/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001-2017 Free Software Foundation, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, see . */ /***************************************************************************/ /* MODULE_NAME: upow.c */ /* */ /* FUNCTIONS: upow */ /* power1 */ /* my_log2 */ /* log1 */ /* checkint */ /* FILES NEEDED: dla.h endian.h mpa.h mydefs.h */ /* halfulp.c mpexp.c mplog.c slowexp.c slowpow.c mpa.c */ /* uexp.c upow.c */ /* root.tbl uexp.tbl upow.tbl */ /* An ultimate power routine. Given two IEEE double machine numbers y,x */ /* it computes the correctly rounded (to nearest) value of x^y. */ /* Assumption: Machine arithmetic operations are performed in */ /* round to nearest mode of IEEE 754 standard. */ /* */ /***************************************************************************/ #include #include "endian.h" #include "upow.h" #include #include "mydefs.h" #include "MathLib.h" #include "upow.tbl" #include #include #ifndef SECTION # define SECTION #endif static const double huge = 1.0e300, tiny = 1.0e-300; double __exp1 (double x, double xx, double error); static double log1 (double x, double *delta, double *error); static double my_log2 (double x, double *delta, double *error); double __slowpow (double x, double y, double z); static double power1 (double x, double y); static int checkint (double x); /* An ultimate power routine. Given two IEEE double machine numbers y, x it computes the correctly rounded (to nearest) value of X^y. */ double SECTION __ieee754_pow (double x, double y) { double z, a, aa, error, t, a1, a2, y1, y2; mynumber u, v; int k; int4 qx, qy; v.x = y; u.x = x; if (v.i[LOW_HALF] == 0) { /* of y */ qx = u.i[HIGH_HALF] & 0x7fffffff; /* Is x a NaN? */ if ((((qx == 0x7ff00000) && (u.i[LOW_HALF] != 0)) || (qx > 0x7ff00000)) && (y != 0 || issignaling (x))) return x + x; if (y == 1.0) return x; if (y == 2.0) return x * x; if (y == -1.0) return 1.0 / x; if (y == 0) return 1.0; } /* else */ if (((u.i[HIGH_HALF] > 0 && u.i[HIGH_HALF] < 0x7ff00000) || /* x>0 and not x->0 */ (u.i[HIGH_HALF] == 0 && u.i[LOW_HALF] != 0)) && /* 2^-1023< x<= 2^-1023 * 0x1.0000ffffffff */ (v.i[HIGH_HALF] & 0x7fffffff) < 0x4ff00000) { /* if y<-1 or y>1 */ double retval; { SET_RESTORE_ROUND (FE_TONEAREST); /* Avoid internal underflow for tiny y. The exact value of y does not matter if |y| <= 2**-64. */ if (fabs (y) < 0x1p-64) y = y < 0 ? -0x1p-64 : 0x1p-64; z = log1 (x, &aa, &error); /* x^y =e^(y log (X)) */ t = y * CN; y1 = t - (t - y); y2 = y - y1; t = z * CN; a1 = t - (t - z); a2 = (z - a1) + aa; a = y1 * a1; aa = y2 * a1 + y * a2; a1 = a + aa; a2 = (a - a1) + aa; error = error * fabs (y); t = __exp1 (a1, a2, 1.9e16 * error); /* return -10 or 0 if wasn't computed exactly */ retval = (t > 0) ? t : power1 (x, y); } if (isinf (retval)) retval = huge * huge; else if (retval == 0) retval = tiny * tiny; else math_check_force_underflow_nonneg (retval); return retval; } if (x == 0) { if (((v.i[HIGH_HALF] & 0x7fffffff) == 0x7ff00000 && v.i[LOW_HALF] != 0) || (v.i[HIGH_HALF] & 0x7fffffff) > 0x7ff00000) /* NaN */ return y + y; if (fabs (y) > 1.0e20) return (y > 0) ? 0 : 1.0 / 0.0; k = checkint (y); if (k == -1) return y < 0 ? 1.0 / x : x; else return y < 0 ? 1.0 / 0.0 : 0.0; /* return 0 */ } qx = u.i[HIGH_HALF] & 0x7fffffff; /* no sign */ qy = v.i[HIGH_HALF] & 0x7fffffff; /* no sign */ if (qx >= 0x7ff00000 && (qx > 0x7ff00000 || u.i[LOW_HALF] != 0)) /* NaN */ return x + y; if (qy >= 0x7ff00000 && (qy > 0x7ff00000 || v.i[LOW_HALF] != 0)) /* NaN */ return x == 1.0 && !issignaling (y) ? 