/* Return arc hyperbole sine for float value, with the imaginary part of the result possibly adjusted for use in computing other functions. Copyright (C) 1997-2013 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include /* Return the complex inverse hyperbolic sine of finite nonzero Z, with the imaginary part of the result subtracted from pi/2 if ADJ is nonzero. */ __complex__ float __kernel_casinhf (__complex__ float x, int adj) { __complex__ float res; float rx, ix; __complex__ float y; /* Avoid cancellation by reducing to the first quadrant. */ rx = fabsf (__real__ x); ix = fabsf (__imag__ x); if (rx >= 1.0f / FLT_EPSILON || ix >= 1.0f / FLT_EPSILON) { /* For large x in the first quadrant, x + csqrt (1 + x * x) is sufficiently close to 2 * x to make no significant difference to the result; avoid possible overflow from the squaring and addition. */ __real__ y = rx; __imag__ y = ix; if (adj) { float t = __real__ y; __real__ y = __copysignf (__imag__ y, __imag__ x); __imag__ y = t; } res = __clogf (y); __real__ res += (float) M_LN2; } else { __real__ y = (rx - ix) * (rx + ix) + 1.0; __imag__ y = 2.0 * rx * ix; y = __csqrtf (y); __real__ y += rx; __imag__ y += ix; if (adj) { float t = __real__ y; __real__ y = __copysignf (__imag__ y, __imag__ x); __imag__ y = t; } res = __clogf (y); } /* Give results the correct sign for the original argument. */ __real__ res = __copysignf (__real__ res, __real__ x); __imag__ res = __copysignf (__imag__ res, (adj ? 1.0f : __imag__ x)); return res; }