/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001 Free Software Foundation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /************************************************************************/ /* MODULE_NAME: atnat2.c */ /* */ /* FUNCTIONS: uatan2 */ /* atan2Mp */ /* signArctan2 */ /* normalized */ /* */ /* FILES NEEDED: dla.h endian.h mpa.h mydefs.h atnat2.h */ /* mpatan.c mpatan2.c mpsqrt.c */ /* uatan.tbl */ /* */ /* An ultimate atan2() routine. Given two IEEE double machine numbers y,*/ /* x it computes the correctly rounded (to nearest) value of atan2(y,x).*/ /* */ /* Assumption: Machine arithmetic operations are performed in */ /* round to nearest mode of IEEE 754 standard. */ /* */ /************************************************************************/ #include "dla.h" #include "mpa.h" #include "MathLib.h" #include "uatan.tbl" #include "atnat2.h" #include "math_private.h" /************************************************************************/ /* An ultimate atan2 routine. Given two IEEE double machine numbers y,x */ /* it computes the correctly rounded (to nearest) value of atan2(y,x). */ /* Assumption: Machine arithmetic operations are performed in */ /* round to nearest mode of IEEE 754 standard. */ /************************************************************************/ static double atan2Mp(double ,double ,const int[]); static double signArctan2(double ,double); static double normalized(double ,double,double ,double); void __mpatan2(mp_no *,mp_no *,mp_no *,int); double __ieee754_atan2(double y,double x) { int i,de,ux,dx,uy,dy; #if 0 int p; #endif static const int pr[MM]={6,8,10,20,32}; double ax,ay,u,du,u9,ua,v,vv,dv,t1,t2,t3,t4,t5,t6,t7,t8, z,zz,cor,s1,ss1,s2,ss2; #if 0 double z1,z2; #endif number num; #if 0 mp_no mperr,mpt1,mpx,mpy,mpz,mpz1,mpz2; #endif static const int ep= 59768832, /* 57*16**5 */ em=-59768832; /* -57*16**5 */ /* x=NaN or y=NaN */ num.d = x; ux = num.i[HIGH_HALF]; dx = num.i[LOW_HALF]; if ((ux&0x7ff00000) ==0x7ff00000) { if (((ux&0x000fffff)|dx)!=0x00000000) return x+x; } num.d = y; uy = num.i[HIGH_HALF]; dy = num.i[LOW_HALF]; if ((uy&0x7ff00000) ==0x7ff00000) { if (((uy&0x000fffff)|dy)!=0x00000000) return y+y; } /* y=+-0 */ if (uy==0x00000000) { if (dy==0x00000000) { if ((ux&0x80000000)==0x00000000) return ZERO; else return opi.d; } } else if (uy==0x80000000) { if (dy==0x00000000) { if ((ux&0x80000000)==0x00000000) return MZERO; else return mopi.d;} } /* x=+-0 */ if (x==ZERO) { if ((uy&0x80000000)==0x00000000) return hpi.d; else return mhpi.d; } /* x=+-INF */ if (ux==0x7ff00000) { if (dx==0x00000000) { if (uy==0x7ff00000) { if (dy==0x00000000) return qpi.d; } else if (uy==0xfff00000) { if (dy==0x00000000) return mqpi.d; } else { if ((uy&0x80000000)==0x00000000) return ZERO; else return MZERO; } } } else if (ux==0xfff00000) { if (dx==0x00000000) { if (uy==0x7ff00000) { if (dy==0x00000000) return tqpi.d; } else if (uy==0xfff00000) { if (dy==0x00000000) return mtqpi.d; } else { if ((uy&0x80000000)==0x00000000) return opi.d; else return mopi.d; } } } /* y=+-INF */ if (uy==0x7ff00000) { if (dy==0x00000000) return hpi.d; } else if (uy==0xfff00000) { if (dy==0x00000000) return mhpi.d; } /* either x/y or y/x is very close to zero */ ax = (x=ep) { return ((y>ZERO) ? hpi.d : mhpi.d); } else if (de<=em) { if (x>ZERO) { if ((z=ay/ax)ZERO) ? opi.d : mopi.d); } } /* if either x or y is extremely close to zero, scale abs(x), abs(y). */ if (axZERO) { /* (i) x>0, abs(y)< abs(x): atan(ay/ax) */ if (ay0, abs(x)<=abs(y): pi/2-atan(ax/ay) */ else { if (u= 1/2 */ if ((z=t1+(zz-ua)) == t1+(zz+ua)) return signArctan2(y,z); t1=u-hij[i][0].d; EADD(t1,du,v,vv) s1=v*(hij[i][11].d+v*(hij[i][12].d+v*(hij[i][13].d+ v*(hij[i][14].d+v* hij[i][15].d)))); ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2) SUB2(hpi.d,hpi1.d,s2,ss2,s1,ss1,t1,t2) if ((z=s1+(ss1-uc.d)) == s1+(ss1+uc.d)) return signArctan2(y,z); return atan2Mp(x,y,pr); } } } else { /* (iii) x<0, abs(x)< abs(y): pi/2+atan(ax/ay) */ if (ax= 1/2 */ if ((z=t1+(zz-ua)) == t1+(zz+ua)) return signArctan2(y,z); t1=u-hij[i][0].d; EADD(t1,du,v,vv) s1=v*(hij[i][11].d+v*(hij[i][12].d+v*(hij[i][13].d+ v*(hij[i][14].d+v* hij[i][15].d)))); ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2) ADD2(hpi.d,hpi1.d,s2,ss2,s1,ss1,t1,t2) if ((z=s1+(ss1-uc.d)) == s1+(ss1+uc.d)) return signArctan2(y,z); return atan2Mp(x,y,pr); } } /* (iv) x<0, abs(y)<=abs(x): pi-atan(ax/ay) */ else { if (u= 1/2 */ if ((z=t1+(zz-ua)) == t1+(zz+ua)) return signArctan2(y,z); t1=u-hij[i][0].d; EADD(t1,du,v,vv) s1=v*(hij[i][11].d+v*(hij[i][12].d+v*(hij[i][13].d+ v*(hij[i][14].d+v* hij[i][15].d)))); ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2) SUB2(opi.d,opi1.d,s2,ss2,s1,ss1,t1,t2) if ((z=s1+(ss1-uc.d)) == s1+(ss1+uc.d)) return signArctan2(y,z); return atan2Mp(x,y,pr); } } } } /* Treat the Denormalized case */ static double normalized(double ax,double ay,double y, double z) { int p; mp_no mpx,mpy,mpz,mperr,mpz2,mpt1; p=6; __dbl_mp(ax,&mpx,p); __dbl_mp(ay,&mpy,p); __dvd(&mpy,&mpx,&mpz,p); __dbl_mp(ue.d,&mpt1,p); __mul(&mpz,&mpt1,&mperr,p); __sub(&mpz,&mperr,&mpz2,p); __mp_dbl(&mpz2,&z,p); return signArctan2(y,z); } /* Fix the sign and return after stage 1 or stage 2 */ static double signArctan2(double y,double z) { return ((y