/* Miscellaneous support functions for dynamic linker
Copyright (C) 1997-2014 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
. */
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include <_itoa.h>
#include
/* Read the whole contents of FILE into new mmap'd space with given
protections. *SIZEP gets the size of the file. On error MAP_FAILED
is returned. */
void *
internal_function
_dl_sysdep_read_whole_file (const char *file, size_t *sizep, int prot)
{
void *result = MAP_FAILED;
struct stat64 st;
int flags = O_RDONLY;
#ifdef O_CLOEXEC
flags |= O_CLOEXEC;
#endif
int fd = __open (file, flags);
if (fd >= 0)
{
if (__fxstat64 (_STAT_VER, fd, &st) >= 0)
{
*sizep = st.st_size;
/* No need to map the file if it is empty. */
if (*sizep != 0)
/* Map a copy of the file contents. */
result = __mmap (NULL, *sizep, prot,
#ifdef MAP_COPY
MAP_COPY
#else
MAP_PRIVATE
#endif
#ifdef MAP_FILE
| MAP_FILE
#endif
, fd, 0);
}
__close (fd);
}
return result;
}
/* Bare-bones printf implementation. This function only knows about
the formats and flags needed and can handle only up to 64 stripes in
the output. */
static void
_dl_debug_vdprintf (int fd, int tag_p, const char *fmt, va_list arg)
{
# define NIOVMAX 64
struct iovec iov[NIOVMAX];
int niov = 0;
pid_t pid = 0;
char pidbuf[12];
while (*fmt != '\0')
{
const char *startp = fmt;
if (tag_p > 0)
{
/* Generate the tag line once. It consists of the PID and a
colon followed by a tab. */
if (pid == 0)
{
char *p;
pid = __getpid ();
assert (pid >= 0 && sizeof (pid_t) <= 4);
p = _itoa (pid, &pidbuf[10], 10, 0);
while (p > pidbuf)
*--p = ' ';
pidbuf[10] = ':';
pidbuf[11] = '\t';
}
/* Append to the output. */
assert (niov < NIOVMAX);
iov[niov].iov_len = 12;
iov[niov++].iov_base = pidbuf;
/* No more tags until we see the next newline. */
tag_p = -1;
}
/* Skip everything except % and \n (if tags are needed). */
while (*fmt != '\0' && *fmt != '%' && (! tag_p || *fmt != '\n'))
++fmt;
/* Append constant string. */
assert (niov < NIOVMAX);
if ((iov[niov].iov_len = fmt - startp) != 0)
iov[niov++].iov_base = (char *) startp;
if (*fmt == '%')
{
/* It is a format specifier. */
char fill = ' ';
int width = -1;
int prec = -1;
#if LONG_MAX != INT_MAX
int long_mod = 0;
#endif
/* Recognize zero-digit fill flag. */
if (*++fmt == '0')
{
fill = '0';
++fmt;
}
/* See whether with comes from a parameter. Note that no other
way to specify the width is implemented. */
if (*fmt == '*')
{
width = va_arg (arg, int);
++fmt;
}
/* Handle precision. */
if (*fmt == '.' && fmt[1] == '*')
{
prec = va_arg (arg, int);
fmt += 2;
}
/* Recognize the l modifier. It is only important on some
platforms where long and int have a different size. We
can use the same code for size_t. */
if (*fmt == 'l' || *fmt == 'Z')
{
#if LONG_MAX != INT_MAX
long_mod = 1;
#endif
++fmt;
}
switch (*fmt)
{
/* Integer formatting. */
case 'u':
case 'x':
{
/* We have to make a difference if long and int have a
different size. */
#if LONG_MAX != INT_MAX
unsigned long int num = (long_mod
? va_arg (arg, unsigned long int)
: va_arg (arg, unsigned int));
#else
unsigned long int num = va_arg (arg, unsigned int);
#endif
/* We use alloca() to allocate the buffer with the most
pessimistic guess for the size. Using alloca() allows
having more than one integer formatting in a call. */
char *buf = (char *) alloca (3 * sizeof (unsigned long int));
