/* Extended regular expression matching and search library. Copyright (C) 2002 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Isamu Hasegawa . The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ #include #include #include #include #include #include #include #include #include #ifdef _LIBC # ifndef _RE_DEFINE_LOCALE_FUNCTIONS # define _RE_DEFINE_LOCALE_FUNCTIONS 1 # include # include # include # endif #endif /* This is for other GNU distributions with internationalized messages. */ #if HAVE_LIBINTL_H || defined _LIBC # include # ifdef _LIBC # undef gettext # define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES) # endif #else # define gettext(msgid) (msgid) #endif #ifndef gettext_noop /* This define is so xgettext can find the internationalizable strings. */ # define gettext_noop(String) String #endif #include "regex.h" #include "regex_internal.h" static reg_errcode_t re_compile_internal (regex_t *preg, const char * pattern, int length, reg_syntax_t syntax); static void re_compile_fastmap_iter (regex_t *bufp, const re_dfastate_t *init_state, char *fastmap); static reg_errcode_t init_dfa (re_dfa_t *dfa, int pat_len); static reg_errcode_t init_word_char (re_dfa_t *dfa); static void free_charset (re_charset_t *cset); static void free_workarea_compile (regex_t *preg); static reg_errcode_t create_initial_state (re_dfa_t *dfa); static reg_errcode_t analyze (re_dfa_t *dfa); static reg_errcode_t analyze_tree (re_dfa_t *dfa, bin_tree_t *node); static void calc_first (re_dfa_t *dfa, bin_tree_t *node); static void calc_next (re_dfa_t *dfa, bin_tree_t *node); static void calc_epsdest (re_dfa_t *dfa, bin_tree_t *node); static reg_errcode_t duplicate_node (int *new_idx, re_dfa_t *dfa, int org_idx, unsigned int constraint); static reg_errcode_t calc_eclosure (re_dfa_t *dfa); static reg_errcode_t calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa, int node, int root); static void calc_inveclosure (re_dfa_t *dfa); static int fetch_number (re_string_t *input, re_token_t *token, reg_syntax_t syntax); static re_token_t fetch_token (re_string_t *input, reg_syntax_t syntax); static int peek_token (re_token_t *token, re_string_t *input, reg_syntax_t syntax); static int peek_token_bracket (re_token_t *token, re_string_t *input, reg_syntax_t syntax); static bin_tree_t *parse (re_string_t *regexp, regex_t *preg, reg_syntax_t syntax, reg_errcode_t *err); static bin_tree_t *parse_reg_exp (re_string_t *regexp, regex_t *preg, re_token_t *token, reg_syntax_t syntax, int nest, reg_errcode_t *err); static bin_tree_t *parse_branch (re_string_t *regexp, regex_t *preg, re_token_t *token, reg_syntax_t syntax, int nest, reg_errcode_t *err); static bin_tree_t *parse_expression (re_string_t *regexp, regex_t *preg, re_token_t *token, reg_syntax_t syntax, int nest, reg_errcode_t *err); static bin_tree_t *parse_sub_exp (re_string_t *regexp, regex_t *preg, re_token_t *token, reg_syntax_t syntax, int nest, reg_errcode_t *err); static bin_tree_t *parse_dup_op (bin_tree_t *dup_elem, re_string_t *regexp, re_dfa_t *dfa, re_token_t *token, reg_syntax_t syntax, reg_errcode_t *err); static bin_tree_t *parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa, re_token_t *token, reg_syntax_t syntax, reg_errcode_t *err); static reg_errcode_t parse_bracket_element (bracket_elem_t *elem, re_string_t *regexp, re_token_t *token, int token_len, re_dfa_t *dfa, reg_syntax_t syntax); static reg_errcode_t parse_bracket_symbol (bracket_elem_t *elem, re_string_t *regexp, re_token_t *token); static reg_errcode_t build_equiv_class (re_charset_t *mbcset, re_bitset_ptr_t sbcset, int *equiv_class_alloc, const unsigned char *name); static reg_errcode_t build_charclass (re_charset_t *mbcset, re_bitset_ptr_t sbcset, int *char_class_alloc, const unsigned char *name); static bin_tree_t *build_word_op (re_dfa_t *dfa, int not, reg_errcode_t *err); static void free_bin_tree (bin_tree_t *tree); static bin_tree_t *create_tree (bin_tree_t *left, bin_tree_t *right, re_token_type_t type, int index); static bin_tree_t *duplicate_tree (const bin_tree_t *src, re_dfa_t *dfa); /* This table gives an error message for each of the error codes listed in regex.h. Obviously the order here has to be same as there. POSIX doesn't require that we do anything for REG_NOERROR, but why not be nice? */ const char re_error_msgid[] = { #define REG_NOERROR_IDX 0 gettext_noop ("Success") /* REG_NOERROR */ "\0" #define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success") gettext_noop ("No match") /* REG_NOMATCH */ "\0" #define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match") gettext_noop ("Invalid regular expression") /* REG_BADPAT */ "\0" #define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression") gettext_noop ("Invalid collation character") /* REG_ECOLLATE */ "\0" #define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character") gettext_noop ("Invalid character class name") /* REG_ECTYPE */ "\0" #define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name") gettext_noop ("Trailing backslash") /* REG_EESCAPE */ "\0" #define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash") gettext_noop ("Invalid back reference") /* REG_ESUBREG */ "\0" #define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference") gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */ "\0" #define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^") gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */ "\0" #define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(") gettext_noop ("Unmatched \\{") /* REG_EBRACE */ "\0" #define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{") gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */ "\0" #define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}") gettext_noop ("Invalid range end") /* REG_ERANGE */ "\0" #define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end") gettext_noop ("Memory exhausted") /* REG_ESPACE */ "\0" #define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted") gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */ "\0" #define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression") gettext_noop ("Premature end of regular expression") /* REG_EEND */ "\0" #define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression") gettext_noop ("Regular expression too big") /* REG_ESIZE */ "\0" #define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big") gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */ }; const size_t re_error_msgid_idx[] = { REG_NOERROR_IDX, REG_NOMATCH_IDX, REG_BADPAT_IDX, REG_ECOLLATE_IDX, REG_ECTYPE_IDX, REG_EESCAPE_IDX, REG_ESUBREG_IDX, REG_EBRACK_IDX, REG_EPAREN_IDX, REG_EBRACE_IDX, REG_BADBR_IDX, REG_ERANGE_IDX, REG_ESPACE_IDX, REG_BADRPT_IDX, REG_EEND_IDX, REG_ESIZE_IDX, REG_ERPAREN_IDX }; /* Entry points for GNU code. */ /* re_compile_pattern is the GNU regular expression compiler: it compiles PATTERN (of length SIZE) and puts the result in BUFP. Returns 0 if the pattern was valid, otherwise an error string. Assumes the `allocated' (and perhaps `buffer') and `translate' fields are set in BUFP on entry. */ const char * re_compile_pattern (pattern, length, bufp) const char *pattern; size_t length; struct re_pattern_buffer *bufp; { reg_errcode_t ret; /* GNU code is written to assume at least RE_NREGS registers will be set (and at least one extra will be -1). */ bufp->regs_allocated = REGS_UNALLOCATED; /* And GNU code determines whether or not to get register information by passing null for the REGS argument to re_match, etc., not by setting no_sub. */ bufp->no_sub = 0; /* Match anchors at newline. */ bufp->newline_anchor = 1; ret = re_compile_internal (bufp, (const unsigned char *) pattern, length, re_syntax_options); if (!ret) return NULL; return gettext (re_error_msgid + re_error_msgid_idx[(int) ret]); } #ifdef _LIBC weak_alias (__re_compile_pattern, re_compile_pattern) #endif /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can also be assigned to arbitrarily: each pattern buffer stores its own syntax, so it can be changed between regex compilations. */ /* This has no initializer because initialized variables in Emacs become read-only after dumping. */ reg_syntax_t re_syntax_options; /* Specify the precise syntax of regexps for compilation. This provides for compatibility for various utilities which historically have different, incompatible syntaxes. The argument SYNTAX is a bit mask comprised of the various bits defined in regex.h. We return the old syntax. */ reg_syntax_t re_set_syntax (syntax) reg_syntax_t syntax; { reg_syntax_t ret = re_syntax_options; re_syntax_options = syntax; return ret; } #ifdef _LIBC weak_alias (__re_set_syntax, re_set_syntax) #endif int re_compile_fastmap (bufp) struct re_pattern_buffer *bufp; { re_dfa_t *dfa = (re_dfa_t *) bufp->buffer; char *fastmap = bufp->fastmap; memset (fastmap, '\0', sizeof (char) * SBC_MAX); re_compile_fastmap_iter (bufp, dfa->init_state, fastmap); if (dfa->init_state != dfa->init_state_word) re_compile_fastmap_iter (bufp, dfa->init_state_word, fastmap); if (dfa->init_state != dfa->init_state_nl) re_compile_fastmap_iter (bufp, dfa->init_state_nl, fastmap); if (dfa->init_state != dfa->init_state_begbuf) re_compile_fastmap_iter (bufp, dfa->init_state_begbuf, fastmap); bufp->fastmap_accurate = 1; return 0; } #ifdef _LIBC weak_alias (__re_compile_fastmap, re_compile_fastmap) #endif /* Helper function for re_compile_fastmap. Compile fastmap for the initial_state INIT_STATE. */ static void re_compile_fastmap_iter (bufp, init_state, fastmap) regex_t *bufp; const re_dfastate_t *init_state; char *fastmap; { re_dfa_t *dfa = (re_dfa_t *) bufp->buffer; int node_cnt; for (node_cnt = 0; node_cnt < init_state->nodes.nelem; ++node_cnt) { int node = init_state->nodes.elems[node_cnt]; re_token_type_t type = dfa->nodes[node].type; if (type == OP_CONTEXT_NODE) { node = dfa->nodes[node].opr.ctx_info->entity; type = dfa->nodes[node].type; } if (type == CHARACTER) fastmap[dfa->nodes[node].opr.c] = 1; else if (type == SIMPLE_BRACKET) { int i, j, ch; for (i = 0, ch = 0; i < BITSET_UINTS; ++i) for (j = 0; j < UINT_BITS; ++j, ++ch) if (dfa->nodes[node].opr.sbcset[i] & (1 << j)) fastmap[ch] = 1; } else if (type == COMPLEX_BRACKET) { int i; re_charset_t *cset = dfa->nodes[node].opr.mbcset; if (cset->non_match || cset->ncoll_syms || cset->nequiv_classes || cset->nranges || cset->nchar_classes) { if (_NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES) != 0) { /* In this case we want to catch the bytes which are the first byte of any collation elements. e.g. In da_DK, we want to catch 'a' since "aa" is a valid collation element, and don't catch 'b' since 'b' is the only collation element which starts from 'b'. */ int j, ch; const int32_t *table = (const int32_t *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); for (i = 0, ch = 0; i < BITSET_UINTS; ++i) for (j = 0; j < UINT_BITS; ++j, ++ch) if (table[ch] < 0) fastmap[ch] = 1; } } for (i = 0; i < cset->nmbchars; ++i) { unsigned char buf[256]; wctomb (buf, cset->mbchars[i]); fastmap[buf[0]] = 1; } } else if (type == END_OF_RE || type == COMPLEX_BRACKET || type == OP_PERIOD) { memset (fastmap, '\1', sizeof (char) * SBC_MAX); if (type == END_OF_RE) bufp->can_be_null = 1; return; } } } /* Entry point for POSIX code. */ /* regcomp takes a regular expression as a string and compiles it. PREG is a regex_t *. We do not expect any fields to be initialized, since POSIX says we shouldn't. Thus, we set `buffer' to the compiled pattern; `used' to the length of the compiled pattern; `syntax' to RE_SYNTAX_POSIX_EXTENDED if the REG_EXTENDED bit in CFLAGS is set; otherwise, to RE_SYNTAX_POSIX_BASIC; `newline_anchor' to REG_NEWLINE being set in CFLAGS; `fastmap' to an allocated space for the fastmap; `fastmap_accurate' to zero; `re_nsub' to the number of subexpressions in PATTERN. PATTERN is the address of the pattern string. CFLAGS is a series of bits which affect compilation. If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we use POSIX basic syntax. If REG_NEWLINE is set, then . and [^...] don't match newline. Also, regexec will try a match beginning after every newline. If REG_ICASE is set, then we considers upper- and lowercase versions of letters to be equivalent when matching. If REG_NOSUB is set, then when PREG is passed to regexec, that routine will report only success or failure, and nothing about the registers. It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for the return codes and their meanings.) */ int regcomp (preg, pattern, cflags) regex_t *preg; const char *pattern; int cflags; { reg_errcode_t ret; reg_syntax_t syntax = ((cflags & REG_EXTENDED) ? RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC); preg->buffer = NULL; preg->allocated = 0; preg->used = 0; /* Try to allocate space for the fastmap. */ preg->fastmap = re_malloc (char, SBC_MAX); if (preg->fastmap == NULL) return REG_ESPACE; syntax |= (cflags & REG_ICASE) ? RE_ICASE : 0; /* If REG_NEWLINE is set, newlines are treated differently. */ if (cflags & REG_NEWLINE) { /* REG_NEWLINE implies neither . nor [^...] match newline. */ syntax &= ~RE_DOT_NEWLINE; syntax |= RE_HAT_LISTS_NOT_NEWLINE; /* It also changes the matching behavior. */ preg->newline_anchor = 1; } else preg->newline_anchor = 0; preg->no_sub = !!(cflags & REG_NOSUB); preg->translate = NULL; ret = re_compile_internal (preg, pattern, strlen (pattern), syntax); /* POSIX doesn't distinguish between an unmatched open-group and an unmatched close-group: both are REG_EPAREN. */ if (ret == REG_ERPAREN) ret = REG_EPAREN; /* We have already checked preg->fastmap != NULL. */ if (ret == REG_NOERROR) { /* Compute the fastmap now, since regexec cannot modify the pattern buffer. */ if (re_compile_fastmap (preg) == -2) { /* Some error occurred while computing the fastmap, just forget about it. */ re_free (preg->fastmap); preg->fastmap = NULL; } } return (int) ret; } #ifdef _LIBC weak_alias (__regcomp, regcomp) #endif /* Returns a message corresponding to an error code, ERRCODE, returned from either regcomp or regexec. We don't use PREG here. */ size_t regerror (errcode, preg, errbuf, errbuf_size) int errcode; const regex_t *preg; char *errbuf; size_t errbuf_size; { const char *msg; size_t msg_size; if (errcode < 0 || errcode >= (int) (sizeof (re_error_msgid_idx) / sizeof (re_error_msgid_idx[0]))) /* Only error codes returned by the rest of the code should be passed to this routine. If we are given anything else, or if other regex code generates an invalid error code, then the program has a bug. Dump core so we can fix it. */ abort (); msg = gettext (re_error_msgid + re_error_msgid_idx[errcode]); msg_size = strlen (msg) + 1; /* Includes the null. */ if (errbuf_size != 0) { if (msg_size > errbuf_size) { #if defined HAVE_MEMPCPY || defined _LIBC *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0'; #else memcpy (errbuf, msg, errbuf_size - 1); errbuf[errbuf_size - 1] = 0; #endif } else memcpy (errbuf, msg, msg_size); } return msg_size; } #ifdef _LIBC weak_alias (__regerror, regerror) #endif /* Free dynamically allocated space used by PREG. */ void regfree (preg) regex_t *preg; { int i, j; re_dfa_t *dfa = (re_dfa_t *) preg->buffer; if (dfa != NULL) { re_free (dfa->subexps); for (i = 0; i < dfa->nodes_len; ++i) { re_token_t *node = dfa->nodes + i; if (node->type == COMPLEX_BRACKET && node->duplicated == 0) free_charset (node->opr.mbcset); else if (node->type == SIMPLE_BRACKET && node->duplicated == 0) re_free (node->opr.sbcset); else if (node->type == OP_CONTEXT_NODE) { if (dfa->nodes[node->opr.ctx_info->entity].type == OP_BACK_REF) { if (node->opr.ctx_info->bkref_eclosure != NULL) re_node_set_free (node->opr.ctx_info->bkref_eclosure); re_free (node->opr.ctx_info->bkref_eclosure); } re_free (node->opr.ctx_info); } } re_free (dfa->firsts); re_free (dfa->nexts); for (i = 0; i < dfa->nodes_len; ++i) { if (dfa->eclosures != NULL) re_node_set_free (dfa->eclosures + i); if (dfa->inveclosures != NULL) re_node_set_free (dfa->inveclosures + i); if (dfa->edests != NULL) re_node_set_free (dfa->edests + i); } re_free (dfa->edests); re_free (dfa->eclosures); re_free (dfa->inveclosures); re_free (dfa->nodes); for (i = 0; i <= dfa->state_hash_mask; ++i) { struct re_state_table_entry *entry = dfa->state_table + i; if (entry->alloc == 0) re_free (entry->entry.state); else { for (j = 0; j < entry->num; ++j) { re_dfastate_t *state = entry->entry.array[j]; if (state->entrance_nodes != &state->nodes) { re_node_set_free (state->entrance_nodes); re_free (state->entrance_nodes); } re_node_set_free (&state->nodes); re_free (state->trtable); re_free (state->trtable_search); re_free (state); } re_free (entry->entry.array); } } re_free (dfa->state_table); if (dfa->word_char != NULL) re_free (dfa->word_char); re_free (dfa); } re_free (preg->fastmap); } #ifdef _LIBC weak_alias (__regfree, regfree) #endif /* Entry points compatible with 4.2 BSD regex library. We don't define them unless specifically requested. */ #if defined _REGEX_RE_COMP || defined _LIBC /* BSD has one and only one pattern buffer. */ static struct re_pattern_buffer re_comp_buf; char * # ifdef _LIBC /* Make these definitions weak in libc, so POSIX programs can redefine these names if they don't use our functions, and still use regcomp/regexec above without link errors. */ weak_function # endif re_comp (s) const char *s; { reg_errcode_t ret; if (!s) { if (!re_comp_buf.buffer) return gettext ("No previous regular expression"); return 0; } if (!re_comp_buf.buffer) { re_comp_buf.fastmap = (char *) malloc (SBC_MAX); if (re_comp_buf.fastmap == NULL) return (char *) gettext (re_error_msgid + re_error_msgid_idx[(int) REG_ESPACE]); } /* Since `re_exec' always passes NULL for the `regs' argument, we don't need to initialize the pattern buffer fields which affect it. */ /* Match anchors at newlines. */ re_comp_buf.newline_anchor = 1; ret = re_compile_internal (&re_comp_buf, s, strlen (s), re_syntax_options); if (!ret) return NULL; /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */ return (char *) gettext (re_error_msgid + re_error_msgid_idx[(int) ret]); } #endif /* _REGEX_RE_COMP */ /* Internal entry point. Compile the regular expression PATTERN, whose length is LENGTH. SYNTAX indicate regular expression's syntax. */ static reg_errcode_t re_compile_internal (preg, pattern, length, syntax) regex_t *preg; const char * pattern; int length; reg_syntax_t syntax; { reg_errcode_t err = REG_NOERROR; re_dfa_t *dfa; re_string_t regexp; /* Initialize the pattern buffer. */ preg->fastmap_accurate = 0; preg->syntax = syntax; preg->not_bol = preg->not_eol = 0; preg->used = 0; preg->re_nsub = 0; /* Initialize the dfa. */ dfa = (re_dfa_t *) preg->buffer; if (preg->allocated < sizeof (re_dfa_t)) { /* If zero allocated, but buffer is non-null, try to realloc enough space. This loses if buffer's address is bogus, but that is the user's responsibility. If ->buffer is NULL this is a simple allocation. */ dfa = re_realloc (preg->buffer, re_dfa_t, 1); if (dfa == NULL) return