From 92cfc9ad82e4337eff2bff3ca6ab8d453c34d5a7 Mon Sep 17 00:00:00 2001 From: Wilco Dijkstra Date: Thu, 11 Mar 2021 15:36:14 +0000 Subject: math: Remove mpa files (part 2) [BZ #15267] Previous commit was missing deleted files in sysdeps/ieee754/dbl-64. Finally remove all mpa related files, headers, declarations, probes, unused tables and update makefiles. Reviewed-By: Paul Zimmermann --- sysdeps/ieee754/dbl-64/mpa.c | 913 ------------------------------------------- 1 file changed, 913 deletions(-) delete mode 100644 sysdeps/ieee754/dbl-64/mpa.c (limited to 'sysdeps/ieee754/dbl-64/mpa.c') diff --git a/sysdeps/ieee754/dbl-64/mpa.c b/sysdeps/ieee754/dbl-64/mpa.c deleted file mode 100644 index eb5d8e8e89..0000000000 --- a/sysdeps/ieee754/dbl-64/mpa.c +++ /dev/null @@ -1,913 +0,0 @@ -/* - * IBM Accurate Mathematical Library - * written by International Business Machines Corp. - * Copyright (C) 2001-2021 Free Software Foundation, Inc. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU Lesser General Public License as published by - * the Free Software Foundation; either version 2.1 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public License - * along with this program; if not, see . - */ -/************************************************************************/ -/* MODULE_NAME: mpa.c */ -/* */ -/* FUNCTIONS: */ -/* mcr */ -/* acr */ -/* cpy */ -/* norm */ -/* denorm */ -/* mp_dbl */ -/* dbl_mp */ -/* add_magnitudes */ -/* sub_magnitudes */ -/* add */ -/* sub */ -/* mul */ -/* inv */ -/* dvd */ -/* */ -/* Arithmetic functions for multiple precision numbers. */ -/* Relative errors are bounded */ -/************************************************************************/ - - -#include "endian.h" -#include "mpa.h" -#include -#include - -#ifndef SECTION -# define SECTION -#endif - -#ifndef NO__CONST -const mp_no __mpone = { 1, { 1.0, 1.0 } }; -const mp_no __mptwo = { 1, { 1.0, 2.0 } }; -#endif - -#ifndef NO___ACR -/* Compare mantissa of two multiple precision numbers regardless of the sign - and exponent of the numbers. */ -static int -mcr (const mp_no *x, const mp_no *y, int p) -{ - long i; - long p2 = p; - for (i = 1; i <= p2; i++) - { - if (X[i] == Y[i]) - continue; - else if (X[i] > Y[i]) - return 1; - else - return -1; - } - return 0; -} - -/* Compare the absolute values of two multiple precision numbers. */ -int -__acr (const mp_no *x, const mp_no *y, int p) -{ - long i; - - if (X[0] == 0) - { - if (Y[0] == 0) - i = 0; - else - i = -1; - } - else if (Y[0] == 0) - i = 1; - else - { - if (EX > EY) - i = 1; - else if (EX < EY) - i = -1; - else - i = mcr (x, y, p); - } - - return i; -} -#endif - -#ifndef NO___CPY -/* Copy multiple precision number X into Y. They could be the same - number. */ -void -__cpy (const mp_no *x, mp_no *y, int p) -{ - long i; - - EY = EX; - for (i = 0; i <= p; i++) - Y[i] = X[i]; -} -#endif - -#ifndef NO___MP_DBL -/* Convert a multiple precision number *X into a double precision - number *Y, normalized case (|x| >= 2**(-1022))). X has precision - P, which is positive. */ -static void -norm (const mp_no *x, double *y, int p) -{ -# define R RADIXI - long i; - double c; - mantissa_t a, u, v, z[5]; - if (p < 5) - { - if (p == 1) - c = X[1]; - else if (p == 2) - c = X[1] + R * X[2]; - else if (p == 3) - c = X[1] + R * (X[2] + R * X[3]); - else /* p == 4. */ - c = (X[1] + R * X[2]) + R * R * (X[3] + R * X[4]); - } - else - { - for (a = 1, z[1] = X[1]; z[1] < TWO23; ) - { - a *= 2; - z[1] *= 2; - } - - for (i = 2; i < 5; i++) - { - mantissa_store_t d, r; - d = X[i] * (mantissa_store_t) a; - DIV_RADIX (d, r); - z[i] = r; - z[i - 1] += d; - } - - u = ALIGN_DOWN_TO (z[3], TWO19); - v = z[3] - u; - - if (v == TWO18) - { - if (z[4] == 0) - { - for (i = 5; i <= p; i++) - { - if (X[i] == 0) - continue; - else - { - z[3] += 1; - break; - } - } - } - else - z[3] += 1; - } - - c = (z[1] + R * (z[2] + R * z[3])) / a; - } - - c *= X[0]; - - for (i = 1; i < EX; i++) - c *= RADIX; - for (i = 1; i > EX; i--) - c *= RADIXI; - - *y = c; -# undef R -} - -/* Convert a multiple precision number *X into a double precision - number *Y, Denormal case (|x| < 2**(-1022))). */ -static void -denorm (const mp_no *x, double *y, int p) -{ - long i, k; - long p2 = p; - double c; - mantissa_t u, z[5]; - -# define R RADIXI - if (EX < -44 || (EX == -44 && X[1] < TWO5)) - { - *y = 0; - return; - } - - if (p2 == 1) - { - if (EX == -42) - { - z[1] = X[1] + TWO10; - z[2] = 0; - z[3] = 0; - k = 3; - } - else if (EX == -43) - { - z[1] = TWO10; - z[2] = X[1]; - z[3] = 0; - k = 2; - } - else - { - z[1] = TWO10; - z[2] = 0; - z[3] = X[1]; - k = 1; - } - } - else if (p2 == 2) - { - if (EX == -42) - { - z[1] = X[1] + TWO10; - z[2] = X[2]; - z[3] = 0; - k = 3; - } - else if (EX == -43) - { - z[1] = TWO10; - z[2] = X[1]; - z[3] = X[2]; - k = 2; - } - else - { - z[1] = TWO10; - z[2] = 0; - z[3] = X[1]; - k = 1; - } - } - else - { - if (EX == -42) - { - z[1] = X[1] + TWO10; - z[2] = X[2]; - k = 3; - } - else if (EX == -43) - { - z[1] = TWO10; - z[2] = X[1]; - k = 2; - } - else - { - z[1] = TWO10; - z[2] = 0; - k = 1; - } - z[3] = X[k]; - } - - u = ALIGN_DOWN_TO (z[3], TWO5); - - if (u == z[3]) - { - for (i = k + 1; i <= p2; i++) - { - if (X[i] == 0) - continue; - else - { - z[3] += 1; - break; - } - } - } - - c = X[0] * ((z[1] + R * (z[2] + R * z[3])) - TWO10); - - *y = c * TWOM1032; -# undef R -} - -/* Convert multiple precision number *X into double precision number *Y. The - result is correctly rounded to the nearest/even. */ -void -__mp_dbl (const mp_no *x, double *y, int p) -{ - if (X[0] == 0) - { - *y = 0; - return; - } - - if (__glibc_likely (EX > -42 || (EX == -42 && X[1] >= TWO10))) - norm (x, y, p); - else - denorm (x, y, p); -} -#endif - -/* Get the multiple precision equivalent of X into *Y. If the precision is too - small, the result is truncated. */ -void -SECTION -__dbl_mp (double x, mp_no *y, int p) -{ - long i, n; - long p2 = p; - - /* Sign. */ - if (x == 0) - { - Y[0] = 0; - return; - } - else if (x > 0) - Y[0] = 1; - else - { - Y[0] = -1; - x = -x; - } - - /* Exponent. */ - for (EY = 1; x >= RADIX; EY += 1) - x *= RADIXI; - for (; x < 1; EY -= 1) - x *= RADIX; - - /* Digits. */ - n = MIN (p2, 4); - for (i = 1; i <= n; i++) - { - INTEGER_OF (x, Y[i]); - x *= RADIX; - } - for (; i <= p2; i++) - Y[i] = 0; -} - -/* Add magnitudes of *X and *Y assuming that abs (*X) >= abs (*Y) > 0. The - sign of the sum *Z is not changed. X and Y may overlap but not X and Z or - Y and Z. No guard digit is used. The result equals the exact sum, - truncated. */ -static void -SECTION -add_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p) -{ - long i, j, k; - long p2 = p; - mantissa_t zk; - - EZ = EX; - - i = p2; - j = p2 + EY - EX; - k = p2 + 1; - - if (__glibc_unlikely (j < 1)) - { - __cpy (x, z, p); - return; - } - - zk = 0; - - for (; j > 0; i--, j--) - { - zk += X[i] + Y[j]; - if (zk >= RADIX) - { - Z[k--] = zk - RADIX; - zk = 1; - } - else - { - Z[k--] = zk; - zk = 0; - } - } - - for (; i > 0; i--) - { - zk += X[i]; - if (zk >= RADIX) - { - Z[k--] = zk - RADIX; - zk = 1; - } - else - { - Z[k--] = zk; - zk = 0; - } - } - - if (zk == 0) - { - for (i = 1; i <= p2; i++) - Z[i] = Z[i + 1]; - } - else - { - Z[1] = zk; - EZ += 1; - } -} - -/* Subtract the magnitudes of *X and *Y assuming that abs (*x) > abs (*y) > 0. - The sign of the difference *Z is not changed. X and Y may overlap but not X - and Z or Y and Z. One guard digit is used. The error is less than one - ULP. */ -static void -SECTION -sub_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p) -{ - long i, j, k; - long p2 = p; - mantissa_t zk; - - EZ = EX; - i = p2; - j = p2 + EY - EX; - k = p2; - - /* Y is too small compared to X, copy X over to the result. */ - if (__glibc_unlikely (j < 1)) - { - __cpy (x, z, p); - return; - } - - /* The relevant least significant digit in Y is non-zero, so we factor it in - to enhance accuracy. */ - if (j < p2 && Y[j + 1] > 0) - { - Z[k + 1] = RADIX - Y[j + 1]; - zk = -1; - } - else - zk = Z[k + 1] = 0; - - /* Subtract and borrow. */ - for (; j > 0; i--, j--) - { - zk += (X[i] - Y[j]); - if (zk < 0) - { - Z[k--] = zk + RADIX; - zk = -1; - } - else - { - Z[k--] = zk; - zk = 0; - } - } - - /* We're done with digits from Y, so it's just digits in X. */ - for (; i > 0; i--) - { - zk += X[i]; - if (zk < 0) - { - Z[k--] = zk + RADIX; - zk = -1; - } - else - { - Z[k--] = zk; - zk = 0; - } - } - - /* Normalize. */ - for (i = 1; Z[i] == 0; i++) - ; - EZ = EZ - i + 1; - for (k = 1; i <= p2 + 1; ) - Z[k++] = Z[i++]; - for (; k <= p2; ) - Z[k++] = 0; -} - -/* Add *X and *Y and store the result in *Z. X and Y may overlap, but not X - and Z or Y and Z. One guard digit is used. The error is less than one - ULP. */ -void -SECTION -__add (const mp_no *x, const mp_no *y, mp_no *z, int p) -{ - int n; - - if (X[0] == 0) - { - __cpy (y, z, p); - return; - } - else if (Y[0] == 0) - { - __cpy (x, z, p); - return; - } - - if (X[0] == Y[0]) - { - if (__acr (x, y, p) > 0) - { - add_magnitudes (x, y, z, p); - Z[0] = X[0]; - } - else - { - add_magnitudes (y, x, z, p); - Z[0] = Y[0]; - } - } - else - { - if ((n = __acr (x, y, p)) == 1) - { - sub_magnitudes (x, y, z, p); - Z[0] = X[0]; - } - else if (n == -1) - { - sub_magnitudes (y, x, z, p); - Z[0] = Y[0]; - } - else - Z[0] = 0; - } -} - -/* Subtract *Y from *X and return the result in *Z. X and Y may overlap but - not X and Z or Y and Z. One guard digit is used. The error is less than - one ULP. */ -void -SECTION -__sub (const mp_no *x, const mp_no *y, mp_no *z, int p) -{ - int n; - - if (X[0] == 0) - { - __cpy (y, z, p); - Z[0] = -Z[0]; - return; - } - else if (Y[0] == 0) - { - __cpy (x, z, p); - return; - } - - if (X[0] != Y[0]) - { - if (__acr (x, y, p) > 0) - { - add_magnitudes (x, y, z, p); - Z[0] = X[0]; - } - else - { - add_magnitudes (y, x, z, p); - Z[0] = -Y[0]; - } - } - else - { - if ((n = __acr (x, y, p)) == 1) - { - sub_magnitudes (x, y, z, p); - Z[0] = X[0]; - } - else if (n == -1) - { - sub_magnitudes (y, x, z, p); - Z[0] = -Y[0]; - } - else - Z[0] = 0; - } -} - -#ifndef NO__MUL -/* Multiply *X and *Y and store result in *Z. X and Y may overlap but not X - and Z or Y and Z. For P in [1, 2, 3], the exact result is truncated to P - digits. In case P > 3 the error is bounded by 1.001 ULP. */ -void -SECTION -__mul (const mp_no *x, const mp_no *y, mp_no *z, int p) -{ - long i, j, k, ip, ip2; - long p2 = p; - mantissa_store_t zk; - const mp_no *a; - mantissa_store_t *diag; - - /* Is z=0? */ - if (__glibc_unlikely (X[0] * Y[0] == 0)) - { - Z[0] = 0; - return; - } - - /* We need not iterate through all X's and Y's since it's pointless to - multiply zeroes. Here, both are zero... */ - for (ip2 = p2; ip2 > 0; ip2--) - if (X[ip2] != 0 || Y[ip2] != 0) - break; - - a = X[ip2] != 0 ? y : x; - - /* ... and here, at least one of them is still zero. */ - for (ip = ip2; ip > 0; ip--) - if (a->d[ip] != 0) - break; - - /* The product looks like this for p = 3 (as an example): - - - a1 a2 a3 - x b1 b2 b3 - ----------------------------- - a1*b3 a2*b3 a3*b3 - a1*b2 a2*b2 a3*b2 - a1*b1 a2*b1 a3*b1 - - So our K needs to ideally be P*2, but we're limiting ourselves to P + 3 - for P >= 3. We compute the above digits in two parts; the last P-1 - digits and then the first P digits. The last P-1 digits are a sum of - products of the input digits from P to P-k where K is 0 for the least - significant digit and increases as we go towards the left. The product - term is of the form X[k]*X[P-k] as can be seen in the above example. - - The first P digits are also a sum of products with the same product term, - except that the sum is from 1 to k. This is also evident from the above - example. - - Another thing that becomes evident is that only the most significant - ip+ip2 digits of the result are non-zero, where ip and ip2 are the - 'internal precision' of the input numbers, i.e. digits after ip and ip2 - are all 0. */ - - k = (__glibc_unlikely (p2 < 3)) ? p2 + p2 : p2 + 3; - - while (k > ip + ip2 + 1) - Z[k--] = 0; - - zk = 0; - - /* Precompute sums of diagonal elements so that we can directly use them - later. See the next comment to know we why need them. */ - diag = alloca (k * sizeof (mantissa_store_t)); - mantissa_store_t d = 0; - for (i = 1; i <= ip; i++) - { - d += X[i] * (mantissa_store_t) Y[i]; - diag[i] = d; - } - while (i < k) - diag[i++] = d; - - while (k > p2) - { - long lim = k / 2; - - if (k % 2 == 0) - /* We want to add this only once, but since we subtract it in the sum - of products above, we add twice. */ - zk += 2 * X[lim] * (mantissa_store_t) Y[lim]; - - for (i = k - p2, j = p2; i < j; i++, j--) - zk += (X[i] + X[j]) * (mantissa_store_t) (Y[i] + Y[j]); - - zk -= diag[k - 1]; - - DIV_RADIX (zk, Z[k]); - k--; - } - - /* The real deal. Mantissa digit Z[k] is the sum of all X[i] * Y[j] where i - goes from 1 -> k - 1 and j goes the same range in reverse. To reduce the - number of multiplications, we halve the range and if k is an even number, - add the diagonal element X[k/2]Y[k/2]. Through the half range, we compute - X[i] * Y[j] as (X[i] + X[j]) * (Y[i] + Y[j]) - X[i] * Y[i] - X[j] * Y[j]. - - This reduction tells us that we're summing two things, the first term - through the half range and the negative of the sum of the product of all - terms of X and Y in the full range. i.e. - - SUM(X[i] * Y[i]) for k terms. This is precalculated above for each k in - a single loop so that it completes in O(n) time and can hence be directly - used in the loop below. */ - while (k > 1) - { - long lim = k / 2; - - if (k % 2 == 0) - /* We want to add this only once, but since we subtract it in the sum - of products above, we add twice. */ - zk += 2 * X[lim] * (mantissa_store_t) Y[lim]; - - for (i = 1, j = k - 1; i < j; i++, j--) - zk += (X[i] + X[j]) * (mantissa_store_t) (Y[i] + Y[j]); - - zk -= diag[k - 1]; - - DIV_RADIX (zk, Z[k]); - k--; - } - Z[k] = zk; - - /* Get the exponent sum into an intermediate variable. This is a subtle - optimization, where given enough registers, all operations on the exponent - happen in registers and the result is written out only once into EZ. */ - int e = EX + EY; - - /* Is there a carry beyond the most significant digit? */ - if (__glibc_unlikely (Z[1] == 0)) - { - for (i = 1; i <= p2; i++) - Z[i] = Z[i + 1]; - e--; - } - - EZ = e; - Z[0] = X[0] * Y[0]; -} -#endif - -#ifndef NO__SQR -/* Square *X and store result in *Y. X and Y may not overlap. For P in - [1, 2, 3], the exact result is truncated to P digits. In case P > 3 the - error is bounded by 1.001 ULP. This is a faster special case of - multiplication. */ -void -SECTION -__sqr (const mp_no *x, mp_no *y, int p) -{ - long i, j, k, ip; - mantissa_store_t yk; - - /* Is z=0? */ - if (__glibc_unlikely (X[0] == 0)) - { - Y[0] = 0; - return; - } - - /* We need not iterate through all X's since it's pointless to - multiply zeroes. */ - for (ip = p; ip > 0; ip--) - if (X[ip] != 0) - break; - - k = (__glibc_unlikely (p < 3)) ? p + p : p + 3; - - while (k > 2 * ip + 1) - Y[k--] = 0; - - yk = 0; - - while (k > p) - { - mantissa_store_t yk2 = 0; - long lim = k / 2; - - if (k % 2 == 0) - yk += X[lim] * (mantissa_store_t) X[lim]; - - /* In __mul, this loop (and the one within the next while loop) run - between a range to calculate the mantissa as follows: - - Z[k] = X[k] * Y[n] + X[k+1] * Y[n-1] ... + X[n-1] * Y[k+1] - + X[n] * Y[k] - - For X == Y, we can get away with summing halfway and doubling the - result. For cases where the range size is even, the mid-point needs - to be added separately (above). */ - for (i = k - p, j = p; i < j; i++, j--) - yk2 += X[i] * (mantissa_store_t) X[j]; - - yk += 2 * yk2; - - DIV_RADIX (yk, Y[k]); - k--; - } - - while (k > 1) - { - mantissa_store_t yk2 = 0; - long lim = k / 2; - - if (k % 2 == 0) - yk += X[lim] * (mantissa_store_t) X[lim]; - - /* Likewise for this loop. */ - for (i = 1, j = k - 1; i < j; i++, j--) - yk2 += X[i] * (mantissa_store_t) X[j]; - - yk += 2 * yk2; - - DIV_RADIX (yk, Y[k]); - k--; - } - Y[k] = yk; - - /* Squares are always positive. */ - Y[0] = 1; - - /* Get the exponent sum into an intermediate variable. This is a subtle - optimization, where given enough registers, all operations on the exponent - happen in registers and the result is written out only once into EZ. */ - int e = EX * 2; - - /* Is there a carry beyond the most significant digit? */ - if (__glibc_unlikely (Y[1] == 0)) - { - for (i = 1; i <= p; i++) - Y[i] = Y[i + 1]; - e--; - } - - EY = e; -} -#endif - -/* Invert *X and store in *Y. Relative error bound: - - For P = 2: 1.001 * R ^ (1 - P) - - For P = 3: 1.063 * R ^ (1 - P) - - For P > 3: 2.001 * R ^ (1 - P) - - *X = 0 is not permissible. */ -static void -SECTION -__inv (const mp_no *x, mp_no *y, int p) -{ - long i; - double t; - mp_no z, w; - static const int np1[] = - { 0, 0, 0, 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, - 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 - }; - - __cpy (x, &z, p); - z.e = 0; - __mp_dbl (&z, &t, p); - t = 1 / t; - - /* t == 0 will never happen at this point, since 1/t can only be 0 if t is - infinity, but before the division t == mantissa of x (exponent is 0). We - can instruct the compiler to ignore this case. */ - if (t == 0) - __builtin_unreachable (); - - __dbl_mp (t, y, p); - EY -= EX; - - for (i = 0; i < np1[p]; i++) - { - __cpy (y, &w, p); - __mul (x, &w, y, p); - __sub (&__mptwo, y, &z, p); - __mul (&w, &z, y, p); - } -} - -/* Divide *X by *Y and store result in *Z. X and Y may overlap but not X and Z - or Y and Z. Relative error bound: - - For P = 2: 2.001 * R ^ (1 - P) - - For P = 3: 2.063 * R ^ (1 - P) - - For P > 3: 3.001 * R ^ (1 - P) - - *X = 0 is not permissible. */ -void -SECTION -__dvd (const mp_no *x, const mp_no *y, mp_no *z, int p) -{ - mp_no w; - - if (X[0] == 0) - Z[0] = 0; - else - { - __inv (y, &w, p); - __mul (x, &w, z, p); - } -} -- cgit v1.2.3-70-g09d2