From b53df4c940bdfb4a23e065c7b3a919b4ed054f03 Mon Sep 17 00:00:00 2001 From: Ulrich Drepper Date: Thu, 5 Apr 2001 05:29:26 +0000 Subject: Update. * sysdeps/unix/sysv/aix/dl-libc.c: Don't use the ELF version, define simple replacements here. Patch by Michael Keezer. * sysdeps/ieee754/ldbl-128/e_logl.c: New file. * sysdeps/ieee754/ldbl-96/e_asinl.c: New file. Contributed by Stephen L Moshier . --- sysdeps/ieee754/ldbl-128/e_logl.c | 270 ++++++++++++++++++++++++++++++++++++++ sysdeps/ieee754/ldbl-96/e_asinl.c | 144 ++++++++++++++++++++ 2 files changed, 414 insertions(+) create mode 100644 sysdeps/ieee754/ldbl-128/e_logl.c create mode 100644 sysdeps/ieee754/ldbl-96/e_asinl.c (limited to 'sysdeps/ieee754') diff --git a/sysdeps/ieee754/ldbl-128/e_logl.c b/sysdeps/ieee754/ldbl-128/e_logl.c new file mode 100644 index 0000000000..a17c745413 --- /dev/null +++ b/sysdeps/ieee754/ldbl-128/e_logl.c @@ -0,0 +1,270 @@ +/* logll.c + * + * Natural logarithm for 128-bit long double precision. + * + * + * + * SYNOPSIS: + * + * long double x, y, logl(); + * + * y = logl( x ); + * + * + * + * DESCRIPTION: + * + * Returns the base e (2.718...) logarithm of x. + * + * The argument is separated into its exponent and fractional + * parts. Use of a lookup table increases the speed of the routine. + * The program uses logarithms tabulated at intervals of 1/128 to + * cover the domain from approximately 0.7 to 1.4. + * + * On the interval [-1/128, +1/128] the logarithm of 1+x is approximated by + * log(1+x) = x - 0.5 x^2 + x^3 P(x) . + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0.875, 1.125 100000 1.2e-34 4.1e-35 + * IEEE 0.125, 8 100000 1.2e-34 4.1e-35 + * + * + * WARNING: + * + * This program uses integer operations on bit fields of floating-point + * numbers. It does not work with data structures other than the + * structure assumed. + * + */ + +/* Copyright 2001 by Stephen L. Moshier */ + +#include "math_private.h" + +/* log(1+x) = x - .5 x^2 + x^3 l(x) + -.0078125 <= x <= +.0078125 + peak relative error 1.2e-37 */ +static const long double +l3 = 3.333333333333333333333333333333336096926E-1L, +l4 = -2.499999999999999999999999999486853077002E-1L, +l5 = 1.999999999999999999999999998515277861905E-1L, +l6 = -1.666666666666666666666798448356171665678E-1L, +l7 = 1.428571428571428571428808945895490721564E-1L, +l8 = -1.249999999999999987884655626377588149000E-1L, +l9 = 1.111111111111111093947834982832456459186E-1L, +l10 = -1.000000000000532974938900317952530453248E-1L, +l11 = 9.090909090915566247008015301349979892689E-2L, +l12 = -8.333333211818065121250921925397567745734E-2L, +l13 = 7.692307559897661630807048686258659316091E-2L, +l14 = -7.144242754190814657241902218399056829264E-2L, +l15 = 6.668057591071739754844678883223432347481E-2L; + +/* Lookup table of ln(t) - (t-1) + t = 0.5 + (k+26)/128) + k = 0, ..., 91 */ +static const long double logtbl[92] = { +-5.5345593589352099112142921677820359632418E-2L, +-5.2108257402767124761784665198737642086148E-2L, +-4.8991686870576856279407775480686721935120E-2L, +-4.5993270766361228596215288742353061431071E-2L, +-4.3110481649613269682442058976885699556950E-2L, +-4.0340872319076331310838085093194799765520E-2L, +-3.7682072451780927439219005993827431503510E-2L, +-3.5131785416234343803903228503274262719586E-2L, +-3.2687785249045246292687241862699949178831E-2L, +-3.0347913785027239068190798397055267411813E-2L, +-2.8110077931525