/* Inline functions for dynamic linking. Copyright (C) 1995-2005,2006,2008,2011 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ /* This macro is used as a callback from elf_machine_rel{a,} when a static TLS reloc is about to be performed. Since (in dl-load.c) we permit dynamic loading of objects that might use such relocs, we have to check whether each use is actually doable. If the object whose TLS segment the reference resolves to was allocated space in the static TLS block at startup, then it's ok. Otherwise, we make an attempt to allocate it in surplus space on the fly. If that can't be done, we fall back to the error that DF_STATIC_TLS is intended to produce. */ #define CHECK_STATIC_TLS(map, sym_map) \ do { \ if (__builtin_expect ((sym_map)->l_tls_offset == NO_TLS_OFFSET \ || ((sym_map)->l_tls_offset \ == FORCED_DYNAMIC_TLS_OFFSET), 0)) \ _dl_allocate_static_tls (sym_map); \ } while (0) #define TRY_STATIC_TLS(map, sym_map) \ (__builtin_expect ((sym_map)->l_tls_offset \ != FORCED_DYNAMIC_TLS_OFFSET, 1) \ && (__builtin_expect ((sym_map)->l_tls_offset != NO_TLS_OFFSET, 1) \ || _dl_try_allocate_static_tls (sym_map) == 0)) int internal_function _dl_try_allocate_static_tls (struct link_map *map); #include #include #ifdef RESOLVE_MAP /* We pass reloc_addr as a pointer to void, as opposed to a pointer to ElfW(Addr), because not all architectures can assume that the relocated address is properly aligned, whereas the compiler is entitled to assume that a pointer to a type is properly aligned for the type. Even if we cast the pointer back to some other type with less strict alignment requirements, the compiler might still remember that the pointer was originally more aligned, thereby optimizing away alignment tests or using word instructions for copying memory, breaking the very code written to handle the unaligned cases. */ # if ! ELF_MACHINE_NO_REL auto inline void __attribute__((always_inline)) elf_machine_rel (struct link_map *map, const ElfW(Rel) *reloc, const ElfW(Sym) *sym, const struct r_found_version *version, void *const reloc_addr, int skip_ifunc); auto inline void __attribute__((always_inline)) elf_machine_rel_relative (ElfW(Addr) l_addr, const ElfW(Rel) *reloc, void *const reloc_addr); # endif # if ! ELF_MACHINE_NO_RELA auto inline void __attribute__((always_inline)) elf_machine_rela (struct link_map *map, const ElfW(Rela) *reloc, const ElfW(Sym) *sym, const struct r_found_version *version, void *const reloc_addr, int skip_ifunc); auto inline void __attribute__((always_inline)) elf_machine_rela_relative (ElfW(Addr) l_addr, const ElfW(Rela) *reloc, void *const reloc_addr); # endif # if ELF_MACHINE_NO_RELA || defined ELF_MACHINE_PLT_REL auto inline void __attribute__((always_inline)) elf_machine_lazy_rel (struct link_map *map, ElfW(Addr) l_addr, const ElfW(Rel) *reloc, int skip_ifunc); # else auto inline void __attribute__((always_inline)) elf_machine_lazy_rel (struct link_map *map, ElfW(Addr) l_addr, const ElfW(Rela) *reloc, int skip_ifunc); # endif #endif #include #ifndef VERSYMIDX # define VERSYMIDX(sym) (DT_NUM + DT_THISPROCNUM + DT_VERSIONTAGIDX (sym)) #endif /* Read the dynamic section at DYN and fill in INFO with indices DT_*. */ #ifndef RESOLVE_MAP static #else auto #endif inline void __attribute__ ((unused, always_inline)) elf_get_dynamic_info (struct link_map *l, ElfW(Dyn) *temp) { ElfW(Dyn) *dyn = l->l_ld; ElfW(Dyn) **info; #if __ELF_NATIVE_CLASS == 32 typedef Elf32_Word d_tag_utype; #elif __ELF_NATIVE_CLASS == 64 typedef Elf64_Xword d_tag_utype; #endif #ifndef RTLD_BOOTSTRAP if (dyn == NULL) return; #endif info = l->l_info; while (dyn->d_tag != DT_NULL) { if ((d_tag_utype) dyn->d_tag < DT_NUM) info[dyn->d_tag] = dyn; else if (dyn->d_tag >= DT_LOPROC && dyn->d_tag < DT_LOPROC + DT_THISPROCNUM) info[dyn->d_tag - DT_LOPROC + DT_NUM] = dyn; else if ((d_tag_utype) DT_VERSIONTAGIDX (dyn->d_tag) < DT_VERSIONTAGNUM) info[VERSYMIDX (dyn->d_tag)] = dyn; else if ((d_tag_utype) DT_EXTRATAGIDX (dyn->d_tag) < DT_EXTRANUM) info[DT_EXTRATAGIDX (dyn->d_tag) + DT_NUM + DT_THISPROCNUM + DT_VERSIONTAGNUM] = dyn; else if ((d_tag_utype) DT_VALTAGIDX (dyn->d_tag) < DT_VALNUM) info[DT_VALTAGIDX (dyn->d_tag) + DT_NUM + DT_THISPROCNUM + DT_VERSIONTAGNUM + DT_EXTRANUM] = dyn; else if ((d_tag_utype) DT_ADDRTAGIDX (dyn->d_tag) < DT_ADDRNUM) info[DT_ADDRTAGIDX (dyn->d_tag) + DT_NUM + DT_THISPROCNUM + DT_VERSIONTAGNUM + DT_EXTRANUM + DT_VALNUM] = dyn; ++dyn; } #define DL_RO_DYN_TEMP_CNT 8 #ifndef DL_RO_DYN_SECTION /* Don't adjust .dynamic unnecessarily. */ if (l->l_addr != 0) { ElfW(Addr) l_addr = l->l_addr; int cnt = 0; # define ADJUST_DYN_INFO(tag) \ do \ if (info[tag] != NULL) \ { \ if (temp) \ { \ temp[cnt].d_tag = info[tag]->d_tag; \ temp[cnt].d_un.d_ptr = info[tag]->d_un.d_ptr + l_addr; \ info[tag] = temp + cnt++; \ } \ else \ info[tag]->d_un.d_ptr += l_addr; \ } \ while (0) ADJUST_DYN_INFO (DT_HASH); ADJUST_DYN_INFO (DT_PLTGOT); ADJUST_DYN_INFO (DT_STRTAB); ADJUST_DYN_INFO (DT_SYMTAB); # if ! ELF_MACHINE_NO_RELA ADJUST_DYN_INFO (DT_RELA); # endif # if ! ELF_MACHINE_NO_REL ADJUST_DYN_INFO (DT_REL); # endif ADJUST_DYN_INFO (DT_JMPREL); ADJUST_DYN_INFO (VERSYMIDX (DT_VERSYM)); ADJUST_DYN_INFO (DT_ADDRTAGIDX (DT_GNU_HASH) + DT_NUM + DT_THISPROCNUM + DT_VERSIONTAGNUM + DT_EXTRANUM + DT_VALNUM); # undef ADJUST_DYN_INFO assert (cnt <= DL_RO_DYN_TEMP_CNT); } #endif if (info[DT_PLTREL] != NULL) { #if ELF_MACHINE_NO_RELA assert (info[DT_PLTREL]->d_un.d_val == DT_REL); #elif ELF_MACHINE_NO_REL assert (info[DT_PLTREL]->d_un.d_val == DT_RELA); #else assert (info[DT_PLTREL]->d_un.d_val == DT_REL || info[DT_PLTREL]->d_un.d_val == DT_RELA); #endif } #if ! ELF_MACHINE_NO_RELA if (info[DT_RELA] != NULL) assert (info[DT_RELAENT]->d_un.d_val == sizeof (ElfW(Rela))); # endif # if ! ELF_MACHINE_NO_REL if (info[DT_REL] != NULL) assert (info[DT_RELENT]->d_un.d_val == sizeof (ElfW(Rel))); #endif #ifdef RTLD_BOOTSTRAP /* Only the bind now flags are allowed. */ assert (info[VERSYMIDX (DT_FLAGS_1)] == NULL || (info[VERSYMIDX (DT_FLAGS_1)]->d_un.d_val & ~DF_1_NOW) == 0); assert (info[DT_FLAGS] == NULL || (info[DT_FLAGS]->d_un.d_val & ~DF_BIND_NOW) == 0); /* Flags must not be set for ld.so. */ assert (info[DT_RUNPATH] == NULL); assert (info[DT_RPATH] == NULL); #else if (info[DT_FLAGS] != NULL) { /* Flags are used. Translate to the old form where available. Since these l_info entries are only tested for NULL pointers it is ok if they point to the DT_FLAGS entry. */ l->l_flags = info[DT_FLAGS]->d_un.d_val; if (l->l_flags & DF_SYMBOLIC) info[DT_SYMBOLIC] = info[DT_FLAGS]; if (l->l_flags & DF_TEXTREL) info[DT_TEXTREL] = info[DT_FLAGS]; if (l->l_flags & DF_BIND_NOW) info[DT_BIND_NOW] = info[DT_FLAGS]; } if (info[VERSYMIDX (DT_FLAGS_1)] != NULL) { l->l_flags_1 = info[VERSYMIDX (DT_FLAGS_1)]->d_un.d_val; if (l->l_flags_1 & DF_1_NOW) info[DT_BIND_NOW] = info[VERSYMIDX (DT_FLAGS_1)]; } if (info[DT_RUNPATH] != NULL) /* If both RUNPATH and RPATH are given, the latter is ignored. */ info[DT_RPATH] = NULL; #endif } #ifdef RESOLVE_MAP # ifdef RTLD_BOOTSTRAP # define ELF_DURING_STARTUP (1) # else # define ELF_DURING_STARTUP (0) # endif /* Get the definitions of `elf_dynamic_do_rel' and `elf_dynamic_do_rela'. These functions are almost identical, so we use cpp magic to avoid duplicating their code. It cannot be done in a more general function because we must be able to completely inline. */ /* On some machines, notably SPARC, DT_REL* includes DT_JMPREL in its range. Note that according to the ELF spec, this is completely legal! We are guarenteed that we have one of two situations. Either DT_JMPREL comes immediately after DT_REL*, or there is overlap and DT_JMPREL consumes precisely the very end of the DT_REL*. */ # define _ELF_DYNAMIC_DO_RELOC(RELOC, reloc, map, do_lazy, skip_ifunc, test_rel) \ do { \ struct { ElfW(Addr) start, size; \ __typeof (((ElfW(Dyn) *) 0)->d_un.d_val) nrelative; int lazy; } \ ranges[2] = { { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }; \ \ if ((map)->l_info[DT_##RELOC]) \ { \ ranges[0].start = D_PTR ((map), l_info[DT_##RELOC]); \ ranges[0].size = (map)->l_info[DT_##RELOC##SZ]->d_un.d_val; \ if (map->l_info[VERSYMIDX (DT_##RELOC##COUNT)] != NULL) \ ranges[0].nrelative \ = MIN (map->l_info[VERSYMIDX (DT_##RELOC##COUNT)]->d_un.d_val, \ ranges[0].size / sizeof (ElfW(reloc))); \ } \ if ((map)->l_info[DT_PLTREL] \ && (!test_rel || (map)->l_info[DT_PLTREL]->d_un.d_val == DT_##RELOC)) \ { \ ElfW(Addr) start = D_PTR ((map), l_info[DT_JMPREL]); \ \ if (__builtin_expect (ranges[0].size, 1)) \ ranges[0].size = (start - ranges[0].start); \ if (! ELF_DURING_STARTUP \ && ((do_lazy) \ /* This test does not only detect whether the relocation \ sections are in the right order, it also checks whether \ there is a DT_REL/DT_RELA section. */ \ || __builtin_expect (ranges[0].start + ranges[0].size \ != start, 0))) \ { \ ranges[1].start = start; \ ranges[1].size = (map)->l_info[DT_PLTRELSZ]->d_un.d_val; \ ranges[1].lazy = (do_lazy); \ } \ else \ { \ /* Combine processing the sections. */ \ assert (ranges[0].start + ranges[0].size == start); \ ranges[0].size += (map)->l_info[DT_PLTRELSZ]->d_un.d_val; \ } \ } \ \ if (ELF_DURING_STARTUP) \ elf_dynamic_do_##reloc ((map), ranges[0].start, ranges[0].size, \ ranges[0].nrelative, 0, skip_ifunc); \ else \ { \ int ranges_index; \ for (ranges_index = 0; ranges_index < 2; ++ranges_index) \ elf_dynamic_do_##reloc ((map), \ ranges[ranges_index].start, \ ranges[ranges_index].size, \ ranges[ranges_index].nrelative, \ ranges[ranges_index].lazy, \ skip_ifunc); \ } \ } while (0) # if ELF_MACHINE_NO_REL || ELF_MACHINE_NO_RELA # define _ELF_CHECK_REL 0 # else # define _ELF_CHECK_REL 1 # endif # if ! ELF_MACHINE_NO_REL # include "do-rel.h" # define ELF_DYNAMIC_DO_REL(map, lazy, skip_ifunc) \ _ELF_DYNAMIC_DO_RELOC (REL, Rel, map, lazy, skip_ifunc, _ELF_CHECK_REL) # else # define ELF_DYNAMIC_DO_REL(map, lazy, skip_ifunc) /* Nothing to do. */ # endif # if ! ELF_MACHINE_NO_RELA # define DO_RELA # include "do-rel.h" # define ELF_DYNAMIC_DO_RELA(map, lazy, skip_ifunc) \ _ELF_DYNAMIC_DO_RELOC (RELA, Rela, map, lazy, skip_ifunc, _ELF_CHECK_REL) # else # define ELF_DYNAMIC_DO_RELA(map, lazy, skip_ifunc) /* Nothing to do. */ # endif /* This can't just be an inline function because GCC is too dumb to inline functions containing inlines themselves. */ # define ELF_DYNAMIC_RELOCATE(map, lazy, consider_profile, skip_ifunc) \ do { \ int edr_lazy = elf_machine_runtime_setup ((map), (lazy), \ (consider_profile)); \ ELF_DYNAMIC_DO_REL ((map), edr_lazy, skip_ifunc); \ ELF_DYNAMIC_DO_RELA ((map), edr_lazy, skip_ifunc); \ } while (0) #endif