char *endp = &buf[3 * sizeof (unsigned long int)];
char *cp = _itoa (num, endp, *fmt == 'x' ? 16 : 10, 0);
/* Pad to the width the user specified. */
if (width != -1)
while (endp - cp < width)
*--cp = fill;
iov[niov].iov_base = cp;
iov[niov].iov_len = endp - cp;
++niov;
}
break;
case 's':
/* Get the string argument. */
iov[niov].iov_base = va_arg (arg, char *);
iov[niov].iov_len = strlen (iov[niov].iov_base);
if (prec != -1)
iov[niov].iov_len = MIN ((size_t) prec, iov[niov].iov_len);
++niov;
break;
case '%':
iov[niov].iov_base = (void *) fmt;
iov[niov].iov_len = 1;
++niov;
break;
default:
assert (! "invalid format specifier");
}
++fmt;
}
else if (*fmt == '\n')
{
/* See whether we have to print a single newline character. */
if (fmt == startp)
{
iov[niov].iov_base = (char *) startp;
iov[niov++].iov_len = 1;
}
else
/* No, just add it to the rest of the string. */
++iov[niov - 1].iov_len;
/* Next line, print a tag again. */
tag_p = 1;
++fmt;
}
}
/* Finally write the result. */
_dl_writev (fd, iov, niov);
}
/* Write to debug file. */
void
_dl_debug_printf (const char *fmt, ...)
{
va_list arg;
va_start (arg, fmt);
_dl_debug_vdprintf (GLRO(dl_debug_fd), 1, fmt, arg);
va_end (arg);
}
/* Write to debug file but don't start with a tag. */
void
_dl_debug_printf_c (const char *fmt, ...)
{
va_list arg;
va_start (arg, fmt);
_dl_debug_vdprintf (GLRO(dl_debug_fd), -1, fmt, arg);
va_end (arg);
}
/* Write the given file descriptor. */
void
_dl_dprintf (int fd, const char *fmt, ...)
{
va_list arg;
va_start (arg, fmt);
_dl_debug_vdprintf (fd, 0, fmt, arg);
va_end (arg);
}
/* Test whether given NAME matches any of the names of the given object. */
int
internal_function
_dl_name_match_p (const char *name, const struct link_map *map)
{
if (strcmp (name, map->l_name) == 0)
return 1;
struct libname_list *runp = map->l_libname;
while (runp != NULL)
if (strcmp (name, runp->name) == 0)
return 1;
else
runp = runp->next;
return 0;
}
unsigned long int
internal_function
_dl_higher_prime_number (unsigned long int n)
{
/* These are primes that are near, but slightly smaller than, a
power of two. */
static const uint32_t primes[] = {
UINT32_C (7),
UINT32_C (13),
UINT32_C (31),
UINT32_C (61),
UINT32_C (127),
UINT32_C (251),
UINT32_C (509),
UINT32_C (1021),
UINT32_C (2039),
UINT32_C (4093),
UINT32_C (8191),
UINT32_C (16381),
UINT32_C (32749),
UINT32_C (65521),
UINT32_C (131071),
UINT32_C (262139),
UINT32_C (524287),
UINT32_C (1048573),
UINT32_C (2097143),
UINT32_C (4194301),
UINT32_C (8388593),
UINT32_C (16777213),
UINT32_C (33554393),
UINT32_C (67108859),
UINT32_C (134217689),
UINT32_C (268435399),
UINT32_C (536870909),
UINT32_C (1073741789),
UINT32_C (2147483647),
/* 4294967291L */
UINT32_C (2147483647) + UINT32_C (2147483644)
};
const uint32_t *low = &primes[0];
const uint32_t *high = &primes[sizeof (primes) / sizeof (primes[0])];
while (low != high)
{
const uint32_t *mid = low + (high - low) / 2;
if (n > *mid)
low = mid + 1;
else
high = mid;
}
#if 0
/* If we've run out of primes, abort. */
if (n > *low)
{
fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
abort ();
}
#endif
return *low;
}
/* To support accessing TLS variables from signal handlers, we need an
async signal safe memory allocator. These routines are never
themselves invoked reentrantly (all calls to them are surrounded by
signal masks) but may be invoked concurrently from many threads.