797884641940838507561326298E-2L, +-2.5972247078357715036426583294246819637618E-2L, +-2.3932450635346084858612873953407168217307E-2L, +-2.1988775689981395152022535153795155900240E-2L, +-2.0139364778244501615441044267387667496733E-2L, +-1.8382413762093794819267536615342902718324E-2L, +-1.6716169807550022358923589720001638093023E-2L, +-1.5138929457710992616226033183958974965355E-2L, +-1.3649036795397472900424896523305726435029E-2L, +-1.2244881690473465543308397998034325468152E-2L, +-1.0924898127200937840689817557742469105693E-2L, +-9.6875626072830301572839422532631079809328E-3L, +-8.5313926245226231463436209313499745894157E-3L, +-7.4549452072765973384933565912143044991706E-3L, +-6.4568155251217050991200599386801665681310E-3L, +-5.5356355563671005131126851708522185605193E-3L, +-4.6900728132525199028885749289712348829878E-3L, +-3.9188291218610470766469347968659624282519E-3L, +-3.2206394539524058873423550293617843896540E-3L, +-2.5942708080877805657374888909297113032132E-3L, +-2.0385211375711716729239156839929281289086E-3L, +-1.5522183228760777967376942769773768850872E-3L, +-1.1342191863606077520036253234446621373191E-3L, +-7.8340854719967065861624024730268350459991E-4L, +-4.9869831458030115699628274852562992756174E-4L, +-2.7902661731604211834685052867305795169688E-4L, +-1.2335696813916860754951146082826952093496E-4L, +-3.0677461025892873184042490943581654591817E-5L, + 0.0000000000000000000000000000000000000000E0L, +-3.0359557945051052537099938863236321874198E-5L, +-1.2081346403474584914595395755316412213151E-4L, +-2.7044071846562177120083903771008342059094E-4L, +-4.7834133324631162897179240322783590830326E-4L, +-7.4363569786340080624467487620270965403695E-4L, +-1.0654639687057968333207323853366578860679E-3L, +-1.4429854811877171341298062134712230604279E-3L, +-1.8753781835651574193938679595797367137975E-3L, +-2.3618380914922506054347222273705859653658E-3L, +-2.9015787624124743013946600163375853631299E-3L, +-3.4938307889254087318399313316921940859043E-3L, +-4.1378413103128673800485306215154712148146E-3L, +-4.8328735414488877044289435125365629849599E-3L, +-5.5782063183564351739381962360253116934243E-3L, +-6.3731336597098858051938306767880719015261E-3L, +-7.2169643436165454612058905294782949315193E-3L, +-8.1090214990427641365934846191367315083867E-3L, +-9.0486422112807274112838713105168375482480E-3L, +-1.0035177140880864314674126398350812606841E-2L, +-1.1067990155502102718064936259435676477423E-2L, +-1.2146457974158024928196575103115488672416E-2L, +-1.3269969823361415906628825374158424754308E-2L, +-1.4437927104692837124388550722759686270765E-2L, +-1.5649743073340777659901053944852735064621E-2L, +-1.6904842527181702880599758489058031645317E-2L, +-1.8202661505988007336096407340750378994209E-2L, +-1.9542647000370545390701192438691126552961E-2L, +-2.0924256670080119637427928803038530924742E-2L, +-2.2346958571309108496179613803760727786257E-2L, +-2.3810230892650362330447187267648486279460E-2L, +-2.5313561699385640380910474255652501521033E-2L, +-2.6856448685790244233704909690165496625399E-2L, +-2.8438398935154170008519274953860128449036E-2L, +-3.0058928687233090922411781058956589863039E-2L, +-3.1717563112854831855692484086486099896614E-2L, +-3.3413836095418743219397234253475252001090E-2L, +-3.5147290019036555862676702093393332533702E-2L, +-3.6917475563073933027920505457688955423688E-2L, +-3.8723951502862058660874073462456610731178E-2L, +-4.0566284516358241