = error*ABS(y); t = __exp1(a1,a2,1.9e16*error); /* return -10 or 0 if wasn't computed exactly */ return (t>0)?t:power1(x,y); } if (x == 0) { if (ABS(y) > 1.0e20) return (y>0)?0:NaNQ.x; k = checkint(y); if (k == 0 || y < 0) return NaNQ.x; else return (k==1)?0:x; /* return 0 */ } /* if x<0 */ if (u.i[HIGH_HALF] < 0) { k = checkint(y); if (k==0) return NaNQ.x; /* y not integer and x<0 */ return (k==1)?upow(-x,y):-upow(-x,y); /* if y even or odd */ } /* x>0 */ qx = u.i[HIGH_HALF]&0x7fffffff; /* no sign */ qy = v.i[HIGH_HALF]&0x7fffffff; /* no sign */ if (qx > 0x7ff00000 || (qx == 0x7ff00000 && u.i[LOW_HALF] != 0)) return NaNQ.x; /* if 0 0x7ff00000 || (qy == 0x7ff00000 && v.i[LOW_HALF] != 0)) return NaNQ.x; /* if y<2^-0x7fe */ if (qx == 0x7ff00000) /* x= 2^-0x3ff */ {if (y == 0) return NaNQ.x; return (y>0)?x:0; } if (qy > 0x45f00000 && qy < 0x7ff00000) { if (x == 1.0) return 1.0; if (y>0) return (x>1.0)?INF.x:0; if (y<0) return (x<1.0)?INF.x:0; } if (x == 1.0) return NaNQ.x; if (y>0) return (x>1.0)?INF.x:0; if (y<0) return (x<1.0)?INF.x:0; return 0; /* unreachable, to make the compiler happy */ } /**************************************************************************/ /* Computing x^y using more accurate but more slow log routine */ /**************************************************************************/ static double power1(double x, double y) { double z,a,aa,error, t,a1,a2,y1,y2; z = log2(x,&aa,&error); t = y*134217729.0; y1 = t - (t-y); y2 = y - y1; t = z*134217729.0; a1 = t - (t-z); a2 = z - a1; a = y*z; aa = ((y1*a1-a)+y1*a2+y2*a1)+y2*a2+aa*y; a1 = a+aa; a2 = (a-a1)+aa; error = error*ABS(y); t = __exp1(a1,a2,1.9e16*error); return (t >= 0)?t:slowpow(x,y,z); } /****************************************************************************/ /* Computing log(x) (x is left argument). The result is the returned double */ /* + the parameter delta. */ /* The result is bounded by error (rightmost argument) */ /****************************************************************************/ static double log1(double x, double *delta, double *error) { int i,j,m,n; double uu,vv,eps,nx,e,e1,e2,t,t1,t2,res,cor,add=0; mynumber u,v; u.x = x; m = u.i[HIGH_HALF]; *error = 0; *delta = 0; if (m < 0x00100000) /* 1>20); } else {u.i[HIGH_HALF] = (m&0x000fffff)|0x3fe00000; two52.i[LOW_HALF]=(m>>20)+1; } v.x = u.x + bigu.x; uu = v.x - bigu.x; i = (v.i[LOW_HALF]&0x000003ff)<<2; if (two52.i[LOW_HALF] == 1023) /* nx = 0 */ { if (i > 1192 && i < 1208) /* |x-1| < 1.5*2**-10 */ { t = x - 1.0; t1 = (t+5.0e6)-5.0e6; t2 = t-t1; e1 = t - 0.5*t1*t1; e2 = t*t*t*(r3+t*(r4+t*(r5+t*(r6+t*(r7+t*r8)))))-0.5*t2*(t+t1); res = e1+e2; *error = 1.0e-21*ABS(t); *delta = (e1-res)+e2; return res; } /* |x-1| < 1.5*2**-10 */ else { v.x = u.x*(ui.x[i]+ui.x[i+1])+bigv.x; vv = v.x-bigv.x; j = v.i[LOW_HALF]&0x0007ffff; j = j+j+j; eps = u.x - uu*vv; e1 = eps*ui.x[i]; e2 = eps*(ui.x[i+1]+vj.x[j]*(ui.x[i]+ui.x[i+1])); e = e1+e2; e2 = ((e1-e)+e2); t=ui.x[i+2]+vj.x[j+1]; t1 = t+e; t2 = (((t-t1)+e)+(ui.x[i+3]+vj.x[j+2]))+e2+e*e*(p2+e*(p3+e*p4)); res=t1+t2; *error = 1.0e-24; *delta = (t1-res)+t2; return res; } } /* nx = 0 */ else /* nx != 0 */ { eps = u.x - uu; nx = (two52.x - two52e.x)+add; e1 = eps*ui.x[i]; e2 = eps*ui.x[i+1]; e=e1+e2; e2 = (e1-e)+e2; t=nx*ln2a.x+ui.x[i+2]; t1=t+e; t2=(((t-t1)+e)+nx*ln2b.x+ui.x[i+3]+e2)+e*e*(q2+e*(q3+e*(q4+e*(q5+e*q6)))); res = t1+t2; *error = 1.0e-21; *delta = (t1-res)+t2; return res; } /* nx != 0 */ } /****************************************************************************/ /* More slow but more accurate routine of log */ /* Computing log(x)(x is left argument).The result is return double + delta.