/* Return value of complex exponential function for a float type. Copyright (C) 1997-2022 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see <https://www.gnu.org/licenses/>. */ #include <complex.h> #include <fenv.h> #include <math.h> #include <math_private.h> #include <math-underflow.h> #include <float.h> CFLOAT M_DECL_FUNC (__cexp) (CFLOAT x) { CFLOAT retval; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__glibc_likely (rcls >= FP_ZERO)) { /* Real part is finite. */ if (__glibc_likely (icls >= FP_ZERO)) { /* Imaginary part is finite. */ const int t = (int) ((M_MAX_EXP - 1) * M_MLIT (M_LN2)); FLOAT sinix, cosix; if (__glibc_likely (M_FABS (__imag__ x) > M_MIN)) { M_SINCOS (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1; } if (__real__ x > t) { FLOAT exp_t = M_EXP (t); __real__ x -= t; sinix *= exp_t; cosix *= exp_t; if (__real__ x > t) { __real__ x -= t; sinix *= exp_t; cosix *= exp_t; } } if (__real__ x > t) { /* Overflow (original real part of x > 3t). */ __real__ retval = M_MAX * cosix; __imag__ retval = M_MAX * sinix; } else { FLOAT exp_val = M_EXP (__real__ x); __real__ retval = exp_val * cosix; __imag__ retval = exp_val * sinix; } math_check_force_underflow_complex (retval); } else { /* If the imaginary part is +-inf or NaN and the real part is not +-inf the result is NaN + iNaN. */ __real__ retval = M_NAN; __imag__ retval = M_NAN; feraiseexcept (FE_INVALID); } } else if (__glibc_likely (rcls == FP_INFINITE)) { /* Real part is infinite. */ if (__glibc_likely (icls >= FP_ZERO)) { /* Imaginary part is finite. */ FLOAT value = signbit (__real__ x) ? 0 : M_HUGE_VAL; if (icls == FP_ZERO) { /* Imaginary part is 0.0. */ __real__ retval = value; __imag__ retval = __imag__ x; } else { FLOAT sinix, cosix; if (__glibc_likely (M_FABS (__imag__ x) > M_MIN)) { M_SINCOS (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1; } __real__ retval = M_COPYSIGN (value, cosix); __imag__ retval = M_COPYSIGN (value, sinix); } } else if (signbit (__real__ x) == 0) { __real__ retval = M_HUGE_VAL; __imag__ retval = __imag__ x - __imag__ x; } else { __real__ retval = 0; __imag__ retval = M_COPYSIGN (0, __imag__ x); } } else { /* If the real part is NaN the result is NaN + iNaN unless the imaginary part is zero. */ __real__ retval = M_NAN; if (icls == FP_ZERO) __imag__ retval = __imag__ x; else { __imag__ retval = M_NAN; if (rcls != FP_NAN || icls != FP_NAN) feraiseexcept (FE_INVALID); } } return retval; } declare_mgen_alias (__cexp, cexp)