168330505467000838017425E-2L, +-4.2444048996543693813649967076598766917965E-2L, +-4.4356826869355401653098777649745233339196E-2L, +-4.6304207416957323121106944474331029996141E-2L, +-4.8285787106164123613318093945035804818364E-2L, +-5.0301169421838218987124461766244507342648E-2L, +-5.2349964705088137924875459464622098310997E-2L, +-5.4431789996103111613753440311680967840214E-2L, +-5.6546268881465384189752786409400404404794E-2L, +-5.8693031345788023909329239565012647817664E-2L, +-6.0871713627532018185577188079210189048340E-2L, +-6.3081958078862169742820420185833800925568E-2L, +-6.5323413029406789694910800219643791556918E-2L, +-6.7595732653791419081537811574227049288168E-2L +}; + +/* ln(2) = ln2a + ln2b with extended precision. */ +static const long double + ln2a = 6.93145751953125e-1L, + ln2b = 1.4286068203094172321214581765680755001344E-6L; + + +long double +__ieee754_logl(long double x) +{ + long double z, y, w; + ieee854_long_double_shape_type u, t; + unsigned int m; + int k, e; + + u.value = x; + m = u.parts32.w0; + + /* Check for IEEE special cases. */ + k = m & 0x7fffffff; + /* log(0) = -infinity. */ + if ((k | u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0) + { + u.parts32.w0 = 0xffff; + return u.value; + } + /* log ( x < 0 ) = NaN */ + if (m & 0x80000000) + { + u.parts32.w0 = 0x7fff; + u.parts32.w1 = 0xffff; + u.parts32.w2 = 0xffff; + u.parts32.w3 = 0xffff; + return u.value; + } + /* log (infinity or NaN) */ + if (k >= 0x7fff0000) + { + return u.value; + } + + /* Extract exponent and reduce domain to 0.703125 <= u < 1.40625 */ + e = (int) (m >> 16) - (int) 0x3ffe; + m &= 0xffff; + u.parts32.w0 = m | 0x3ffe0000; + m |= 0x10000; + /* Find lookup table index k from high order bits of the significand. */ + if (m < 0x16800) + { + k = (m - 0xff00) >> 9; + /* t is the argument 0.5 + (k+26)/128 + of the nearest item to u in the lookup table. */ + t.parts32.w0 = 0x3fff0000 + (k << 9); + t.parts32.w1 = 0; + t.parts32.w2 = 0; + t.parts32.w3 = 0; + u.parts32.w0 += 0x10000; + e -= 1; + k += 64; + } + else + { + k = (m - 0xfe00) >> 10; + t.parts32.w0 = 0x3ffe0000 + (k << 10); + t.parts32.w1 = 0; + t.parts32.w2 = 0; + t.parts32.w3 = 0; + } + /* On this interval the table is not used due to cancellation error. */ + if ((x <= 1.0078125L) && (x >= 0.9921875L)) + { + z = x - 1.0L; + k = 64; + t.value = 1.0L; + e = 0; + } + else + { + /* log(u) = log( t u/t ) = log(t) + log(u/t) + log(t) is tabulated in the lookup table. + Express log(u/t) = log(1+z), where z = u/t - 1 = (u-t)/t. + cf. Cody & Waite. */ + z = (u.value - t.value) / t.value; + } + /* Series expansion of log(1+z). */ + w = z * z; + y = ((((((((((((l15 * z + + l14) * z + + l13) * z + + l12) * z + + l11) * z + + l10) * z + + l9) * z + + l8) * z + + l7) * z + + l6) * z + + l5) * z + + l4) * z + + l3) * z * w; + y -= 0.5 * w; + y += e * ln2b; /* Base 2 exponent offset times ln(2). */ + y += z; + y += logtbl[k-26]; /* log(t) - (t-1) */ + y += (t.value - 1.0L); + y += e * ln2a; + return y; +} diff --git a/sysdeps/ieee754/ldbl-96/e_asinl.c b/sysdeps/ieee754/ldbl-96/e_asinl.c new file mode 100644 index 0000000000..f5d817b53a --- /dev/null +++ b/sysdeps/ieee754/ldbl-96/e_asinl.c @@ -0,0 +1,144 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + Long double expansions contributed by + Stephen L. Moshier +*/ + +/* __ieee754_asin(x) + * Method : + * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... + * we