*/ /* The result is bounded by error (right argument) */ /****************************************************************************/ static double log2(double x, double *delta, double *error) { int i,j,m,n; double uu,vv,eps,nx,e,e1,e2,t,t1,t2,res,cor,add=0; double ou1,ou2,lu1,lu2,ov,lv1,lv2,a,a1,a2; double y,yy,z,zz,j1,j2,j3,j4,j5,j6,j7,j8; mynumber u,v; u.x = x; m = u.i[HIGH_HALF]; *error = 0; *delta = 0; add=0; if (m<0x00100000) { /* x < 2^-1022 */ x = x*t52.x; add = -52.0; u.x = x; m = u.i[HIGH_HALF]; } if ((m&0x000fffff) < 0x0006a09e) {u.i[HIGH_HALF] = (m&0x000fffff)|0x3ff00000; two52.i[LOW_HALF]=(m>>20); } else {u.i[HIGH_HALF] = (m&0x000fffff)|0x3fe00000; two52.i[LOW_HALF]=(m>>20)+1; } v.x = u.x + bigu.x; uu = v.x - bigu.x; i = (v.i[LOW_HALF]&0x000003ff)<<2; /*------------------------------------- |x-1| < 2**-11------------------------------- */ if ((two52.i[LOW_HALF] == 1023) && (i == 1200)) { t = x - 1.0; EMULV(t,s3,y,yy,j1,j2,j3,j4,j5); ADD2(-0.5,0,y,yy,z,zz,j1,j2); MUL2(t,0,z,zz,y,yy,j1,j2,j3,j4,j5,j6,j7,j8); MUL2(t,0,y,yy,z,zz,j1,j2,j3,j4,j5,j6,j7,j8); e1 = t+z; e2 = (((t-e1)+z)+zz)+t*t*t*(ss3+t*(s4+t*(s5+t*(s6+t*(s7+t*s8))))); res = e1+e2; *error = 1.0e-25*ABS(t); *delta = (e1-res)+e2; return res; } /*----------------------------- |x-1| > 2**-11 -------------------------- */ else { /*Computing log(x) according to log table */ nx = (two52.x - two52e.x)+add; ou1 = ui.x[i]; ou2 = ui.x[i+1]; lu1 = ui.x[i+2]; lu2 = ui.x[i+3]; v.x = u.x*(ou1+ou2)+bigv.x; vv = v.x-bigv.x; j = v.i[LOW_HALF]&0x0007ffff; j = j+j+j; eps = u.x - uu*vv; ov = vj.x[j]; lv1 = vj.x[j+1]; lv2 = vj.x[j+2]; a = (ou1+ou2)*(1.0+ov); a1 = (a+1.0e10)-1.0e10; a2 = a*(1.0-a1*uu*vv); e1 = eps*a1; e2 = eps*a2; e = e1+e2; e2 = (e1-e)+e2; t=nx*ln2a.x+lu1+lv1; t1 = t+e; t2 = (((t-t1)+e)+(lu2+lv2+nx*ln2b.x+e2))+e*e*(p2+e*(p3+e*p4)); res=t1+t2; *error = 1.0e-27; *delta = (t1-res)+t2; return res; } } /**********************************************************************/ /* Routine receives a double x and checks if it is an integer. If not */ /* it returns 0, else it returns 1 if even or -1 if odd. */ /**********************************************************************/ static int checkint(double x) { union {int4 i[2]; double x;} u; int k,l,m,n; u.x = x; m = u.i[HIGH_HALF]&0x7fffffff; /* no sign */ if (m >= 0x7ff00000) return 0; /* x is +/-inf or NaN */ if (m >= 0x43400000) return 1; /* |x| >= 2**53 */ if (m < 0x40000000) return 0; /* |x| < 2, can not be 0 or 1 */ n = u.i[LOW_HALF]; k = (m>>20)-1023; /* 1 <= k <= 52 */ if (k == 52) return (n&1)? -1:1; /* odd or even*/ if (k>20) { if (n<<(k-20)) return 0; /* if not integer */ return (n<<(k-21))?-1:1; } if (n) return 0; /*if not integer*/ if (k == 20) return (m&1)? -1:1; if (m<<(k+12)) return 0; return (m<<(k+11))?-1:1; }