The current implementation is not particularly performant nor space
efficient, but it will be used rarely (and only in binaries that use
dlopen.) The API matches that of malloc() and friends. */
struct __signal_safe_allocator_header
{
size_t size;
void *start;
};
static inline struct __signal_safe_allocator_header *
ptr_to_signal_safe_allocator_header (void *ptr)
{
return (struct __signal_safe_allocator_header *)
((char *) (ptr) - sizeof (struct __signal_safe_allocator_header));
}
void *weak_function
__signal_safe_memalign (size_t boundary, size_t size)
{
struct __signal_safe_allocator_header *header;
if (boundary < sizeof (*header))
boundary = sizeof (*header);
/* Boundary must be a power of two. */
if (!powerof2 (boundary))
return NULL;
size_t pg = GLRO (dl_pagesize);
size_t padded_size;
if (boundary <= pg)
{
/* We'll get a pointer certainly aligned to boundary, so just
add one more boundary-sized chunk to hold the header. */
padded_size = roundup (size, boundary) + boundary;
}
else
{
/* If we want K pages aligned to a J-page boundary, K+J+1 pages
contains at least one such region that isn't directly at the start
(so we can place the header.) This is wasteful, but you're the one
who wanted 64K-aligned TLS. */
padded_size = roundup (size, pg) + boundary + pg;
}
size_t actual_size = roundup (padded_size, pg);
void *actual = mmap (NULL, actual_size, PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
if (actual == MAP_FAILED)
return NULL;
if (boundary <= pg)
{
header = actual + boundary - sizeof (*header);
}
else
{
intptr_t actual_pg = ((intptr_t) actual) / pg;
intptr_t boundary_pg = boundary / pg;
intptr_t start_pg = actual_pg + boundary_pg;
start_pg -= start_pg % boundary_pg;
if (start_pg > (actual_pg + 1))
{
int ret = munmap (actual, (start_pg - actual_pg - 1) * pg);
assert (ret == 0);
actual = (void *) ((start_pg - 1) * pg);
}
char *start = (void *) (start_pg * pg);
header = ptr_to_signal_safe_allocator_header (start);
}
header->size = actual_size;
header->start = actual;
void *ptr = header;
ptr += sizeof (*header);
if (((intptr_t) ptr) % boundary != 0)
_dl_fatal_printf ("__signal_safe_memalign produced incorrect alignment\n");
return ptr;
}
void * weak_function
__signal_safe_malloc (size_t size)
{
return __signal_safe_memalign (1, size);
}
void weak_function
__signal_safe_free (void *ptr)
{
if (ptr == NULL)
return;
struct __signal_safe_allocator_header *header
= ptr_to_signal_safe_allocator_header (ptr);
int ret = munmap (header->start, header->size);
assert (ret == 0);
}
void * weak_function
__signal_safe_realloc (void *ptr, size_t size)
{
if (size == 0)
{
__signal_safe_free (ptr);
return NULL;
}
if (ptr == NULL)
return __signal_safe_malloc (size);
struct __signal_safe_allocator_header *header
= ptr_to_signal_safe_allocator_header (ptr);
size_t old_size = header->size;
if (old_size - sizeof (*header) >= size)
return ptr;
void *new_ptr = __signal_safe_malloc (size);
if (new_ptr == NULL)
return NULL;
memcpy (new_ptr, ptr, old_size);
__signal_safe_free (ptr);
return new_ptr;
}
void * weak_function
__signal_safe_calloc (size_t nmemb, size_t size)
{
void *ptr = __signal_safe_malloc (nmemb * size);
if (ptr == NULL)
return NULL;
return memset (ptr, 0, nmemb * size);
}