REG_ESPACE; memset (dfa, '\0', sizeof (re_dfa_t)); preg->allocated = sizeof (re_dfa_t); } preg->buffer = (unsigned char *) dfa; preg->used = sizeof (re_dfa_t); err = init_dfa (dfa, length); if (err != REG_NOERROR) { re_free (dfa); preg->buffer = NULL; return err; } if (syntax & RE_ICASE) err = re_string_construct_toupper (®exp, pattern, length, preg->translate); else err = re_string_construct (®exp, pattern, length, preg->translate); if (err != REG_NOERROR) { re_free (dfa); preg->buffer = NULL; return err; } /* Parse the regular expression, and build a structure tree. */ preg->re_nsub = 0; dfa->str_tree = parse (®exp, preg, syntax, &err); if (dfa->str_tree == NULL) goto re_compile_internal_free_return; /* Analyze the tree and collect information which is necessary to create the dfa. */ err = analyze (dfa); if (err != REG_NOERROR) goto re_compile_internal_free_return; /* Then create the initial state of the dfa. */ err = create_initial_state (dfa); if (err != REG_NOERROR) goto re_compile_internal_free_return; re_compile_internal_free_return: /* Release work areas. */ free_workarea_compile (preg); re_string_destruct (®exp); return err; } /* Initialize DFA. We use the length of the regular expression PAT_LEN as the initial length of some arrays. */ static reg_errcode_t init_dfa (dfa, pat_len) re_dfa_t *dfa; int pat_len; { int table_size; dfa->nodes_alloc = pat_len + 1; dfa->nodes = re_malloc (re_token_t, dfa->nodes_alloc); dfa->states_alloc = pat_len + 1; /* table_size = 2 ^ ceil(log pat_len) */ for (table_size = 1; table_size > 0; table_size <<= 1) if (table_size > pat_len) break; dfa->state_table = calloc (sizeof (struct re_state_table_entry), table_size); dfa->state_hash_mask = table_size - 1; dfa->subexps_alloc = 1; dfa->subexps = re_malloc (re_subexp_t, dfa->subexps_alloc); dfa->word_char = NULL; if (dfa->nodes == NULL || dfa->state_table == NULL || dfa->subexps == NULL) { /* We don't bother to free anything which was allocated. Very soon the process will go down anyway. */ dfa->subexps = NULL; dfa->state_table = NULL; dfa->nodes = NULL; return REG_ESPACE; } return REG_NOERROR; } /* Initialize WORD_CHAR table, which indicate which character is "word". In this case "word" means that it is the word construction character used by some operators like "\<", "\>", etc. */ static reg_errcode_t init_word_char (dfa) re_dfa_t *dfa; { int i, j, ch; dfa->word_char = (re_bitset_ptr_t) calloc (sizeof (bitset), 1); if (dfa->word_char == NULL) return REG_ESPACE; for (i = 0, ch = 0; i < BITSET_UINTS; ++i) for (j = 0; j < UINT_BITS; ++j, ++ch) if (isalnum (ch) || ch == '_') dfa->word_char[i] |= 1 << j; return REG_NOERROR; } /* Free the work area which are only used while compiling. */ static void free_workarea_compile (preg) regex_t *preg; { re_dfa_t *dfa = (re_dfa_t *) preg->buffer; free_bin_tree (dfa->str_tree); dfa->str_tree = NULL; } /* Create initial states for all contexts. */ static reg_errcode_t create_initial_state (dfa) re_dfa_t *dfa; { int first, i; reg_errcode_t err; re_node_set init_nodes; /* Initial states have the epsilon closure of the node which is the first node of the regular expression. */ first = dfa->str_tree->first; dfa->init_node = first; err = re_node_set_init_copy (&init_nodes, dfa->eclosures + first); if (err != REG_NOERROR) return err; /* The back-references which are in initial states can epsilon transit, since in this case all of the subexpressions can be null. Then we add epsilon closures of the nodes which are the next nodes of the back-references. */ if (dfa->nbackref > 0) for (i = 0; i < init_nodes.nelem; ++i) { int node_idx = init_nodes.elems[i]; re_token_type_t type = dfa->nodes[node_idx].type; if (type == OP_CONTEXT_NODE && (dfa->nodes[dfa->nodes[node_idx].opr.ctx_info->entity].type == OP_BACK_REF)) { int prev_nelem = init_nodes.nelem; re_node_set_merge (&init_nodes, dfa->nodes[node_idx].opr.ctx_info->bkref_eclosure); if (prev_nelem < init_nodes.nelem) i = 0; } else if (type == OP_BACK_REF) { int next_idx = dfa->nexts[node_idx]; if (!re_node_set_contains (&init_nodes, next_idx)) { re_node_set_merge (&init_nodes, dfa->eclosures + next_idx); i = 0; } } } /* It must be the first time to invoke acquire_state. */ dfa->init_state = re_acquire_state_context (&err, dfa, &init_nodes, 0); /* We don't check ERR here, since the initial state must not be NULL. */ if (dfa->init_state == NULL) return err; if (dfa->init_state->has_constraint) { dfa->init_state_word = re_acquire_state_context (&err, dfa, &init_nodes, CONTEXT_WORD); dfa->init_state_nl = re_acquire_state_context (&err, dfa, &init_nodes, CONTEXT_NEWLINE); dfa->init_state_begbuf = re_acquire_state_context (&err, dfa, &init_nodes, CONTEXT_NEWLINE | CONTEXT_BEGBUF); if (dfa->init_state_word == NULL || dfa->init_state_nl == NULL || dfa->init_state_begbuf == NULL) return err; } else dfa->init_state_word = dfa->init_state_nl = dfa->init_state_begbuf = dfa->init_state; re_node_set_free (&init_nodes); return REG_NOERROR; } /* Analyze the structure tree, and calculate "first", "next", "edest", "eclosure", and "inveclosure". */ static reg_errcode_t analyze (dfa) re_dfa_t *dfa; { int i; reg_errcode_t ret; /* Allocate arrays. */ dfa->firsts = re_malloc (int, dfa->nodes_alloc); dfa->nexts = re_malloc (int, dfa->nodes_alloc); dfa->edests = re_malloc (re_node_set, dfa->nodes_alloc); dfa->eclosures = re_malloc (re_node_set, dfa->nodes_alloc); dfa->inveclosures = re_malloc (re_node_set, dfa->nodes_alloc); if (dfa->firsts == NULL || dfa->nexts == NULL || dfa->edests == NULL || dfa->eclosures == NULL || dfa->inveclosures == NULL) return REG_ESPACE; /* Initialize them. */ for (i = 0; i < dfa->nodes_len; ++i) { dfa->firsts[i] = -1; dfa->nexts[i] = -1; re_node_set_init_empty (dfa->edests + i); re_node_set_init_empty (dfa->eclosures + i); re_node_set_init_empty (dfa->inveclosures + i); } ret = analyze_tree (dfa, dfa->str_tree); if (ret == REG_NOERROR) { ret = calc_eclosure (dfa); if (ret == REG_NOERROR) calc_inveclosure (dfa); } return ret; } /* Helper functions for analyze. This function calculate "first", "next", and "edest" for the subtree whose root is NODE. */ static reg_errcode_t analyze_tree (dfa, node) re_dfa_t *dfa; bin_tree_t *node; { reg_errcode_t ret; if (node->first == -1) calc_first (dfa, node); if (node->next == -1) calc_next (dfa, node); if (node->eclosure.nelem == 0) calc_epsdest (dfa, node); /* Calculate "first" etc. for the left child. */ if (node->left != NULL) { ret = analyze_tree (dfa, node->left); if (ret != REG_NOERROR) return ret; } /* Calculate "first" etc. for the right child. */ if (node->right != NULL) { ret = analyze_tree (dfa, node->right); if (ret != REG_NOERROR) return ret; } return REG_NOERROR; } /* Calculate "first" for the node NODE. */ static void calc_first (dfa, node) re_dfa_t *dfa; bin_tree_t *node; { int idx, type; idx = node->node_idx; type = (node->type == 0) ? dfa->nodes[idx].type : node->type; switch (type) { #ifdef DEBUG case OP_OPEN_SUBEXP: case OP_CLOSE_SUBEXP: case OP_OPEN_BRACKET: case OP_CLOSE_BRACKET: case OP_OPEN_DUP_NUM: case OP_CLOSE_DUP_NUM: case OP_NON_MATCH_LIST: case OP_OPEN_COLL_ELEM: case OP_CLOSE_COLL_ELEM: case OP_OPEN_EQUIV_CLASS: case OP_CLOSE_EQUIV_CLASS: case OP_OPEN_CHAR_CLASS: case OP_CLOSE_CHAR_CLASS: /* These must not be appeared here. */ assert (0); #endif case END_OF_RE: case CHARACTER: case OP_PERIOD: case OP_DUP_ASTERISK: case OP_DUP_QUESTION: case COMPLEX_BRACKET: case SIMPLE_BRACKET: case OP_BACK_REF: case ANCHOR: node->first = idx; break; case OP_DUP_PLUS: #ifdef DEBUG assert (node->left != NULL); #endif if (node->left->first == -1) calc_first (dfa, node->left); node->first = node->left->first; break; case OP_ALT: node->first = idx; break; case SUBEXP: if (node->left == NULL) { if (node->next == -1) calc_next (dfa, node); node->first = node->next; break; } /* else fall through */ default: #ifdef DEBUG assert (node->left != NULL); #endif if (node->left->first == -1) calc_first (dfa, node->left); node->first = node->left->first; break; } if (node->type == 0) dfa->firsts[idx] = node->first; } /* Calculate "next" for the node NODE. */ static void calc_next (dfa, node) re_dfa_t *dfa; bin_tree_t *node; { int idx, type; bin_tree_t *parent = node->parent; if (parent == NULL) { node->next = -1; idx = node->node_idx; if (node->type == 0) dfa->nexts[idx] = node->next; return; } idx = parent->node_idx; type = (parent->type == 0) ? dfa->nodes[idx].type : parent->type; switch (type) { case OP_DUP_ASTERISK: case OP_DUP_PLUS: node->next = idx; break; case CONCAT: if (parent->left == node) { if (parent->right->first == -1) calc_first (dfa, parent->right); node->next = parent->right->first; break; } /* else fall through */ default: if (parent->next == -1) calc_next (dfa, parent); node->next = parent->next; break; } idx = node->node_idx; if (node->type == 0) dfa->nexts[idx] = node->next; } /* Calculate "edest" for the node NODE. */ static void calc_epsdest (dfa, node) re_dfa_t *dfa; bin_tree_t *node; { int idx; idx = node->node_idx; if (node->type == 0) { if (dfa->nodes[idx].type == OP_DUP_ASTERISK || dfa->nodes[idx].type == OP_DUP_PLUS || dfa->nodes[idx].type == OP_DUP_QUESTION) { if (node->left->first == -1) calc_first (dfa, node->left); if (node->next == -1) calc_next (dfa, node); re_node_set_init_2 (dfa->edests + idx, node->left->first, node->next); } else if (dfa->nodes[idx].type == OP_ALT) { int left, right; if (node->left != NULL) { if (node->left->first == -1) calc_first (dfa, node->left); left = node->left->first; } else { if (node->next == -1) calc_next (dfa, node); left = node->next; } if (node->right != NULL) { if (node->right->first == -1) calc_first (dfa, node->right); right = node->right->first; } else { if (node->next == -1) calc_next (dfa, node); right = node->next; } re_node_set_init_2 (dfa->edests + idx, left, right); } else if (dfa->nodes[idx].type == ANCHOR) re_node_set_init_1 (dfa->edests + idx, node->next); } } /* Duplicate the node whose index is ORG_IDX and set the constraint CONSTRAINT. The new index will be stored in NEW_IDX and return REG_NOERROR if succeeded, otherwise return the error code. */ static reg_errcode_t duplicate_node (new_idx, dfa, org_idx, constraint) re_dfa_t *dfa; int *new_idx, org_idx; unsigned int constraint; { re_token_t dup; int dup_idx; reg_errcode_t err; dup.type = OP_CONTEXT_NODE; if (dfa->nodes[org_idx].type == OP_CONTEXT_NODE) { /* If the node whose index is ORG_IDX is the same as the intended node, use it. */ if (dfa->nodes[org_idx].constraint == constraint) { *new_idx = org_idx; return REG_NOERROR; } dup.constraint = constraint | dfa->nodes[org_idx].constraint; } else dup.constraint = constraint; /* In case that `entity' points OP_CONTEXT_NODE, we correct `entity' to real entity in calc_inveclosures(). */ dup.opr.ctx_info = malloc (sizeof (*dup.opr.ctx_info)); dup_idx = re_dfa_add_node (dfa, dup, 1); if (dup.opr.ctx_info == NULL || dup_idx == -1) return REG_ESPACE; dup.opr.ctx_info->entity = org_idx; dup.opr.ctx_info->bkref_eclosure = NULL; dfa->nodes[dup_idx].duplicated = 1; dfa->firsts[dup_idx] = dfa->firsts[org_idx]; dfa->nexts[dup_idx] = dfa->nexts[org_idx]; err = re_node_set_init_copy (dfa->edests + dup_idx, dfa->edests + org_idx); if (err != REG_NOERROR) return err; /* Since we don't duplicate epsilon nodes, epsilon closure have only itself. */ err = re_node_set_init_1 (dfa->eclosures + dup_idx, dup_idx); if (err != REG_NOERROR) return err; err = re_node_set_init_1 (dfa->inveclosures + dup_idx, dup_idx); if (err != REG_NOERROR) return err; /* Then we must update inveclosure for this node. We process them at last part of calc_eclosure(), since we don't complete to calculate them here. */ *new_idx = dup_idx; return REG_NOERROR; } static void calc_inveclosure (dfa) re_dfa_t *dfa; { int src, idx, dest, entity; for (src = 0; src < dfa->nodes_len; ++src) { for (idx = 0; idx < dfa->eclosures[src].nelem; ++idx) { dest = dfa->eclosures[src].elems[idx]; re_node_set_insert (dfa->inveclosures + dest, src); } entity = src; while (dfa->nodes[entity].type == OP_CONTEXT_NODE) { entity = dfa->nodes[entity].opr.ctx_info->entity; re_node_set_merge (dfa->inveclosures + src, dfa->inveclosures + entity); dfa->nodes[src].opr.ctx_info->entity = entity; } } } /* Calculate "eclosure" for all the node in DFA. */ static reg_errcode_t calc_eclosure (dfa) re_dfa_t *dfa; { int idx, node_idx, max, incomplete = 0; #ifdef DEBUG assert (dfa->nodes_len > 0); #endif /* For each nodes, calculate epsilon closure. */ for (node_idx = 0, max = dfa->nodes_len; ; ++node_idx) { reg_errcode_t err; re_node_set eclosure_elem; if (node_idx == max) { if (!incomplete) break; incomplete = 0; node_idx = 0; } #ifdef DEBUG assert (dfa->nodes[node_idx].type != OP_CONTEXT_NODE); assert (dfa->eclosures[node_idx].nelem != -1); #endif /* If we have already calculated, skip it. */ if (dfa->eclosures[node_idx].nelem != 0) continue; /* Calculate epsilon closure of `node_idx'. */ err = calc_eclosure_iter (&eclosure_elem, dfa, node_idx, 1); if (err != REG_NOERROR) return err; if (dfa->eclosures[node_idx].nelem == 0) { incomplete = 1; re_node_set_free (&eclosure_elem); } } /* for duplicated nodes. */ for (idx = max; idx < dfa->nodes_len; ++idx) { int entity, i, constraint; re_node_set *bkref_eclosure; entity = dfa->nodes[idx].opr.ctx_info->entity; re_node_set_merge (dfa->inveclosures + idx, dfa->inveclosures + entity); if (dfa->nodes[entity].type != OP_BACK_REF) continue; /* If the node is backreference, duplicate the epsilon closure of the next node. Since it may epsilon transit. */ /* Note: duplicate_node() may realloc dfa->eclosures, etc. */ bkref_eclosure = re_malloc (re_node_set, 1); if (bkref_eclosure == NULL) return REG_ESPACE; re_node_set_init_empty (bkref_eclosure); constraint = dfa->nodes[idx].constraint; for (i = 0; i < dfa->eclosures[dfa->nexts[idx]].nelem; ++i) { int dest_node_idx = dfa->eclosures[dfa->nexts[idx]].elems[i]; if (!IS_EPSILON_NODE (dfa->nodes[dest_node_idx].type)) { reg_errcode_t err; err = duplicate_node (&dest_node_idx, dfa, dest_node_idx, constraint); if (err != REG_NOERROR) return err; } re_node_set_insert (bkref_eclosure, dest_node_idx); } dfa->nodes[idx].opr.ctx_info->bkref_eclosure = bkref_eclosure; } return REG_NOERROR; } /* Calculate epsilon closure of NODE. */ static reg_errcode_t calc_eclosure_iter (new_set, dfa, node, root) re_node_set *new_set; re_dfa_t *dfa; int node, root; { reg_errcode_t err; unsigned int constraint; int i, max, incomplete = 0; re_node_set eclosure; err = re_node_set_alloc (&eclosure, dfa->edests[node].nelem + 1); if (err != REG_NOERROR) return err; /* This indicates that we are calculating this node now. We reference this value to avoid infinite loop. */ dfa->eclosures[node].nelem = -1; constraint = ((dfa->nodes[node].type == ANCHOR) ? dfa->nodes[node].opr.ctx_type : 0); /* Expand each epsilon destination nodes. */ if (dfa->edests[node].nelem != 0) for (i = 0; i < dfa->edests[node].nelem; ++i) { re_node_set eclosure_elem; int edest = dfa->edests[node].elems[i]; /* If calculating the epsilon closure of `edest' is in progress, return intermediate result. */ if (dfa->eclosures[edest].nelem == -1) { incomplete = 1; continue; } /* If we haven't calculated the epsilon closure of `edest' yet, calculate now. Otherwise use calculated epsilon closure. */ if (dfa->eclosures[edest].nelem == 0) { err = calc_eclosure_iter (&eclosure_elem, dfa, edest, 0); if (err != REG_NOERROR) return err; } else eclosure_elem = dfa->eclosures[edest]; /* Merge the epsilon closure of `edest'. */ re_node_set_merge (&eclosure, &eclosure_elem); /* If the epsilon closure of `edest' is incomplete, the epsilon closure of this node is also incomplete. */ if (dfa->eclosures[edest].nelem == 0) { incomplete = 1; re_node_set_free (&eclosure_elem); } } /* If the current node has constraints, duplicate all non-epsilon nodes. Since they must inherit the constraints. */ if (constraint) for (i = 0, max = eclosure.nelem; i < max; ++i) { int dest = eclosure.elems[i]; if (!IS_EPSILON_NODE (dfa->nodes[dest].type)) { int dup_dest; reg_errcode_t err; err = duplicate_node (&dup_dest, dfa, dest, constraint); if (err != REG_NOERROR) return err; if (dest != dup_dest) { re_node_set_remove_at (&eclosure, i--); re_node_set_insert (&eclosure, dup_dest); --max; } } } /* Epsilon closures include itself. */ re_node_set_insert (&eclosure, node); if (incomplete && !root) dfa->eclosures[node].nelem = 0; else dfa->eclosures[node] = eclosure; *new_set = eclosure; return REG_NOERROR; } /* Functions for token which are used in the parser. */ /* Fetch a token from INPUT. We must not use this function inside bracket expressions. */ static re_token_t fetch_token (input, syntax) re_string_t *input; reg_syntax_t syntax; { re_token_t token; int consumed_byte; consumed_byte = peek_token (&token, input, syntax); re_string_skip_bytes (input, consumed_byte); return token; } /* Peek a token from INPUT, and return the length of the token. We must not use this function inside bracket expressions. */ static int peek_token (token, input, syntax) re_token_t *token; re_string_t *input; reg_syntax_t syntax; { unsigned char c; if (re_string_eoi (input)) { token->type = END_OF_RE; return 0; } c = re_string_peek_byte (input, 0); token->opr.c = c; #ifdef RE_ENABLE_I18N token->mb_partial = 0; if (MB_CUR_MAX > 1 && !re_string_first_byte (input, re_string_cur_idx (input))) { token->type = CHARACTER; token->mb_partial = 1; return 1; } #endif if (c == '\\') { unsigned char c2; if (re_string_cur_idx (input) + 1 >= re_string_length (input)) { token->type = BACK_SLASH; return 1; } c2 = re_string_peek_byte_case (input, 1); token->opr.c = c2; token->type = CHARACTER; switch (c2) { case '|': if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_NO_BK_VBAR)) token->type = OP_ALT; break; case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': if (!(syntax & RE_NO_BK_REFS)) { token->type = OP_BACK_REF; token->opr.idx = c2 - '0'; } break; case '<': if (!(syntax & RE_NO_GNU_OPS)) { token->type = ANCHOR; token->opr.idx = WORD_FIRST; } break; case '>': if (!(syntax & RE_NO_GNU_OPS)) { token->type = ANCHOR; token->opr.idx = WORD_LAST; } break; case 'b': if (!(syntax & RE_NO_GNU_OPS)) { token->type = ANCHOR; token->opr.idx = WORD_DELIM; } break; case 'B': if (!(syntax & RE_NO_GNU_OPS)) { token->type = ANCHOR; token->opr.idx = INSIDE_WORD; } break; case 'w': if (!(syntax & RE_NO_GNU_OPS)) token->type = OP_WORD; break; case 'W': if (!(syntax & RE_NO_GNU_OPS)) token->type = OP_NOTWORD; break; case '`': if (!(syntax & RE_NO_GNU_OPS)) { token->type = ANCHOR; token->opr.idx = BUF_FIRST; } break; case '\'': if (!(syntax & RE_NO_GNU_OPS)) { token->type = ANCHOR; token->opr.idx = BUF_LAST; } break; case '(': if (!(syntax & RE_NO_BK_PARENS)) token->type = OP_OPEN_SUBEXP; break; case ')': if (!(syntax & RE_NO_BK_PARENS)) token->type = OP_CLOSE_SUBEXP; break; case '+': if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM)) token->type = OP_DUP_PLUS; break; case '?': if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM)) token->type = OP_DUP_QUESTION; break; case '{': if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES))) token->type = OP_OPEN_DUP_NUM; break; case '}': if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES))) token->type = OP_CLOSE_DUP_NUM; break; default: break; } return 2; } token->type = CHARACTER; switch (c) { case '\n': if (syntax & RE_NEWLINE_ALT) token->type = OP_ALT; break; case '|': if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_NO_BK_VBAR)) token->type = OP_ALT; break; case '*': token->type = OP_DUP_ASTERISK; break; case '+': if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM)) token->type = OP_DUP_PLUS; break; case '?': if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM)) token->type = OP_DUP_QUESTION; break; case '{': if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) token->type = OP_OPEN_DUP_NUM; break; case '}': if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) token->type = OP_CLOSE_DUP_NUM; break; case '(': if (syntax & RE_NO_BK_PARENS) token->type = OP_OPEN_SUBEXP; break; case ')': if (syntax & RE_NO_BK_PARENS) token->type = OP_CLOSE_SUBEXP; break; case '[': token->type = OP_OPEN_BRACKET; break; case '.': token->type = OP_PERIOD; break; case '^': if (!(syntax & RE_CONTEXT_INDEP_ANCHORS) && re_string_cur_idx (input) != 0) { char prev = re_string_peek_byte (input, -1); if (prev != '|' && prev != '(' && (!(syntax & RE_NEWLINE_ALT) || prev != '\n')) break; } token->type = ANCHOR; token->opr.idx = LINE_FIRST; break; case '$': if (!(syntax & RE_CONTEXT_INDEP_ANCHORS) && re_string_cur_idx (input) + 1 != re_string_length (input)) { re_token_t next; re_string_skip_bytes (input, 1); peek_token (&next, input, syntax); re_string_skip_bytes (input, -1); if (next.type != OP_ALT && next.type != OP_CLOSE_SUBEXP) break; } token->type = ANCHOR; token->opr.idx = LINE_LAST; break; default: break; } return 1; } /* Peek a token from INPUT, and return the length of the token. We must not use this function out of bracket expressions. */ static int peek_token_bracket (token, input, syntax) re_token_t *token; re_string_t *input; reg_syntax_t syntax; { unsigned char c; if (re_string_eoi (input)) { token->type = END_OF_RE; return 0; } c = re_string_peek_byte (input, 0); token->opr.c = c; #ifdef RE_ENABLE_I18N if (MB_CUR_MAX > 1 && !re_string_first_byte (input, re_string_cur_idx (input))) { token->type = CHARACTER; return 1; } #endif /* RE_ENABLE_I18N */ if (c == '\\' && (syntax & RE_BACKSLASH_ESCAPE_IN_LISTS)) { /* In this case, '\' escape a character. */ unsigned char c2; c2 = re_string_peek_byte (input, 1); token->opr.c = c2; token->type = CHARACTER; return 1; } if (c == '[') /* '[' is a special char in a bracket exps. */ { unsigned char c2; int token_len; c2 = re_string_peek_byte (input, 1); token->opr.c = c2; token_len = 2; switch (c2) { case '.': token->type = OP_OPEN_COLL_ELEM; break; case '=': token->type = OP_OPEN_EQUIV_CLASS; break; case ':': if (syntax & RE_CHAR_CLASSES) { token->type = OP_OPEN_CHAR_CLASS; break; } /* else fall through. */ default: token->type = CHARACTER; token->opr.c = c; token_len = 1; break; } return token_len; } switch (c) { case '-': token->type = OP_CHARSET_RANGE; break; case ']': token->type = OP_CLOSE_BRACKET; break; case '^': token->type = OP_NON_MATCH_LIST; break; default: token->type = CHARACTER; } return 1; } /* Functions for parser. */ /* Entry point of the parser. Parse the regular expression REGEXP and return the structure tree. If an error is occured, ERR is set by error code, and return NULL. This function build the following tree, from regular expression : CAT / \ / \ EOR CAT means concatenation. EOR means end of regular expression. */ static bin_tree_t * parse (regexp, preg, syntax, err) re_string_t *regexp; regex_t *preg; reg_syntax_t syntax; reg_errcode_t *err; { re_dfa_t *dfa = (re_dfa_t *) preg->buffer; bin_tree_t *tree, *eor, *root; re_token_t current_token; int new_idx; current_token = fetch_token (regexp, syntax); tree = parse_reg_exp (regexp, preg, ¤t_token, syntax, 0, err); if (*err != REG_NOERROR && tree == NULL) return NULL; new_idx = re_dfa_add_node (dfa, current_token, 0); eor = create_tree (NULL, NULL, 0, new_idx); if (tree != NULL) root = create_tree (tree, eor, CONCAT, 0); else root = eor; if (new_idx == -1 || eor == NULL || root == NULL) return *err = REG_ESPACE, NULL; return root; } /* This function build the following tree, from regular expression |: ALT / \ / \ ALT means alternative, which represents the operator `|'. */ static bin_tree_t * parse_reg_exp (regexp, preg, token, syntax, nest, err) re_string_t *regexp; regex_t *preg; re_token_t *token; reg_syntax_t syntax; int nest; reg_errcode_t *err; { re_dfa_t *dfa = (re_dfa_t *) preg->buffer; bin_tree_t *tree, *branch = NULL; int new_idx; tree = parse_branch (regexp, preg, token, syntax, nest, err); if (*err != REG_NOERROR && tree == NULL) return NULL; while (token->type == OP_ALT) { re_token_t alt_token = *token; new_idx = re_dfa_add_node (dfa, alt_token, 0); *token = fetch_token (regexp, syntax); if (token->type != OP_ALT && token->type != END_OF_RE && (nest == 0 || token->type != OP_CLOSE_SUBEXP)) { branch = parse_branch (regexp, preg, token, syntax, nest, err); if (*err != REG_NOERROR && branch == NULL) { free_bin_tree (tree); return NULL; } } tree = create_tree (tree, branch, 0, new_idx); if (new_idx == -1 || tree == NULL) return *err = REG_ESPACE, NULL; } return tree; } /* This function build the following tree, from regular expression : CAT / \ / \ CAT means concatenation. */ static bin_tree_t * parse_branch (regexp, preg, token, syntax, nest, err) re_string_t *regexp; regex_t *preg; re_token_t *token; reg_syntax_t syntax; int nest; reg_errcode_t *err; { bin_tree_t *tree, *exp; tree = parse_expression (regexp, preg, token, syntax, nest, err); if (*err != REG_NOERROR && tree == NULL) return NULL; while (token->type != OP_ALT && token->type != END_OF_RE && (nest == 0 || token->type != OP_CLOSE_SUBEXP)) { exp = parse_expression (regexp, preg, token, syntax, nest, err); if (*err != REG_NOERROR && exp == NULL) { free_bin_tree (tree); return NULL; } if (tree != NULL && exp != NULL) { tree = create_tree (tree, exp, CONCAT, 0); if (tree == NULL) return *err = REG_ESPACE, NULL; } else if (tree == NULL) tree = exp; /* Otherwise exp == NULL, we don't need to create new tree. */ } return tree; } /* This function build the following tree, from regular expression a*: * | a */ static bin_tree_t * parse_expression (regexp, preg, token, syntax, nest, err) re_string_t *regexp; regex_t *preg; re_token_t *token; reg_syntax_t syntax; int nest; reg_errcode_t *err; { re_dfa_t *dfa = (re_dfa_t *) preg->buffer; bin_tree_t *tree; int new_idx; switch (token->type) { case CHARACTER: new_idx = re_dfa_add_node (dfa, *token, 0); tree = create_tree (NULL, NULL, 0, new_idx); if (new_idx == -1 || tree == NULL) return *err = REG_ESPACE, NULL; #ifdef RE_ENABLE_I18N if (MB_CUR_MAX > 1) { while (!re_string_eoi (regexp) && !re_string_first_byte (regexp, re_string_cur_idx (regexp))) { bin_tree_t *mbc_remain; *token = fetch_token (regexp, syntax); new_idx = re_dfa_add_node (dfa, *token, 0); mbc_remain = create_tree (NULL, NULL, 0, new_idx); tree = create_tree (tree, mbc_remain, CONCAT, 0); if (new_idx == -1 || mbc_remain == NULL || tree == NULL) return *err = REG_ESPACE, NULL; } } #endif break; case OP_OPEN_SUBEXP: tree = parse_sub_exp (regexp, preg, token, syntax, nest + 1, err); if (*err != REG_NOERROR && tree == NULL) return NULL; break; case OP_OPEN_BRACKET: tree = parse_bracket_exp (regexp, dfa, token, syntax, err); if (*err != REG_NOERROR && tree == NULL) return NULL; break; case OP_BACK_REF: if (preg->re_nsub < token->opr.idx || dfa->subexps[token->opr.idx - 1].end == -1) { *err = REG_ESUBREG; return NULL; } new_idx = re_dfa_add_node (dfa, *token, 0); tree = create_tree (NULL, NULL, 0, new_idx); if (new_idx == -1 || tree == NULL) return *err = REG_ESPACE, NULL; ++dfa->nbackref; dfa->has_mb_node = 1; break; case OP_DUP_ASTERISK: case OP_DUP_PLUS: case OP_DUP_QUESTION: case OP_OPEN_DUP_NUM: if (syntax & RE_CONTEXT_INVALID_OPS) return *err = REG_BADRPT, NULL; else if (syntax & RE_CONTEXT_INDEP_OPS) { *token = fetch_token (regexp, syntax); return parse_expression (regexp, preg, token, syntax, nest, err); } /* else fall through */ case OP_CLOSE_SUBEXP: if ((token->type == OP_CLOSE_SUBEXP) && !(syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)) return *err = REG_ERPAREN, NULL; /* else fall through */ case OP_CLOSE_DUP_NUM: /* We treat it as a normal character. */ /* Then we can these characters as normal characters. */ token->type = CHARACTER; new_idx = re_dfa_add_node (dfa, *token, 0); tree = create_tree (NULL, NULL, 0, new_idx); if (new_idx == -1 || tree == NULL) return *err = REG_ESPACE, NULL; break; case ANCHOR: if (dfa->word_char == NULL) { *err = init_word_char (dfa); if (*err != REG_NOERROR) return NULL; } if (token->opr.ctx_type == WORD_DELIM) { bin_tree_t *tree_first, *tree_last; int idx_first, idx_last; token->opr.ctx_type = WORD_FIRST; idx_first = re_dfa_add_node (dfa, *token, 0); tree_first = create_tree (NULL, NULL, 0, idx_first); token->opr.ctx_type = WORD_LAST; idx_last = re_dfa_add_node (dfa, *token, 0); tree_last = create_tree (NULL, NULL, 0, idx_last); token->type = OP_ALT; new_idx = re_dfa_add_node (dfa, *token, 0); tree = create_tree (tree_first, tree_last, 0, new_idx); if (idx_first == -1 || idx_last == -1 || new_idx == -1 || tree_first == NULL || tree_last == NULL || tree == NULL) return *err = REG_ESPACE, NULL; } else { new_idx = re_dfa_add_node (dfa, *token, 0); tree = create_tree (NULL, NULL, 0, new_idx); if (new_idx == -1 || tree == NULL) return *err = REG_ESPACE, NULL; } /* We must return here, since ANCHORs can't be followed by repetition operators. eg. RE"^*" is invalid or "", it must not be "". */ *token = fetch_token (regexp, syntax); return tree; case OP_PERIOD: new_idx = re_dfa_add_node (dfa, *token, 0); tree = create_tree (NULL, NULL, 0, new_idx); if (new_idx == -1 || tree == NULL) return *err = REG_ESPACE, NULL; if (MB_CUR_MAX > 1) dfa->has_mb_node = 1; break; case OP_WORD: tree = build_word_op (dfa, 0, err); if (*err != REG_NOERROR && tree == NULL) return NULL; break; case OP_NOTWORD: tree = build_word_op (dfa, 1, err); if (*err != REG_NOERROR && tree == NULL) return NULL; break; case OP_ALT: case END_OF_RE: return NULL; case BACK_SLASH: *err = REG_EESCAPE; return NULL; default: /* Must not happen? */ #ifdef DEBUG assert (0); #endif return NULL; } *token = fetch_token (regexp, syntax); while (token->type == OP_DUP_ASTERISK || token->type == OP_DUP_PLUS || token->type == OP_DUP_QUESTION || token->type == OP_OPEN_DUP_NUM) { tree = parse_dup_op (tree, regexp, dfa, token, syntax, err); if (*err != REG_NOERROR && tree == NULL) return *err = REG_ESPACE, NULL; } return tree; } /* This function build the following tree, from regular expression (): SUBEXP | */ static bin_tree_t * parse_sub_exp (regexp, preg, token, syntax, nest, err) re_string_t *regexp; regex_t *preg; re_token_t *token; reg_syntax_t syntax; int nest; reg_errcode_t *err; { re_dfa_t *dfa = (re_dfa_t *) preg->buffer; bin_tree_t *tree; size_t cur_nsub; cur_nsub = preg->re_nsub++; if (dfa->subexps_alloc < preg->re_nsub) { re_subexp_t *new_array; dfa->subexps_alloc *= 2; new_array = re_realloc (dfa->subexps, re_subexp_t, dfa->subexps_alloc); if (new_array == NULL) { dfa->subexps_alloc /= 2; *err = REG_ESPACE; return NULL; } dfa->subexps = new_array; } dfa->subexps[cur_nsub].start = dfa->nodes_len; dfa->subexps[cur_nsub].end = -1; *token = fetch_token (regexp, syntax); /* The subexpression may be a null string. */ if (token->type == OP_CLOSE_SUBEXP) { tree = create_tree (NULL, NULL, SUBEXP, 0); if (tree == NULL) return *err = REG_ESPACE, NULL; dfa->subexps[cur_nsub].end = dfa->nodes_len; } else { tree = parse_reg_exp (regexp, preg, token, syntax, nest, err); if (*err != REG_NOERROR && tree == NULL) return NULL; dfa->subexps[cur_nsub].end = dfa->nodes_len; if (token->type != OP_CLOSE_SUBEXP) { free_bin_tree (tree); *err = REG_BADPAT; return NULL; } tree = create_tree (tree, NULL, SUBEXP, 0); } return tree; } /* This function parse repetition operators like "*", "+", "{1,3}" etc. */ static bin_tree_t * parse_dup_op (dup_elem, regexp, dfa, token, syntax, err) bin_tree_t *dup_elem; re_string_t *regexp; re_dfa_t *dfa; re_token_t *token; reg_syntax_t syntax; reg_errcode_t *err; { re_token_t dup_token; bin_tree_t *tree = dup_elem, *work_tree; int new_idx, start_idx = re_string_cur_idx (regexp); re_token_t start_token = *token; if (token->type == OP_OPEN_DUP_NUM) { int i, end, start = fetch_number (regexp, token, syntax); bin_tree_t *elem; if (start == -1) start = 0; /* We treat "{,m}" as "{0,m}". */ if (start != -2 && token->type == OP_CLOSE_DUP_NUM) { if (start == 0) { /* We treat "{0}" as null string. */ *token = fetch_token (regexp, syntax); free_bin_tree (dup_elem); return NULL; } end = start; /* We treat "{n}" as "{n,n}". */ } else if (start == -2 || token->type != CHARACTER || token->opr.c != ',') /* Invalid sequence. */ goto parse_dup_op_invalid_interval; else { end = fetch_number (regexp, token, syntax); if (end == -2 || token->type != OP_CLOSE_DUP_NUM) /* Invalid sequence. */ goto parse_dup_op_invalid_interval; } /* Extract "{n,m}" to "...{0,}". */ elem = tree; for (i = 0; i < start; ++i) if (i != 0) { work_tree = duplicate_tree (elem, dfa); tree = create_tree (tree, work_tree, CONCAT, 0); if (work_tree == NULL || tree == NULL) goto parse_dup_op_espace; } if (end == -1) { /* We treat "{0,}" as "*". */ dup_token.type = OP_DUP_ASTERISK; if (start > 0) { elem = duplicate_tree (elem, dfa); new_idx = re_dfa_add_node (dfa, dup_token, 0); work_tree = create_tree (elem, NULL, 0, new_idx); tree = create_tree (tree, work_tree, CONCAT, 0); if (elem == NULL || new_idx == -1 || work_tree == NULL || tree == NULL) goto parse_dup_op_espace; } else { new_idx = re_dfa_add_node (dfa, dup_token, 0); tree = create_tree (elem, NULL, 0, new_idx); if (new_idx == -1 || tree == NULL) goto parse_dup_op_espace; } } else if (end - start > 0) { /* Then extract "{0,m}" to "??...?". */ dup_token.type = OP_DUP_QUESTION; if (start > 0) { elem = duplicate_tree (elem, dfa); new_idx = re_dfa_add_node (dfa, dup_token, 0); elem = create_tree (elem, NULL, 0, new_idx); tree = create_tree (tree, elem, CONCAT, 0); if (elem == NULL || new_idx == -1 || tree == NULL) goto parse_dup_op_espace; } else { new_idx = re_dfa_add_node (dfa, dup_token, 0); tree = elem = create_tree (elem, NULL, 0, new_idx); if (new_idx == -1 || tree == NULL) goto parse_dup_op_espace; } for (i = 1; i < end - start; ++i) { work_tree = duplicate_tree (elem, dfa); tree = create_tree (tree, work_tree, CONCAT, 0); if (work_tree == NULL || tree == NULL) return *err = REG_ESPACE, NULL; } } } else { new_idx = re_dfa_add_node (dfa, *token, 0); tree = create_tree (tree, NULL, 0, new_idx); if (new_idx == -1 || tree == NULL) return *err = REG_ESPACE, NULL; } *token = fetch_token (regexp, syntax); return tree; parse_dup_op_espace: free_bin_tree (tree); *err = REG_ESPACE; return NULL; parse_dup_op_invalid_interval: if (!(syntax & RE_INVALID_INTERVAL_ORD)) { *err = REG_EBRACE; return NULL; } re_string_set_index (regexp, start_idx); *token = start_token; token->type = CHARACTER; return dup_elem; } /* Size of the names for collating symbol/equivalence_class/character_class. I'm not sure, but maybe enough. */ #define BRACKET_NAME_BUF_SIZE 32 /* This function parse bracket expression like "[abc]", "[a-c]", "[[.a-a.]]" etc. */ static bin_tree_t * parse_bracket_exp (regexp, dfa, token, syntax, err) re_string_t *regexp; re_dfa_t *dfa; re_token_t *token; reg_syntax_t syntax; reg_errcode_t *err; { #ifdef _LIBC const unsigned char *collseqmb, *collseqwc; uint32_t nrules; int32_t table_size; const int32_t *symb_table; const unsigned char *extra; /* Local function for parse_bracket_exp. Seek the collating symbol entry correspondings to NAME. Return the index of the symbol in the SYMB_TABLE. */ static inline int32_t seek_collating_symbol_entry (name, name_len) unsigned char *name; size_t name_len; { int32_t hash = elem_hash (name, name_len); int32_t elem = hash % table_size; int32_t second = hash % (table_size - 2); while (symb_table[2 * elem] != 0) { /* First compare the hashing value. */ if (symb_table[2 * elem] == hash /* Compare the length of the name. */ && name_len == extra[symb_table[2 * elem + 1]] /* Compare the name. */ && memcmp (name, &extra[symb_table[2 * elem + 1] + 1], name_len) == 0) { /* Yep, this is the entry. */ break; } /* Next entry. */ elem += second; } return elem; } /* Local function for parse_bracket_exp. Look up the collation sequence value of BR_ELEM. Return the value if succeeded, UINT_MAX otherwise. */ static inline unsigned int lookup_collation_sequence_value (br_elem) bracket_elem_t *br_elem; { if (br_elem->type == SB_CHAR) { /* if (MB_CUR_MAX == 1) */ if (nrules == 0) return collseqmb[br_elem->opr.ch]; else { wint_t wc = __btowc (br_elem->opr.ch); return collseq_table_lookup (collseqwc, wc); } } else if (br_elem->type == MB_CHAR) { return collseq_table_lookup (collseqwc, br_elem->opr.wch); } else if (br_elem->type == COLL_SYM) { if (nrules != 0) { int32_t elem, idx; elem = seek_collating_symbol_entry (br_elem->opr.name, strlen (br_elem->opr.name)); if (symb_table[2 * elem] != 0) { /* We found the entry. */ idx = symb_table[2 * elem + 1]; /* Skip the name of collating element name. */ idx += 1 + extra[idx]; /* Skip the byte sequence of the collating element. */ idx += 1 + extra[idx]; /* Adjust for the alignment. */ idx = (idx + 3) & ~3; /* Skip the multibyte collation sequence value. */ idx += sizeof (unsigned int); /* Skip the wide char sequence of the collating element. */ idx += sizeof (unsigned int) * (1 + *(unsigned int *) (extra + idx)); /* Return the collation sequence value. */ return *(unsigned int *) (extra + idx); } else if (symb_table[2 * elem] == 0 && strlen (br_elem->opr.name) == 1) { /* No valid character. Match it as a single byte character. */ return collseqmb[br_elem->opr.name[0]]; } } else if (strlen (br_elem->opr.name) == 1) return collseqmb[br_elem->opr.name[0]]; } return UINT_MAX; } /* Local function for parse_bracket_exp. Build the range expression which starts from START_ELEM, and ends at END_ELEM. The result are written to MBCSET and SBCSET. RANGE_ALLOC is the allocated size of mbcset->range_starts, and mbcset->range_ends, is a pointer argument sinse we may update it. */ static inline reg_errcode_t build_range_exp (mbcset, sbcset, range_alloc, start_elem, end_elem) re_charset_t *mbcset; re_bitset_ptr_t sbcset; int *range_alloc; bracket_elem_t *start_elem, *end_elem; { unsigned int ch; uint32_t start_collseq; uint32_t end_collseq; /* Check the space of the arrays. */ if (*range_alloc == mbcset->nranges) { /* There are not enough space, need realloc. */ uint32_t *new_array_start; uint32_t *new_array_end; int new_nranges; /* +1 in case of mbcset->nranges is 0. */ new_nranges = 2 * mbcset->nranges + 1; /* Use realloc since mbcset->range_starts and mbcset->range_ends are NULL if *range_alloc == 0. */ new_array_start = re_realloc (mbcset->range_starts, uint32_t, new_nranges); new_array_end = re_realloc (mbcset->range_ends, uint32_t, new_nranges); if (new_array_start == NULL || new_array_end == NULL) return REG_ESPACE; mbcset->range_starts = new_array_start; mbcset->range_ends = new_array_end; *range_alloc = new_nranges; } if (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS || end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS) return REG_ERANGE; start_collseq = lookup_collation_sequence_value (start_elem); end_collseq = lookup_collation_sequence_value (end_elem); /* Check start/end collation sequence values. */ if (start_collseq == UINT_MAX || end_collseq == UINT_MAX) return REG_ECOLLATE; if ((syntax & RE_NO_EMPTY_RANGES) && start_collseq > end_collseq) return REG_ERANGE; /* Got valid collation sequence values, add them as a new entry. */ mbcset->range_starts[mbcset->nranges] = start_collseq; mbcset->range_ends[mbcset->nranges++] = end_collseq; /* Build the table for single byte characters. */ for (ch = 0; ch <= SBC_MAX; ch++) { uint32_t ch_collseq; /* if (MB_CUR_MAX == 1) */ if (nrules == 0) ch_collseq = collseqmb[ch]; else ch_collseq = collseq_table_lookup (collseqwc, __btowc (ch)); if (start_collseq <= ch_collseq && ch_collseq <= end_collseq) bitset_set (sbcset, ch); } return REG_NOERROR; } #endif /* Local function for parse_bracket_exp. Build the collating element which is represented by NAME. The result are written to MBCSET and SBCSET. COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a pointer argument sinse we may update it. */ static inline reg_errcode_t build_collating_symbol (mbcset, sbcset, coll_sym_alloc, name) re_charset_t *mbcset; re_bitset_ptr_t sbcset; int *coll_sym_alloc; unsigned char *name; { #ifdef _LIBC int32_t elem, idx; if (nrules != 0) { elem = seek_collating_symbol_entry (name, strlen (name)); if (symb_table[2 * elem] != 0) { /* We found the entry. */ idx = symb_table[2 * elem + 1]; /* Skip the name of collating element name. */ idx += 1 + extra[idx]; } else if (symb_table[2 * elem] == 0 && strlen (name) == 1) { /* No valid character, treat it as a normal character. */ bitset_set (sbcset, name[0]); return REG_NOERROR; } else return REG_ECOLLATE; /* Got valid collation sequence, add it as a new entry. */ /* Check the space of the arrays. */ if (*coll_sym_alloc == mbcset->ncoll_syms) { /* Not enough, realloc it. */ /* +1 in case of mbcset->ncoll_syms is 0. */ *coll_sym_alloc = 2 * mbcset->ncoll_syms + 1; /* Use realloc since mbcset->coll_syms is NULL if *alloc == 0. */ mbcset->coll_syms = re_realloc (mbcset->coll_syms, int32_t, *coll_sym_alloc); if (mbcset->coll_syms == NULL) return REG_ESPACE; } mbcset->coll_syms[mbcset->ncoll_syms++] = idx; return REG_NOERROR; } else #endif { if (strlen (name) != 1) return REG_ECOLLATE; else { bitset_set (sbcset, name[0]); return REG_NOERROR; } } } re_token_t br_token; re_bitset_ptr_t sbcset; re_charset_t *mbcset; bin_tree_t *work_tree; int token_len, new_idx; int coll_sym_alloc = 0, range_alloc = 0, mbchar_alloc = 0; int equiv_class_alloc = 0, char_class_alloc = 0; #ifdef _LIBC collseqmb = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB); nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); if (nrules) { /* if (MB_CUR_MAX > 1) */ collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC); table_size = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_SYMB_HASH_SIZEMB); symb_table = (const int32_t *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_TABLEMB); extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); } #endif sbcset = (re_bitset_ptr_t) calloc (sizeof (unsigned int), BITSET_UINTS); mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1); if (sbcset == NULL || mbcset == NULL) { *err = REG_ESPACE; return NULL; } token_len = peek_token_bracket (token, regexp, syntax); if (token->type == END_OF_RE) { re_free (sbcset); free_charset (mbcset); *err = REG_BADPAT; return NULL; } if (token->type == OP_NON_MATCH_LIST) { int i; mbcset->non_match = 1; if (syntax & RE_HAT_LISTS_NOT_NEWLINE) bitset_set (sbcset, '\0'); re_string_skip_bytes (regexp, token_len); /* Skip a token. */ token_len = peek_token_bracket (token, regexp, syntax); if (token->type == END_OF_RE) { re_free (sbcset); free_charset (mbcset); *err = REG_BADPAT; return NULL; } if (MB_CUR_MAX > 1) for (i = 0; i < SBC_MAX; ++i) if (__btowc (i) == WEOF) bitset_set (sbcset, i); } /* We treat the first ']' as a normal character. */ if (token->type == OP_CLOSE_BRACKET) token->type = CHARACTER; while (1) { bracket_elem_t start_elem, end_elem; unsigned char start_name_buf[BRACKET_NAME_BUF_SIZE]; unsigned char end_name_buf[BRACKET_NAME_BUF_SIZE]; reg_errcode_t ret; int token_len2 = 0, is_range_exp = 0; re_token_t token2; start_elem.opr.name = start_name_buf; ret = parse_bracket_element (&start_elem, regexp, token, token_len, dfa, syntax); if (ret != REG_NOERROR) goto parse_bracket_exp_espace; token_len = peek_token_bracket (token, regexp, syntax); if (token->type == END_OF_RE) { re_free (sbcset); free_charset (mbcset); *err = REG_BADPAT; return NULL; } if (token->type == OP_CHARSET_RANGE) { re_string_skip_bytes (regexp, token_len); /* Skip '-'. */ token_len2 = peek_token_bracket (&token2, regexp, syntax); if (token->type == END_OF_RE) { re_free (sbcset); free_charset (mbcset); *err = REG_BADPAT; return NULL; } if (token2.type == OP_CLOSE_BRACKET) { /* We treat the last '-' as a normal character. */ re_string_skip_bytes (regexp, -token_len); token->type = CHARACTER; } else is_range_exp = 1; } if (is_range_exp == 1) { end_elem.opr.name = end_name_buf; ret = parse_bracket_element (&end_elem, regexp, &token2, token_len2, dfa, syntax); if (ret != REG_NOERROR) goto parse_bracket_exp_espace; token_len = peek_token_bracket (token, regexp, syntax); if (token->type == END_OF_RE) { re_free (sbcset); free_charset (mbcset); *err = REG_BADPAT; return NULL; } *err = build_range_exp (mbcset, sbcset, &range_alloc, &start_elem, &end_elem); if (*err != REG_NOERROR) { re_free (sbcset); free_charset (mbcset); return NULL; } } else { switch (start_elem.type) { case SB_CHAR: bitset_set (sbcset, start_elem.opr.ch); break; case MB_CHAR: /* Check whether the array has enough space. */ if (mbchar_alloc == mbcset->nmbchars) { /* Not enough, realloc it. */ /* +1 in case of mbcset->nmbchars is 0. */ mbchar_alloc = 2 * mbcset->nmbchars + 1; /* Use realloc since array is NULL if *alloc == 0. */ mbcset->mbchars = re_realloc (mbcset->mbchars, wchar_t, mbchar_alloc); if (mbcset->mbchars == NULL) goto parse_bracket_exp_espace; } mbcset->mbchars[mbcset->nmbchars++] = start_elem.opr.wch; break; case EQUIV_CLASS: *err = build_equiv_class (mbcset, sbcset, &equiv_class_alloc, start_elem.opr.name); if (*err != REG_NOERROR) { re_free (sbcset); free_charset (mbcset); return NULL; } break; case COLL_SYM: *err = build_collating_symbol (mbcset, sbcset, &coll_sym_alloc, start_elem.opr.name); if (*err != REG_NOERROR) { re_free (sbcset); free_charset (mbcset); return NULL; } break; case CHAR_CLASS: ret = build_charclass (mbcset, sbcset, &char_class_alloc, start_elem.opr.name); if (ret != REG_NOERROR) goto parse_bracket_exp_espace; break; default: assert (0); break; } } if (token->type == OP_CLOSE_BRACKET) break; } re_string_skip_bytes (regexp, token_len); /* Skip a token. */ /* If it is non-matching list. */ if (mbcset->non_match) bitset_not (sbcset); /* Build a tree for simple bracket. */ br_token.type = SIMPLE_BRACKET; br_token.opr.sbcset = sbcset; new_idx = re_dfa_add_node (dfa, br_token, 0); work_tree = create_tree (NULL, NULL, 0, new_idx); if (new_idx == -1 || work_tree == NULL) goto parse_bracket_exp_espace; if (mbcset->nmbchars || mbcset->ncoll_syms || mbcset->nequiv_classes || mbcset->nranges || (mbcset->nchar_classes && MB_CUR_MAX > 1)) { re_token_t alt_token; bin_tree_t *mbc_tree; /* Build a tree for complex bracket. */ br_token.type = COMPLEX_BRACKET; br_token.opr.mbcset = mbcset; dfa->has_mb_node = 1; new_idx = re_dfa_add_node (dfa, br_token, 0); mbc_tree = create_tree (NULL, NULL, 0, new_idx); if (new_idx == -1 || mbc_tree == NULL) goto parse_bracket_exp_espace; /* Then join them by ALT node. */ alt_token.type = OP_ALT; new_idx = re_dfa_add_node (dfa, alt_token, 0); work_tree = create_tree (work_tree, mbc_tree, 0, new_idx); if (new_idx != -1 && mbc_tree != NULL) return work_tree; } else { free_charset (mbcset); return work_tree; } parse_bracket_exp_espace: free_charset (mbcset); *err = REG_ESPACE; return NULL; } static reg_errcode_t parse_bracket_element (elem, regexp, token, token_len, dfa, syntax) bracket_elem_t *elem; re_string_t *regexp; re_token_t *token; int token_len; re_dfa_t *dfa; reg_syntax_t syntax; { #ifdef RE_ENABLE_I18N int cur_char_size; cur_char_size = re_string_char_size_at (regexp, re_string_cur_idx (regexp)); if (cur_char_size > 1) { elem->type = MB_CHAR; elem->opr.wch = re_string_wchar_at (regexp, re_string_cur_idx (regexp)); re_string_skip_bytes (regexp, cur_char_size); return REG_NOERROR; } #endif /* RE_ENABLE_I18N */ re_string_skip_bytes (regexp, token_len); /* Skip a token. */ if (token->type == OP_OPEN_COLL_ELEM || token->type == OP_OPEN_CHAR_CLASS || token->type == OP_OPEN_EQUIV_CLASS) return parse_bracket_symbol (elem, regexp, token); elem->type = SB_CHAR; elem->opr.ch = token->opr.c; return REG_NOERROR; } static reg_errcode_t parse_bracket_symbol (elem, regexp, token) bracket_elem_t *elem; re_string_t *regexp; re_token_t *token; { unsigned char ch, delim = token->opr.c; int i = 0; for (;; i++) { #ifdef DEBUG assert (i < BRACKET_NAME_BUF_SIZE); #endif if (token->type == OP_OPEN_CHAR_CLASS) ch = re_string_fetch_byte_case (regexp); else ch = re_string_fetch_byte (regexp); if (ch == delim && re_string_peek_byte (regexp, 0) == ']') break; elem->opr.name[i] = ch; } re_string_skip_bytes (regexp, 1); elem->opr.name[i] = '\0'; switch (token->type) { case OP_OPEN_COLL_ELEM: elem->type = COLL_SYM; break; case OP_OPEN_EQUIV_CLASS: elem->type = EQUIV_CLASS; break; case OP_OPEN_CHAR_CLASS: elem->type = CHAR_CLASS; break; default: break; } return REG_NOERROR; } /* Helper function for parse_bracket_exp. Build the equivalence class which is represented by NAME. The result are written to MBCSET and SBCSET. EQUIV_CLASS_ALLOC is the allocated size of mbcset->equiv_classes, is a pointer argument sinse we may update it. */ static reg_errcode_t build_equiv_class (mbcset, sbcset, equiv_class_alloc, name) re_charset_t *mbcset; re_bitset_ptr_t sbcset; int *equiv_class_alloc; const unsigned char *name; { #ifdef _LIBC uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); if (nrules != 0) { const int32_t *table, *indirect; const unsigned char *weights, *extra, *cp; unsigned char char_buf[2]; int32_t idx1, idx2; unsigned int ch; size_t len; /* This #include defines a local function! */ # include /* Calculate the index for equivalence class. */ cp = name; table = (const int32_t *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); weights = (const unsigned char *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB); extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB); indirect = (const int32_t *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB); idx1 = findidx (&cp); if (idx1 == 0 || cp < name + strlen (name)) /* This isn't a valid character. */ return REG_ECOLLATE; /* Build single byte matcing table for this equivalence class. */ char_buf[1] = '\0'; len = weights[idx1]; for (ch = 0; ch < SBC_MAX; ++ch) { char_buf[0] = ch; cp = char_buf; idx2 = findidx (&cp); /* idx2 = table[ch]; */ if (idx2 == 0) /* This isn't a valid character. */ continue; if (len == weights[idx2]) { int cnt = 0; while (cnt <= len && weights[idx1 + 1 + cnt] == weights[idx2 + 1 + cnt]) ++cnt; if (cnt > len) bitset_set (sbcset, ch); } } /* Check whether the array has enough space. */ if (*equiv_class_alloc == mbcset->nequiv_classes) { /* Not enough, realloc it. */ /* +1 in case of mbcset->nequiv_classes is 0. */ *equiv_class_alloc = 2 * mbcset->nequiv_classes + 1; /* Use realloc since the array is NULL if *alloc == 0. */ mbcset->equiv_classes = re_realloc (mbcset->equiv_classes, int32_t, *equiv_class_alloc); if (mbcset->equiv_classes == NULL) return REG_ESPACE; } mbcset->equiv_classes[mbcset->nequiv_classes++] = idx1; } else #endif { if (strlen (name) != 1) return REG_ECOLLATE; bitset_set (sbcset, name[0]); } return REG_NOERROR; } /* Helper function for parse_bracket_exp. Build the character class which is represented by NAME. The result are written to MBCSET and SBCSET. CHAR_CLASS_ALLOC is the allocated size of mbcset->char_classes, is a pointer argument sinse we may update it. */ static reg_errcode_t build_charclass (mbcset, sbcset, char_class_alloc, name) re_charset_t *mbcset; re_bitset_ptr_t sbcset; int *char_class_alloc; const unsigned char *name; { int i; /* Check the space of the arrays. */ if (*char_class_alloc == mbcset->nchar_classes) { /* Not enough, realloc it. */ /* +1 in case of mbcset->nchar_classes is 0. */ *char_class_alloc = 2 * mbcset->nchar_classes + 1; /* Use realloc since array is NULL if *alloc == 0. */ mbcset->char_classes = re_realloc (mbcset->char_classes, wctype_t, *char_class_alloc); if (mbcset->char_classes == NULL) return REG_ESPACE; } mbcset->char_classes[mbcset->nchar_classes++] = __wctype (name); #define BUILD_CHARCLASS_LOOP(ctype_func)\ for (i = 0; i < SBC_MAX; ++i) \ { \ if (ctype_func (i)) \ bitset_set (sbcset, i); \ } if (strcmp (name, "alnum") == 0) BUILD_CHARCLASS_LOOP (isalnum) else if (strcmp (name, "cntrl") == 0) BUILD_CHARCLASS_LOOP (iscntrl) else if (strcmp (name, "lower") == 0) BUILD_CHARCLASS_LOOP (islower) else if (strcmp (name, "space") == 0) BUILD_CHARCLASS_LOOP (isspace) else if (strcmp (name, "alpha") == 0) BUILD_CHARCLASS_LOOP (isalpha) else if (strcmp (name, "digit") == 0) BUILD_CHARCLASS_LOOP (isdigit) else if (strcmp (name, "print") == 0) BUILD_CHARCLASS_LOOP (isprint) else if (strcmp (name, "upper") == 0) BUILD_CHARCLASS_LOOP (isupper) else if (strcmp (name, "blank") == 0) BUILD_CHARCLASS_LOOP (isblank) else if (strcmp (name, "graph") == 0) BUILD_CHARCLASS_LOOP (isgraph) else if (strcmp (name, "punct") == 0) BUILD_CHARCLASS_LOOP (ispunct) else if (strcmp (name, "xdigit") == 0) BUILD_CHARCLASS_LOOP (isxdigit) else return REG_ECTYPE; return REG_NOERROR; } static bin_tree_t * build_word_op (dfa, not, err) re_dfa_t *dfa; int not; reg_errcode_t *err; { re_bitset_ptr_t sbcset; re_charset_t *mbcset; reg_errcode_t ret; re_token_t br_token; bin_tree_t *tree; int new_idx, alloc = 0; sbcset = (re_bitset_ptr_t) calloc (sizeof (unsigned int), BITSET_UINTS); mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1); if (sbcset == NULL || mbcset == NULL) { *err = REG_ESPACE; return NULL; } if (not) { int i; mbcset->non_match = 1; /* if (syntax & RE_HAT_LISTS_NOT_NEWLINE) bitset_set(cset->sbcset, '\0'); */ if (MB_CUR_MAX > 1) for (i = 0; i < SBC_MAX; ++i) if (__btowc (i) == WEOF) bitset_set (sbcset, i); } ret = build_charclass (mbcset, sbcset, &alloc, "alpha"); if (ret != REG_NOERROR) { re_free (sbcset); free_charset (mbcset); *err = REG_ESPACE; return NULL; } /* If it is non-matching list. */ if (mbcset->non_match) bitset_not (sbcset); /* Build a tree for simple bracket. */ br_token.type = SIMPLE_BRACKET; br_token.opr.sbcset = sbcset; new_idx = re_dfa_add_node (dfa, br_token, 0); tree = create_tree (NULL, NULL, 0, new_idx); if (new_idx == -1 || tree == NULL) goto build_word_op_espace; if (MB_CUR_MAX > 1) { re_token_t alt_token; bin_tree_t *mbc_tree; /* Build a tree for complex bracket. */ br_token.type = COMPLEX_BRACKET; br_token.opr.mbcset = mbcset; dfa->has_mb_node = 1; new_idx = re_dfa_add_node (dfa, br_token, 0); mbc_tree = create_tree (NULL, NULL, 0, new_idx); if (new_idx == -1 || mbc_tree == NULL) goto build_word_op_espace; /* Then join them by ALT node. */ alt_token.type = OP_ALT; new_idx = re_dfa_add_node (dfa, alt_token, 0); tree = create_tree (tree, mbc_tree, 0, new_idx); if (new_idx != -1 && mbc_tree != NULL) return tree; } else { free_charset (mbcset); return tree; } build_word_op_espace: re_free (sbcset); free_charset (mbcset); *err = REG_ESPACE; return NULL; } /* This is intended for the expressions like "a{1,3}". Fetch a number from `input', and return the number. Return -1, if the number field is empty like "{,1}". Return -2, If an error is occured. */ static int fetch_number (input, token, syntax) re_string_t *input; re_token_t *token; reg_syntax_t syntax; { int num = -1; unsigned char c; while (1) { *token = fetch_token (input, syntax); c = token->opr.c; if (token->type == OP_CLOSE_DUP_NUM || c == ',') break; if (token->type != CHARACTER || c < '0' || '9' < c) return -2; num = (num == -1) ? c - '0' : num * 10 + c - '0'; } if (num > RE_DUP_MAX) return -2; return num; } static void free_charset (re_charset_t *cset) { re_free (cset->mbchars); re_free (cset->coll_syms); re_free (cset->equiv_classes); re_free (cset->range_starts); re_free (cset->range_ends); re_free (cset->char_classes); re_free (cset); } /* Functions for binary tree operation. */ /* Create a node of tree. Note: This function automatically free left and right if malloc fails. */ static bin_tree_t * create_tree (left, right, type, index) bin_tree_t *left; bin_tree_t *right; re_token_type_t type; int index; { bin_tree_t *tree; tree = re_malloc (bin_tree_t, 1); if (tree == NULL) { free_bin_tree (left); free_bin_tree (right); return NULL; } tree->parent = NULL; tree->left = left; tree->right = right; tree->type = type; tree->node_idx = index; tree->first = -1; tree->next = -1; re_node_set_init_empty (&tree->eclosure); if (left != NULL) left->parent = tree; if (right != NULL) right->parent = tree; return tree; } /* Free the sub tree pointed by TREE. */ static void free_bin_tree (tree) bin_tree_t *tree; { if (tree == NULL) return; /*re_node_set_free (&tree->eclosure);*/ free_bin_tree (tree->left); free_bin_tree (tree->right); re_free (tree); } /* Duplicate the node SRC, and return new node. */ static bin_tree_t * duplicate_tree (src, dfa) const bin_tree_t *src; re_dfa_t *dfa; { bin_tree_t *left = NULL, *right = NULL, *new_tree; int new_node_idx; /* Since node indies must be according to Post-order of the tree, we must duplicate the left at first. */ if (src->left != NULL) { left = duplicate_tree (src->left, dfa); if (left == NULL) return NULL; } /* Secondaly, duplicate the right. */ if (src->right != NULL) { right = duplicate_tree (src->right, dfa); if (right == NULL) { free_bin_tree (left); return NULL; } } /* At last, duplicate itself. */ if (src->type == NON_TYPE) { new_node_idx = re_dfa_add_node (dfa, dfa->nodes[src->node_idx], 0); dfa->nodes[new_node_idx].duplicated = 1; if (new_node_idx == -1) { free_bin_tree (left); free_bin_tree (right); return NULL; } } else new_node_idx = src->type; new_tree = create_tree (left, right, src->type, new_node_idx); if (new_tree == NULL) { free_bin_tree (left); free_bin_tree (right); } return new_tree; }