approximate asin(x) on [0,0.5] by + * asin(x) = x + x*x^2*R(x^2) + * + * For x in [0.5,1] + * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) + * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; + * then for x>0.98 + * asin(x) = pi/2 - 2*(s+s*z*R(z)) + * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) + * For x<=0.98, let pio4_hi = pio2_hi/2, then + * f = hi part of s; + * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) + * and + * asin(x) = pi/2 - 2*(s+s*z*R(z)) + * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) + * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) + * + * Special cases: + * if x is NaN, return x itself; + * if |x|>1, return NaN with invalid signal. + * + */ + + +#include "math.h" +#include "math_private.h" + +#ifdef __STDC__ +static const long double +#else +static long double +#endif + one = 1.0L, + huge = 1.0e+4932L, + pio2_hi = 1.5707963267948966192021943710788178805159986950457096099853515625L, + pio2_lo = 2.9127320560933561582586004641843300502121E-20L, + pio4_hi = 7.8539816339744830960109718553940894025800E-1L, + + /* coefficient for R(x^2) */ + + /* asin(x) = x + x^3 pS(x^2) / qS(x^2) + 0 <= x <= 0.5 + peak relative error 1.9e-21 */ + pS0 = -1.008714657938491626019651170502036851607E1L, + pS1 = 2.331460313214179572063441834101394865259E1L, + pS2 = -1.863169762159016144159202387315381830227E1L, + pS3 = 5.930399351579141771077475766877674661747E0L, + pS4 = -6.121291917696920296944056882932695185001E-1L, + pS5 = 3.776934006243367487161248678019350338383E-3L, + + qS0 = -6.052287947630949712886794360635592886517E1L, + qS1 = 1.671229145571899593737596543114258558503E2L, + qS2 = -1.707840117062586426144397688315411324388E2L, + qS3 = 7.870295154902110425886636075950077640623E1L, + qS4 = -1.568433562487314651121702982333303458814E1L; + /* 1.000000000000000000000000000000000000000E0 */ + +#ifdef __STDC__ +long double +__ieee754_asinl (long double x) +#else +double +__ieee754_asinl (x) + long double x; +#endif +{ + long double t, w, p, q, c, r, s; + int32_t ix; + u_int32_t se, i0, i1, k; + + GET_LDOUBLE_WORDS (se, i0, i1, x); + ix = se & 0x7fff; + ix = (ix << 16) | (i0 >> 16); + if (ix >= 0x3fff8000) + { /* |x|>= 1 */ + if (((i0 - 0x80000000) | i1) == 0) + /* asin(1)=+-pi/2 with inexact */ + return x * pio2_hi + x * pio2_lo; + return (x - x) / (x - x); /* asin(|x|>1) is NaN */ + } + else if (ix < 0x3ffe8000) + { /* |x|<0.5 */ + if (ix < 0x3fde8000) + { /* if |x| < 2**-33 */ + if (huge + x > one) + return x; /* return x with inexact if x!=0 */ + } + else + { + t = x * x; + p = + t * (pS0 + + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5))))); + q = qS0 + t * (qS1 + t * (qS2 + t * (qS3 + t * (qS4 + t)))); + w = p / q; + return x + x * w; + } + } + /* 1> |x|>= 0.5 */ + w = one - fabsl (x); + t = w * 0.5; + p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5))))); + q = qS0 + t * (qS1 + t * (qS2 + t * (qS3 + t * (qS4 + t)))); + s = __ieee754_sqrtl (t); + if (ix >= 0x3ffef999) + { /* if |x| > 0.975 */ + w = p / q; + t = pio2_hi - (2.0 * (s + s * w) - pio2_lo); + } + else + { + GET_LDOUBLE_WORDS (k, i0, i1, s); + i1 = 0; + SET_LDOUBLE_WORDS (w,k,i0,i1); + c = (t - w * w) / (s + w); + r = p / q; + p = 2.0 * s * r - (pio2_lo - 2.0 * c); + q = pio4_hi - 2.0 * w; + t = pio4_hi - (p - q); + } + if ((se & 0x8000) == 0) + return t; + else + return -t; +} -- cgit v1.2.3