1.0 : y + y; /* if x<0 */ if (u.i[HIGH_HALF] < 0) { k = checkint (y); if (k == 0) { if (qy == 0x7ff00000) { if (x == -1.0) return 1.0; else if (x > -1.0) return v.i[HIGH_HALF] < 0 ? INF.x : 0.0; else return v.i[HIGH_HALF] < 0 ? 0.0 : INF.x; } else if (qx == 0x7ff00000) return y < 0 ? 0.0 : INF.x; return (x - x) / (x - x); /* y not integer and x<0 */ } else if (qx == 0x7ff00000) { if (k < 0) return y < 0 ? nZERO.x : nINF.x; else return y < 0 ? 0.0 : INF.x; } /* if y even or odd */ if (k == 1) return __ieee754_pow (-x, y); else { double retval; { SET_RESTORE_ROUND (FE_TONEAREST); retval = -__ieee754_pow (-x, y); } if (isinf (retval)) retval = -huge * huge; else if (retval == 0) retval = -tiny * tiny; return retval; } } /* x>0 */ if (qx == 0x7ff00000) /* x= 2^-0x3ff */ return y > 0 ? x : 0; if (qy > 0x45f00000 && qy < 0x7ff00000) { if (x == 1.0) return 1.0; if (y > 0) return (x > 1.0) ? huge * huge : tiny * tiny; if (y < 0) return (x < 1.0) ? huge * huge : tiny * tiny; } if (x == 1.0) return 1.0; if (y > 0) return (x > 1.0) ? INF.x : 0; if (y < 0) return (x < 1.0) ? INF.x : 0; return 0; /* unreachable, to make the compiler happy */ } #ifndef __ieee754_pow strong_alias (__ieee754_pow, __pow_finite) #endif /* Compute x^y using more accurate but more slow log routine. */ static double SECTION power1 (double x, double y) { double z, a, aa, error, t, a1, a2, y1, y2; z = my_log2 (x, &aa, &error); t = y * CN; y1 = t - (t - y); y2 = y - y1; t = z * CN; a1 = t - (t - z); a2 = z - a1; a = y * z; aa = ((y1 * a1 - a) + y1 * a2 + y2 * a1) + y2 * a2 + aa * y; a1 = a + aa; a2 = (a - a1) + aa; error = error * fabs (y); t = __exp1 (a1, a2, 1.9e16 * error); return (t >= 0) ? t : __slowpow (x, y, z); } /* Compute log(x) (x is left argument). The result is the returned double + the parameter DELTA. The result is bounded by ERROR. */ static double SECTION log1 (double x, double *delta, double *error) { unsigned int i, j; int m; double uu, vv, eps, nx, e, e1, e2, t, t1, t2, res, add = 0; mynumber u, v; #ifdef BIG_ENDI mynumber /**/ two52 = {{0x43300000, 0x00000000}}; /* 2**52 */ #else # ifdef LITTLE_ENDI mynumber /**/ two52 = {{0x00000000, 0x43300000}}; /* 2**52 */ # endif #endif u.x = x; m = u.i[HIGH_HALF]; *error = 0; *delta = 0; if (m < 0x00100000) /* 1> 20); } else { u.i[HIGH_HALF] = (m & 0x000fffff) | 0x3fe00000; two52.i[LOW_HALF] = (m >> 20) + 1; } v.x = u.x + bigu.x; uu = v.x - bigu.x; i = (v.i[LOW_HALF] & 0x000003ff) << 2; if (two52.i[LOW_HALF] == 1023) /* nx = 0 */ { if (i > 1192 && i < 1208) /* |x-1| < 1.5*2**-10 */ { t = x - 1.0; t1 = (t + 5.0e6) - 5.0e6; t2 = t - t1; e1 = t - 0.5 * t1 * t1; e2 = (t * t * t * (r3 + t * (r4 + t * (r5 + t * (r6 + t * (r7 + t * r8))))) - 0.5 * t2 * (t + t1)); res = e1 + e2; *error = 1.0e-21 * fabs (t); *delta = (e1 - res) + e2; return res; } /* |x-1| < 1.5*2**-10 */ else { v.x = u.x * (ui.x[i] + ui.x[i + 1]) + bigv.x; vv = v.x - bigv.x; j = v.i[LOW_HALF] & 0x0007ffff; j = j + j + j; eps = u.x - uu * vv; e1 = eps * ui.x[i]; e2 = eps * (ui.x[i + 1] + vj.x[j] * (ui.x[i] + ui.x[i + 1])); e = e1 + e2; e2 = ((e1 - e) + e2); t = ui.x[i + 2] + vj.x[j + 1]; t1 = t + e; t2 = ((((t - t1) + e) + (ui.x[i + 3] + vj.x[j + 2])) + e2 + e * e * (p2 + e * (p3 + e * p4))); res = t1 + t2; *error = 1.0e-24; *delta = (t1 - res) + t2; return res; } } /* nx = 0 */ else /* nx != 0 */ { eps = u.x - uu; nx = (two52.x - two52e.x) + add; e1 = eps * ui.x[i]; e2 = eps * ui.x[i + 1]; e = e1 + e2; e2 = (e1 - e) + e2; t = nx * ln2a.x + ui.x[i + 2]; t1 = t + e; t2 = ((((t - t1) + e) + nx * ln2b.x + ui.x[i + 3] + e2) + e * e * (q2 + e * (q3 + e * (q4 + e * (q5 + e * q6))))); res = t1 + t2; *error = 1.0e-21; *delta = (t1 - res) + t2; return res; } /* nx != 0 */ } /* Slower but more accurate routine of log. The returned result is double + DELTA. The result is bounded by ERROR. */ static double SECTION my_log2 (double x, double *delta, double *error) { unsigned int i, j; int m; double uu, vv, eps, nx, e, e1, e2, t, t1, t2, res, add = 0; double ou1, ou2, lu1, lu2, ov, lv1, lv2, a, a1, a2; double y, yy, z, zz, j1, j2, j7, j8; #ifndef DLA_FMS double j3, j4, j5, j6; #endif mynumber u, v; #ifdef BIG_ENDI mynumber /**/ two52 = {{0x43300000, 0x00000000}}; /* 2**52 */ #else # ifdef LITTLE_ENDI mynumber /**/ two52 = {{0x00000000, 0x43300000}}; /* 2**52 */ # endif #endif u.x = x; m = u.i[HIGH_HALF]; *error = 0; *delta = 0; add = 0; if (m < 0x00100000) { /* x < 2^-1022 */ x = x * t52.x; add = -52.0; u.x = x; m = u.i[HIGH_HALF]; } if ((m & 0x000fffff) < 0x0006a09e) { u.i[HIGH_HALF] = (m & 0x000fffff) | 0x3ff00000; two52.i[LOW_HALF] = (m >> 20); } else { u.i[HIGH_HALF] = (m & 0x000fffff) | 0x3fe00000; two52.i[LOW_HALF] = (m >> 20) + 1; } v.x = u.x + bigu.x; uu = v.x - bigu.x; i = (v.i[LOW_HALF] & 0x000003ff) << 2; /*------------------------------------- |x-1| < 2**-11------------------------------- */ if ((two52.i[LOW_HALF] == 1023) && (i == 1200)) { t = x - 1.0; EMULV (t, s3, y, yy, j1, j2, j3, j4, j5); ADD2 (-0.5, 0, y, yy, z, zz, j1, j2); MUL2 (t, 0, z, zz, y, yy, j1, j2, j3, j4, j5, j6, j7, j8); MUL2 (t, 0, y, yy, z, zz, j1, j2, j3, j4, j5, j6, j7, j8); e1 = t + z; e2 = ((((t - e1) + z) + zz) + t * t * t * (ss3 + t * (s4 + t * (s5 + t * (s6 + t * (s7 + t * s8)))))); res = e1 + e2; *error = 1.0e-25 * fabs (t); *delta = (e1 - res) + e2; return res; } /*----------------------------- |x-1| > 2**-11 -------------------------- */ else { /*Computing log(x) according to log table */ nx = (two52.x - two52e.x) + add; ou1 = ui.x[i]; ou2 = ui.x[i + 1]; lu1 = ui.x[i + 2]; lu2 = ui.x[i + 3]; v.x = u.x * (ou1 + ou2) + bigv.x; vv = v.x - bigv.x; j = v.i[LOW_HALF] & 0x0007ffff; j = j + j + j; eps = u.x - uu * vv; ov = vj.x[j]; lv1 = vj.x[j + 1]; lv2 = vj.x[j + 2]; a = (ou1 + ou2) * (1.0 + ov); a1 = (a + 1.0e10) - 1.0e10; a2 = a * (1.0 - a1 * uu * vv); e1 = eps * a1; e2 = eps * a2; e = e1 + e2; e2 = (e1 - e) + e2; t = nx * ln2a.x + lu1 + lv1; t1 = t + e; t2 = ((((t - t1) + e) + (lu2 + lv2 + nx * ln2b.x + e2)) + e * e * (p2 + e * (p3 + e * p4))); res = t1 + t2; *error = 1.0e-27; *delta = (t1 - res) + t2; return res; } } /* This function receives a double x and checks if it is an integer. If not, it returns 0, else it returns 1 if even or -1 if odd. */ static int SECTION checkint (double x) { union { int4 i[2]; double x; } u; int k; unsigned int m, n; u.x = x; m = u.i[HIGH_HALF] & 0x7fffffff; /* no sign */ if (m >= 0x7ff00000) return 0; /* x is +/-inf or NaN */ if (m >= 0x43400000) return 1; /* |x| >= 2**53 */ if (m < 0x40000000) return 0; /* |x| < 2, can not be 0 or 1 */ n = u.i[LOW_HALF]; k = (m >> 20) - 1023; /* 1 <= k <= 52 */ if (k == 52) return (n & 1) ? -1 : 1; /* odd or even */ if (k > 20) { if (n << (k - 20) != 0) return 0; /* if not integer */ return (n << (k - 21) != 0) ? -1 : 1; } if (n) return 0; /*if not integer */ if (k == 20) return (m & 1) ? -1 : 1; if (m << (k + 12) != 0) return 0; return (m << (k + 11) != 0) ? -1 : 1; }